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Abstract

The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev.
Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac–Hartree–Fock potential. We implement the DKB
method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson,
S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307–315]. We compare the performance of the ND and DKB methods by computing various
properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2 − 7s1/2 transition, and the second-order
many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both
methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the
DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively
smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves
to typical many-body correlation corrections.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Applications of perturbation theory in quantum mechanics
generally require summations over a complete set of states of
the lowest-order Hamiltonian. Usually, the relevant spectrum is
innumerable. In practical applications such eigenspectra are of-
ten modeled using finite basis sets, chosen to be numerically
complete. Since the sets are finite, the otherwise infinite sum-
mations become amendable to numerical evaluations.

The use of a finite basis set composed of piecewise poly-
nomials, so-called B-splines [1], has proven to be particularly
advantageous in atomic physics and quantum chemistry appli-
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cations [2]. In this approach, an atom is placed in a sufficiently
large cavity and the atomic wavefunctions are expanded in
terms of the underlying B-spline set. Further, the variational
Galerkin method is invoked and the solution of the resulting
matrix eigenvalue problem produces a quasi-spectrum for the
atom. In non-relativistic calculations, the lowest-energy orbitals
of the resulting basis set closely agree with those of the un-
perturbed atom, and calculations of various properties of the
low-lying states can be carried out. In particular, one could
generate single-particle orbitals in some suitable lowest-order
approximation, and use the resulting basis set in applications of
many-body perturbation theory (MBPT).

Application of the outlined approach to the relativistic prob-
lems brings in a complication—the appearance in the atomic
quasi-spectrum of non-physical “spurious” states. These states
appear in the solution of the single-particle radial Dirac equa-
tion for κ > 0 angular symmetry, j = � − 1/2 (p1/2, d3/2, . . .
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orbitals). The spurious states rapidly oscillate and, moreover,
spoil the mapping of the generated quasi-spectrum onto the
low-energy orbitals of the atom. At the same time they are
required for keeping the set complete. The problem of spuri-
ous states was discussed in the literature in details, see e.g.,
Refs. [3–6], and several solutions were proposed. In the pio-
neering applications of the B-splines in relativistic many-body
problem by the Notre Dame group, Johnson et al. [5] added
an artificial potential spike centered at the origin to the Hamil-
tonian matrix. The overall effect was to shift the spurious states
to higher energies thus restoring the low-energy mapping to the
physical states. We will refer to the sets generated using this
prescription as the Notre Dame (ND) sets. Another solution
was to use “kinetically-balanced” sets [4], which related the
small and the large components of the basis set functions via
the Pauli approximation. Recently, an extension of this method
was proposed in Ref. [7]. Here, due to additional relations be-
tween the small and large components, the negative (Dirac sea)
and positive energy spectra are treated in a symmetric fash-
ion. To emphasize this built-in symmetry, the authors refer to
their method as the “dual-kinetic-balance” (DKB) approach. In
both methods (by contrast to the ND prescription), the spurious
states were shown to be completely eliminated from the quasi-
spectrum.

Motivated by the success of the DKB method in comput-
ing properties of hydrogen-like ions [6,7], here we investigate
the suitability of the DKB method in modeling the spectrum of
the (non-local) Dirac–Hartree–Fock (DHF) potential. We com-
pare the performance of the ND and DKB methods by com-
puting various properties of Cs atom: single-particle energies,
hyperfine integrals, and the parity-non-conserving amplitude of
the 6s1/2 − 7s1/2 transition. We find that for properties involv-
ing matrix elements accumulated near the nucleus, the DKB
method outperforms the ND approach. Otherwise, if the elec-
tronic integrals are accumulated far from the nucleus, both
methods produce results of a similar quality.

In addition, we investigate a possibility of using varying
number of basis set functions for different angular symmetries.
Summations over intermediate states in expressions of pertur-
bation theory are carried out both over angular quantum num-
bers κ and for fixed κ over radial quantum numbers. Usually, as
|κ| (and �) increases, the correlation corrections due to higher
partial waves become progressively smaller. Intuitively, one ex-
pects that for higher partial waves it would be sufficient to use
smaller radial basis sets of lesser quality. This would reduce
storage requirements for many-body calculations (for example,
in implementing coupled-cluster formalism) and would speed
up numerical evaluations. While such an approach is common
in quantum chemistry, see, e.g., Ref. [8], the question of build-
ing the optimal B-spline basis set was not addressed yet in rel-
ativistic many-body calculations. We illustrate optimizing the
basis sets by computing the second-order energy correction for
several states of Cs.

This paper is organized as follows. First we recapitulate the
Galerkin-type approach to generating a finite-basis set quasi-
spectrum for the Dirac equation in Section 2. The variational
method is invoked for relativistic action and the problem is
reduced to solving the generalized eigenvalue problem in Sec-
tion 2.1. The DHF potential is specified in Section 2.2. Further
we specify ND and DKB sets in Section 2.3 and boundary
conditions in Section 2.4. A numerical analysis of Cs atom is
provided in Section 3. In Sections 3.1 and 3.2 we compare the
performance of the ND and the DKB sets by computing single-
particle energies and hyperfine integrals (Section 3.1) as well
as parity-nonconserving amplitudes (Section 3.2). The spurious
states arising from the ND method are examined in Section 3.3.
In Section 3.4 we consider second-order energy corrections in
the DKB method and discuss a strategy of optimizing the size
of the basis set.

2. Problem setup

We are interested in solving the eigenvalue equation HDu(r)
= εu(r) for the Dirac Hamiltonian, HD = cα · p + βc2 +
Vnuc(r) + VDHF(r), where Vnuc is the nuclear potential and
VDHF is the mean-field (Dirac–Hartree–Fock) potential. VDHF is
in general a non-local potential. Assuming that both potentials
are central one may exploit the rotational invariance to parame-
terize the solutions as

(1)unκ(r) = 1

r

(
iPnκ(r) Ωκm(r̂)
Qnκ(r) Ω−κm(r̂)

)
,

with Ωκm(r̂) being the spherical spinors. The solutions depend
on the radial quantum number n and the angular quantum num-
ber κ = (l − j)(2j + 1). The large, Pnκ , and small, Qnκ , radial
components satisfy the conventional set of radial Dirac equa-
tions(
Vnuc(r) + VDHF(r) + c2)Pnκ(r) + c

(
d

dr
− κ

r

)
Qnκ(r)

= εnκPnκ(r),

−c

(
d

dr
+ κ

r

)
Pnκ(r) + (

Vnuc(r) + VDHF(r) − c2)Qnκ(r)

= εnκQnκ(r).

These radial equations may be derived by seeking an ex-
tremum of the following action (subtracting the rest mass en-
ergy from ε) [5]

Sκ = 1

2
c

R∫
0

{
Pκ(r)Ôκ−Qκ(r) − Qκ(r)Ôκ+Pκ(r)

}
dr

+ 1

2

R∫
0

(
Pκ(r),Qκ(r)

)
VDHF(r)

(
Pκ(r)

Qκ(r)

)
dr

+ 1

2

R∫
0

Vnuc(r)
(
Pκ(r)2 + Qκ(r)2)dr − c2

R∫
0

Qκ(r)2 dr

(2)− εκ

1

2

R∫
0

(
Pκ(r)2 + Qκ(r)2)dr + �Sbnd

κ + �S
spur
κ ,

where the κ-dependent Pauli operators are defined as

Ôκ± = d ± κ
,

dr r
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and the upper integration limit R is the radius of the confin-
ing cavity. Boundary conditions may be imposed by adding
the term �Sbnd

κ to the action. The term �S
spur
κ controls the ap-

pearance of the spurious states in the quasi-spectrum. We will
specify these two terms below.

2.1. Reduction to the matrix form

We employ two finite basis sets {li (r)} and {si(r)}, i =
1,2N , which, since we are interested in solving the (angularly-
decoupled) radial equations, may depend on the angular quan-
tum number κ . We may expand the large and small components
in terms of these bases

(3)P(r) =
2N∑
i=1

pili(r), Q(r) =
2N∑
i=1

pisi(r),

the expansion coefficients being the same for both the large and
the small components. The above expansions are plugged into
the action, Eq. (2), and, further, its extremum is sought by vary-
ing the expansion coefficients. As a result one arrives at the
following generalized eigenvalue equation

(4)A �p = εB �p,

where A and B are 2N × 2N matrices and �p is the vector of
expansion coefficients in Eq. (3). The matrix elements A are
given by

(5)Aij = Dij + Vij − 2c2Sij + Abnd
ij + A

spur
ij .

The matrices entering the definition of A correspond to various
pieces of the radial Dirac equations,

Dij = c

( R∫
0

li (r)
d

dr
sj (r) dr −

R∫
0

li (r)

(
κ

r

)
sj (r) dr

)

(6)+ c

( R∫
0

lj (r)
d

dr
si(r) dr −

R∫
0

lj (r)

(
κ

r

)
si(r) dr

)
,

(7)Vij =
R∫

0

Vnuc(r)
[
li (r)lj (r) + si(r)sj (r)

]
dr + (VDHF)ij ,

(8)Sij =
R∫

0

si(r)sj (r) dr,

with the matrix elements of the DHF potential, (VDHF)ij , given
in Section 2.2. The terms Abnd

ij and A
spur
ij arise from the bound-

ary and “spurious state” corrections in the action. The matrix B

is given by

(9)Bij =
R∫

0

[
li (r)lj (r) + si(r)sj (r)

]
dr.

This matrix reflects the fact that the basis sets may be non-or-
thonormal.
2.2. Potentials

The nuclear potential Vnuc(r) is generated for a nucleus of a
finite size. We employ the Fermi distribution with the nuclear
parameters taken from Ref. [9]. As to the Dirac–Hartree–Fock
potential, we employ the frozen-core approximation. In this
method, the calculation is carried out in two stages. First, the
core orbitals are computed self-consistently. Second, based on
the precomputed core orbitals, the DHF potential is assembled
for the valence orbitals and the valence orbitals are determined.
In the valence part of the problem, the core orbitals are no
longer adjusted. Explicitly, for a set of the angular symmetry κ ,

(VDHF)ij =
R∫

0

(
li (r) si(r)

)
VDHF(r)

(
lj (r)

sj (r)

)
dr

(10)= (
V dir

DHF

)
ij

+ (
V exc

DHF

)
ij
,

(
V dir

DHF

)
ij

=
∑

a∈core

(2ja + 1)

R∫
0

v0(a, a, r)

(11)× [
li (r)lj (r) + si(r)sj (r)

]
dr,(

V exc
DHF

)
ij

= −
∑

a∈core

∑
L

(2ja + 1)ΛκLκa

(12)

×
R∫

0

vL(a, j, r)
[
li (r)Pa(r) + si(r)Qa(r)

]
dr,

with the conventionally defined multipolar contributions

(13)

vL(b, a, r) =
R∫

0

rL
<

rL+1
>

[
Pa(r

′)Pb(r
′) + Qa(r

′)Qb(r
′)
]
dr ′,

and the angular coefficient

(14)ΛκaLκb
=

(
ja jb L

−1/2 1/2 0

)2

.

2.3. ND and DKB sets

Now we specify the Notre Dame (ND) and the dual-kinetic-
balance (DKB) basis sets. Both operate in terms of B-spline
functions, and first we recapitulate the relevant properties of
these splines. A set of n B-splines of order k is defined on a
supporting grid {ti}, i = 1, n + k. Usually, the gridpoints are
chosen so that

t1 = t2 = · · · = tk = 0,

tn = tn+1 = · · · = tn+k = R.

In our calculations the intermediate gridpoints are distributed
exponentially. B-spline number i of order k, B

(k)
i (r), is a piece-

wise polynomial of degree k−1 inside ti � r < ti+k . It vanishes
outside this interval. This property simplifies the evaluation of
matrix elements between the functions of the basis set. In ad-
dition, we will make use of the fact that as r → 0, the first k
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splines behave as (all the remaining splines are zero)

(15)B
(k)
i�k ∝ ri−1,

and at r = R, all splines vanish except for the last spline, B
(k)
i=n.

The Notre Dame set is defined as

(16)

lND
i (r) =

{
B

(k)
i (r) 1 � i � n,

0 n < i � 2n,

sND
i (r) =

{
0 1 � i � n,

B
(k)
i−n(r) n < i � 2n.

It corresponds to an independent expansion of the large and
small radial components into the B-spline basis. The DKB set
involves the Pauli operators and enforces a “kinetic balance”
between contributions to the components:

(17)

lDKB
i (r) =

{
−B

(k)
i (r) 1 � i � n,

− 1
2c

Ôκ−B
(k)
i−n(r) n < i � 2n,

sDKB
i (r) =

{
1
2c

Ôκ+B
(k)
i (r) 1 � i � n,

B
(k)
i−n(r) n < i � 2n.

Notice that, as discussed below, to satisfy the boundary condi-
tions, we will use only a subset of the entire DKB basis.

2.4. Spurious states and boundary conditions

With the ND set, the spurious states are shifted away to the
high-energy end of the quasi-spectrum by adding the following
action [5] (�Sspur)ND = c

2P(0)2 − c
2P(0)Q(0) for κ < 0 and

(�Sspur)ND = c2P(0)2 − c
2P(0)Q(0) for κ > 0. This correc-

tion may be seen as arising from an artificial δ-function-like
potential centered at the origin. Unfortunately, as shown be-
low in numerical examples, this additional spike perturbs the
behavior of the orbitals near the nucleus. (As discussed be-
low (�Sspur)ND also sets the boundary conditions at r = 0.)
The DKB set does not have the spurious states at all, so that
(�Sspur)DKB ≡ 0.

We need to specify boundary conditions at r = 0 and at the
cavity radius, r = R. We start by discussing the boundary con-
ditions at r = 0. For a finite-size nucleus the radial components
behave as

(18)
Pnκ ∝ rl+1 and Qnκ ∝ rl+2 for κ < 0,

Pnκ ∝ rl+1 and Qnκ ∝ rl for κ > 0.

In the Notre Dame approach, the boundary conditions are im-
posed variationally by adding the boundary terms to the ac-
tion integral. Varying �Sspur, Ref. [5], effectively reduces to
P(0) = 0. In practice, because of the variational nature of the
ND constraint, the large component, although being small, does
not vanish at the origin, and the limits, (18), are not satisfied.
Alternatively, Froese-Fischer et al. [10] proposed to impose
P(0) = Q(0) = 0 by discarding the first B-spline of the set (this
is the only B-spline that does not vanish at r = 0). This is a
“hard” constraint, since the wavefunction, Eq. (3), would van-
ish identically at the origin. In our calculations, because of our
motivation in building the smallest possible basis set, we extend
this scheme further. We exploit the power-law behavior of the
B-splines, Eq. (15), and match it to the small-r limits (18). To
satisfy the matching, we need to include the B-splines starting
with the sequential number (imin must be smaller than the order
of the splines k).

(19)imin = |κ| + 1 =
{

� + 2, κ < 0,

� + 1, κ > 0.

For s1/2(κ = −1) and p1/2(κ = +1), imin = 2, and this is equiv-
alent to the boundary condition of Ref. [10]. For higher partial
waves, however, an increasingly larger number of splines is dis-
carded: e.g., for f7/2(κ = −4), imin = 5. One should notice that
for a basis that includes partial waves � � �max, for a faithful
representation of the small-r behavior in all the partial waves,
one needs to require the order of the splines to be at least of
k = �max + 3. In particular, for k = 7, lmax = 4.

When the first B-spline of the set, B
(k)
i=1(r), is included in the

basis (as in the ND approach), there is another difficulty in the
calculations: since its value does not vanish at r = 0, the matrix
elements D1,n+1 and Dn+1,1, which contain matrix elements
of 1/r , are infinite in absolute value [6]. In practical calcula-
tions, one uses Gaussian quadratures to evaluate this integral,
so the result of the integration is finite. Yet this introduces ar-
bitrariness in the ND calculations and may be a reason for a
relatively poor representation of the orbitals near the origin.

At the cavity radius, to avoid overspecifying the bound-
ary conditions for the Dirac equation, the ND group used the
boundary condition P(R) = Q(R). As with the conditions at
the origin, this relation was “encouraged” variationally. In our
calculations (similarly to Ref. [7]) we use the “hard” condition
P(R) = Q(R) = 0 by removing the last B-spline from the set.
Examination of the resulting orbitals reveals that the wavefunc-
tions acquire a non-physical inflection towards the end of the
supporting grid, while the ND orbitals behave properly. Further
numerical experimentation, however, shows that the inflection
does not degrade the numerical quality at least for the atomic
properties of the low-lying bound states of interest. At the same
time, throwing away the last B-spline reduces the number of
basis functions and leads to a more compact set.

To summarize, we will use the DKB basis set that includes
B-splines with sequential numbers imin(κ), Eq. (19), to imax =
n − 1. We will simply refer to this choice as the DKB basis.
When we refer to N = 40 DKB functions for a given partial
wave, it would imply larger underlying B-spline set, e.g., for
s-waves the total number of B-splines would be n = 42. For the
ND basis n = N , as all B-splines participate in the expansion.

In the remainder of this paper we present results of numeri-
cal analysis for 133Cs atom. It is an atom with a single valence
electron outside a closed-shell core. As the first step we carry
out finite-difference (FD) Dirac–Hartree–Fock calculations for
Cs core. The core orbitals are fed into the spline code where
they are used to compute the matrix elements of the VDHF po-
tential, Eq. (10). As in Ref. [5] the numerical accuracy is moni-
tored by comparing the resulting quasi-spectrum with the DHF
energies from the finite-difference code.
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Table 1
Comparison of the energies and radial integrals of the hyperfine interaction in the Dirac–Hartree–Fock approximation for Cs

State Set Energy M1 HFI E2 HFI M3 HFI

6s1/2 FD −0.1273680 1.114751[−1]
DKB −0.1273674 1.114741[−1]
ND −0.1273682 1.121812[−1]

7s1/2 FD −0.5518735[−1] 3.063077[−2]
DKB −0.5518714[−1] 3.063069[−2]
ND −0.5518750[−1] 3.084164[−2]

6p1/2 FD −0.8561589[−1] −1.252026[−2]
DKB −0.8561576[−1] −1.252018[−2]
ND −0.8561616[−1] −1.218362[−2]

6p3/2 FD −0.8378548[−1] 4.649107[−3] 6.693978[−1] 8.725496[0]
DKB −0.8378543[−1] 4.649117[−3] 6.694037[−1] 8.744759[0]
ND −0.8378538[−1] 4.649454[−3] 1.591405[+2] 1.924786[7]

5d3/2 FD −0.6441964[−1] −3.543808[−3] 1.702467[−1] −8.950592[1]
DKB −0.6441961[−1] −3.543799[−3] 1.702736[−1] −9.202786[1]
ND −0.6441970[−1] −3.038702[−3] 1.643100[+5] 3.663198[10]

5d5/2 FD −0.6452977[−1] 2.257618[−3] 1.562954[−1] 1.938370[1]
DKB −0.6452976[−1] 2.257616[−3] 1.562953[−1] 1.938705[1]
ND −0.6452969[−1] 2.257607[−3] 7.144243[+0] 7.235873[5]

FD marks values produced by a finite-difference code. DKB and ND values are generated with dual-kinetic-balance and Notre Dame B-spline basis sets. In both
cases we used N = 40 basis functions for B-splines of order k = 7 in a cavity of R = 50 bohr. All values are expressed in atomic units. Notation x[y] stands for
x × 10y .
3. Numerical examples for Cs atom

Here we provide numerical examples involving both ND and
DKB sets for Cs atom. In the two Sections immediately follow-
ing we compare the performance of the ND and the DKB sets.
We generate the quasi-spectrum using both ND and DKB sets
and carry out comparisons for single-particle energies and hy-
perfine integrals in Section 3.1 and parity-nonconserving ampli-
tude in Section 3.2. Section 3.3 contains an analysis of spurious
states in the ND method. In Section 3.4 we analyze second-
order energy corrections and discuss a strategy of optimizing
the size of the basis.

3.1. Energies and hyperfine integrals

We compare ND and DKB quasi-spectrums with energies
obtained using a finite-difference DHF code for the low-lying
valence states in Table 1. The ND and DKB calculations were
carried out using N = 40 basis functions for B-splines of order
k = 7. We used a cavity of radius R = 50 bohr. For the cavity
of this size, only a few lowest-energy orbitals remain relatively
unperturbed by the cavity. From examining Table 1, it is clear
that both ND and DKB sets have a similar accuracy for ener-
gies.

In the second part of Table 1 we compare values of the radial
integrals entering matrix elements of the hyperfine interaction
due to the electric (EJ) and magnetic (MJ) multipolar moments
of a point-like nucleus

IEJ(nκ) =
R∫

dr

rJ+1

(
P 2

nκ(r) + Q2
nκ(r)

)
,

0

IMJ(nκ) = 2

R∫
0

dr

rJ+1
Pnκ(r)Qnκ(r).

The angular selection rules require j � J/2. We use identical
integration grid for all three cases (DHF, ND, DKB) listed in
the table. The grid is sufficiently dense near the origin, contain-
ing about 100 points inside the nucleus. The numerical inte-
gration excludes the first interval of the grid. From examining
the table we find that the DKB set outperforms the ND ba-
sis. While the ND set still recovers two-three significant figures
for the magnetic-dipole coupling, it produces wrong results for
electric-quadrupole and magnetic-octupole integrals. Certainly,
the accuracy in the ND case improves for a larger basis set,
but larger basis sets come at an additional computational cost.
We carried out similar comparisons for matrix elements of the
electric-dipole operator. As for the energies, we find that both
the ND and DKB sets perform with a similar numerical accu-
racy.

As we have mentioned, (�Sspur)ND variationally encour-
ages the boundary condition P(0) = 0. However, there is no
such explicit encouragement for Q(0). Here we qualitatively
discuss the observed properties of the radial components near
the origin for the Cs ND set. We see that, though their general
behavior is to approach zero, the large component wavefunc-
tions often have small improper inflections or oscillations near
the origin. Small component wavefunctions, on the other hand,
often do not even approach zero. These improper behaviors
seem to be exemplified as we look at states higher in the spec-
trum. As we have seen here, such improper behavior of both
the large and small component radial functions near the origin
prove detrimental for properties accumulated near the nucleus.
We conclude that while producing the results of a similar qual-
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ity for matrix elements accumulated far from r = 0, the DKB
set provides a better approximation to the atomic orbitals near
the nucleus.

3.2. Parity-nonconserving amplitude

So far we examined properties of the individual basis set or-
bitals with sufficiently low energies. The real power of the finite
basis set technique lies in approximating the entire innumerable
spectrum by a finite size quasi-spectrum. This is important, for
example, in computing sums over intermediate states (Green’s
functions) in perturbation theory.

From the discussion of the preceding section it is clear
that the difference in quality of the ND and DKB basis sets
is expected to become most apparent for the properties ac-
cumulated near the nucleus. Here, as an illustrative example,
we consider the parity-nonconserving (PNC) amplitude for the
6S1/2 → 7S1/2 transition in 133Cs. This amplitude appears in
the second order of perturbation theory for the otherwise for-
bidden dipole transition and can be represented as a sum over
intermediate states np1/2

EPNC =
∑
n=2

〈7s1/2|D|np1/2〉〈np1/2|HW |6s1/2〉
ε6s1/2 − εnp1/2

(20)+
∑
n=2

〈7s1/2|HW |np1/2〉〈np1/2|D|6s1/2〉
ε6s1/2 − εnp1/2

.

Here D and HW are electric-dipole and weak interaction
(pseudo-scalar) operators, and εi are atomic energy levels. We
will compute this expression in the single-particle approxima-
tion. Specifically, the index n runs over the entire DHF quasi-
spectrum for p1/2 partial wave, including both core (2 � n � 5)
and valence (n � 6) orbitals. The weak Hamiltonian reads

(21)HW = GF√
8

QWρnuc(r)γ5,

where GF is the Fermi constant, QW is the weak charge, γ5 is
the Dirac matrix (it mixes large and small components), and
ρnuc(r) is the neutron density distribution. For consistency with
the previous calculations the ρnuc(r) is taken to be the proton
Fermi distribution of Ref. [11]. Notice that the matrix elements
of the weak interaction are accumulated entirely inside the nu-
cleus.

We evaluate the sum (20) using the DKB and the ND sets
with N = 40 basis functions of order k = 7. The integration
grids are the same in both cases and include large number
of points (∼100) inside the nucleus. The PNC amplitude is
conventionally expressed in units of 10−11i|e|a0(−QW/Nn),
where Nn = 78 is the number of neutrons in the nucleus
of 133Cs. In these units, the results are

EFD
PNC = −0.740,

EDKB
PNC = −0.7395 (N = 40, k = 7),

END
PNC = −0.8546 (N = 40, k = 7).

The finite-difference value is taken from Ref. [11]. Again we
note that the DKB set offers an improved performance over
Fig. 1. (Color online) Individual contributions of the p1/2 intermediate states to
the PNC amplitude, Eq. (20), as a function of the principal quantum number n.
The units of the PNC amplitude are 10−11i|e|a0(−QW/Nn). The results from
the DKB basis are represented by squares and those from the ND basis by
circles. Both sets contain N = 100 basis orbitals and use identical integration
grids. Due to the employed logarithmic scale, we plot the absolute values of the
contributions. We use hollow symbols to indicate negative contributions and
filled symbols for marking positive contributions.

the Notre Dame set. Reaching the comparable accuracy in the
ND approximation requires a larger basis set. For example,
N = 75, k = 9 ND set reproduces the DKB result for the PNC
amplitude.

Further insights may be gained from examining individual
contributions of the intermediate states in the PNC amplitude.
We plot individual contributions of the intermediate state np1/2

to the PNC amplitude in Fig. 1. Both terms in Eq. (20) are in-
cluded. We computed the data using N = 100, k = 11 ND and
DKB basis sets generated in a cavity of R = 50 bohr. From
the plot, we observe that the dominant contribution arises from
the low-lying valence states. As n increases, the contributions
become quickly suppressed (there is 10 orders of magnitude
suppression for n ≈ 50). This is due to both increased energy
denominators and decreased density at the nucleus for high n.
Comparison between the basis sets reveals that their contribu-
tions are identical until n = 17. For higher principal quantum
numbers, the DKB contributions monotonically decrease, while
ND contributions become irregular. Moreover, at n = 28 the
ND contributions start to flip signs with increasing n. Gener-
ally, this oscillating pattern would lead to a deterioration of the
numerical accuracy. We believe that the described irregularity is
again due to the aforementioned improper behavior of orbitals
near the nucleus, as the matrix elements of the weak Hamil-
tonian are accumulated in this regime.

To summarize, the DKB set is numerically complete and
is well suited for carrying out practical summations over in-
termediate states in perturbation theory. The comparison with
the ND set shows that, at least for the PNC amplitude, the ND
convergence pattern becomes affected by the inaccurate repre-
sentation of the orbitals near the nucleus (this is exemplified
for states higher in the spectrum), while the DKB set exhibits a
monotonic convergence. Additionally, the DKB set is devoid of
spurious states, and therefore the incidental inclusion of spu-
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Fig. 2. Location of the spurious state in the spectrum of Cs for 1 � κ � 4 at
various values of x. Here s corresponds to the location of the spurious state
in the spectrum (e.g., s = 2 corresponds to the spurious state appearing as the
second lowest energy state for that κ). We used a set with N = 40 B-splines of
order k = 7 confined to a cavity of radius R = 50 bohr.

rious states in summations over intermediate states is of no
concern.

3.3. Analysis of spurious states in the ND method

Here we analyze the effect that the additional term (�Sspur)ND
has on spurious states which occur in the ND method. We start
by taking

(22)�Sspur =
{

x c
2P(0)2 − c

2P(0)Q(0), κ < 0,

xc2P(0)2 − c
2P(0)Q(0), κ > 0

with x an adjustable parameter. For the case of x = 1 this
is equivalent to (�Sspur)ND. We mentioned previously that
(�Sspur)ND variationally encourages the boundary condition
P(0) = 0; this is also true for any choice of x. The specific
choice of x effectively alters the degree of such variational “en-
couragement”.

We find that setting x = 0 results in a single spurious state
which appears as the lowest energy eigenstate for each κ > 0.
By subsequently increasing the value of x towards x = 1 we
may then deduce the effect that (�Sspur)ND has on these spuri-
ous states as well as the rest of the spectrum. We find that small
increases in x from x = 0 causes the energy of the spurious state
to increase, while the other states remain essentially unaffected
(except for the case of near degeneracy with one of these states;
this situation is discussed below). As x is increased from zero,
we may watch as spurious states for each κ > 0 first appear as
the lowest energy state, then move up to the second lowest en-
ergy state, then to the third lowest energy state, etcetera. Fig. 2
displays this effect for the case of Cs.

It is also interesting to analyze the effect of the spurious
state when its energy is nearly degenerate with another state in
the spectrum (we will refer to this other state as the “genuine”
state). As the energies approach degeneracy by varying x, we
observe that the spurious state begins to mix in with the genuine
state. The first evidence for this is that the energy of the genuine
state starts to become affected by the presence of the spuri-
ous state. Secondly, we see that the radial wavefunctions P(r)

and Q(r) of the genuine state begin to acquire non-physical
Fig. 3. (Color online) Behavior of the large component radial wavefunction
P(r) of the 4d3/2 (κ = 2) state of Cs when the spurious state is (a) just below
it in the spectrum (x = 0.052), (b) nearly degenerate with it (x = 0.054), and
(c) just above it in the spectrum (x = 0.056). For the case (b), the notation
(4d3/2, spur) is used to indicate that the states are some linear combination
of the two states and not easily defined as one or the other. Here ε refers to the
energy in atomic units with rest energy subtracted off. For reference, the ND set
(x = 1) gives the lowest three d3/2 states to have energies: 3d3/2, ε = −28.310;
4d3/2, ε = −3.486; 5d3/2, ε = −0.064. We used a set with N = 40 B-splines
of order k = 7 confined to a cavity of R = 50 bohr; note that these plots only
extend to r = 3 bohr, however.

“bumps” that oscillate in a way that corresponds to the rapid
oscillations of the respective spurious state radial functions. As
the energy becomes nearly degenerate, the two states mix to
such a degree that it is not even possible to define one as the
“genuine state” and the other as the “spurious state”. This effect
is shown in Fig. 3, where the genuine state is taken as the 4d3/2

state of Cs. As x is increased such that the spurious state be-
comes embedded in the quasi-continuum part of the spectrum,
it mixes with multiple neighboring states, and at this point it
becomes difficult to track or even define the spurious state.

Presumably increasing x to x = 1 (the Notre Dame case)
shifts the spurious states all the way to the end of the spectrum.
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Evidence for this is seen, for example, in the d3/2 set used for
Fig. 3 (N = 40, k = 7, R = 50 bohr). Here the last few levels
(excluding the very last level) have an energy spacing on the
order of 106 a.u., whereas the energy spacing to the final level
is on the order of 109 a.u. Furthermore, increasing x past x = 1
only has a substantial effect on the energy of the final level (for
x = 10,000 the energy spacing to the final level is then on the
order of 1013 a.u.).

Up to this point we have been exclusively considering cases
with κ > 0, as these have been the only angular symmetries
for which spurious states have previously been known to occur.
Now we shall consider the effect that (�Sspur)ND has on the
cases of κ < 0. As with the κ > 0 cases, we see that increasing x

past x = 1 only has a substantial effect on the energy of the final
level. This is an indication that a spurious state may actually lie
at the end of the spectrum for κ < 0 angular symmetries as well.
In fact, we find that setting x to a negative value significantly
below x = 0 results in a single spurious state which appears as
the lowest energy eigenstate for each κ < 0. By subsequently
increasing x from this point, we may watch as each spurious
state is shifted towards the higher energy end of the spectrum,
similar to what is observed with κ > 0 spurious states.

Now we return briefly to subject of the matrix elements
D1,n+1 and Dn+1,1 of the ND basis, which are suspected to
contribute to poor representation of orbitals near the nucleus.
From Eqs. (6) and (16) we see that these include the integral∫ R

0
1
r
[B(k)

i=1(r)]2 dr , which is infinite due to the non-vanishing
property of the first B-spline at r = 0. Numerically this integral
is evaluated by Gaussian quadrature, producing finite values.
We observe that for the (N = 40, k = 7, R = 50 bohr) Cs set,
increasing the numerical value of this integral to 20 times the
Gaussian quadrature value results in the reappearance of spu-
rious states as the lowest energy eigenstates for each κ > 0.
Simultaneously, the energy of highest energy eigenstate for
each κ < 0 is increased substantially. Evidently the capabil-
ity of (�Sspur)ND to shift the spurious state to the end of the
spectrum for κ > 0 angular symmetries is reliant upon the inac-
curate numerical evaluation of this (theoretically) infinite-value
integral.

The claim made in this section of observing spurious states
for κ < 0 angular symmetries may seem surprising at first.
Shabaev et al. [7] have proved that an independent expansion
of large and small radial components with a finite set of basis
functions leads to a single spurious state for κ > 0 angular sym-
metries. This proof assumes the basis functions to vanish at the
origin, and the result of this proof is consistent with experience
when such basis functions are employed. Arguably, connection
is lost immediately with this proof because the ND set includes
the first B-spline, which does not vanish at the origin. As we
have seen here, the ND method depends on numerical inaccura-
cies in evaluating infinite-value integrals in order to manipulate
spurious states arising in κ > 0 cases. Because the ND method
also includes the first B-spline for κ < 0 angular symmetries
(and hence similar numerical inaccuracies), we would have no
reason to discount the possibility of spurious states from occur-
ring in these cases as well.
3.4. Optimizing the basis set: second-order energy correction

In the preceding sections we established that the DKB sets
are more robust than the ND bases. For a comparable size of the
basis set the DKB basis exhibits better numerical accuracy for
properties accumulated at small radii. Likewise, we may say
that for a fixed numerical accuracy, the DKB basis may con-
tain a smaller number of basis functions. In this section we
investigate a related question: what the smallest possible ba-
sis set is for a given numerical accuracy. Keeping the set as
small as possible speeds up many-body calculations that usu-
ally require multiple summations over intermediate states. Also,
smaller basis sets reduce storage requirements for expansion
coefficients in all-order techniques such as configuration inter-
action or coupled-cluster methods.

Quantifying the numerical accuracy requires choosing some
metric, which characterizes deviation of the selected property
for a given basis from its exact value. Apparently, one should
select the “metric” so that it can be easily computed and is re-
lated to the relevant atomic properties. As an example of an
optimization measure, here we choose the second-order correc-
tion to the energy of a valence electron, E

(2)
v .

In the frozen-core DHF approximation E
(2)
v is the leading

many-body correction to the energy. It is given in terms of the
Coulomb integrals gijkl = ∫ R

0 d1d2u
†
i (1)u

†
j (2)( 1

r12
)uk(1)ul(2)

and single particle energies εi as (see, e.g., Ref. [12]),

(23)E(2)
v =

∑
abn

g̃abvngvnab

εv + εn − εa − εb

−
∑
mna

g̃vamngmnva

εm + εn − εv − εa

,

where g̃ijkl = gijkl − gijlk is the antisymmetrized Coulomb
integral. The summations are carried out over core orbitals (la-
bels a and b) and virtual (non-core) orbitals (labels m and n).
Each summation implies summing over principal quantum
numbers, angular quantum numbers κ , and magnetic quantum
numbers. The summation over magnetic quantum numbers may
be carried out analytically and we are left with summations over
radial functions.

We define a contribution of an individual partial wave �,
δE

(2)
v (�), as the difference δE

(2)
v (�) = E

(2)
v (�) − E

(2)
v (� − 1),

where E
(2)
v (�) stands for truncated Eq. (23); it includes sum-

mations over intermediate states (both core and virtual) with the
orbital angular momentum up to �. Since the calculations nec-
essarily involve Coulomb integrals between orbitals of different
angular momenta, the numerical error in δE

(2)
v (�) is affected by

the accuracy of representation of all partial waves up to �.
First, in Table 2, we present results for a large set of N = 100

basis functions for each partial wave. We use a sufficiently large
cavity of R = 50 bohr in this calculation. These results will
serve as a benchmark for comparisons with the less complete
(optimized) sets. We observe that the dominant (60%) contri-
bution comes from d-waves, � = 2. Qualitatively, the second-
order energy correction may be described as core-polarization
effect. The outer 3d-orbitals of the core are relatively “soft” and
are easily polarizable. Since the core does not contain f and
higher partial waves, after peaking at � = 2, the partial-wave
contributions become suppressed as � increases. Qualitatively,
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Table 2
Contribution of individual partial waves � to the second-order energy correction
for the ground 6S1/2 state of Cs atom

� Large set Small set Error

(N, k) δE
(2)
6s

(�) (N, k) δE
(2)
6s

(�)

0 (100,11) −0.0000130 (35,7) −0.0000122 6%
1 (100,11) −0.0020027 (35,7) −0.0019936 0.5%
2 (100,11) −0.0105623 (30,5) −0.0105373 0.2%
3 (100,11) −0.0039347 (25,4) −0.0039095 0.6%
4 (100,11) −0.0007563 (15,4) −0.0007269 4%
5 (100,11) −0.0002737 (10,4) −0.0002272 20%
6 (100,11) −0.0001182 (10,4) −0.0000844 40%

Total −0.0176609 −0.0174912 1%

We use the DKB basis set of N basis functions constructed from a subset of
B-splines of order k (label (N, k)). Calculations are carried out in a cavity of
R = 50 bohr for two basis sets “Large” and “Small”. Numerical integration
grids are identical for both sets. The column marked “Error” refers to a relative

error in a given partial-wave contribution, δE
(2)
6s

(�), caused by switching from
the “Large” to the “Small” basis set.

this suppression arises due to increased centrifugal repulsion
of higher partial waves and associated smaller overlaps with
core orbitals in the Coulomb integrals of Eq. (23). For example,
� = 6 contributes only 0.6% of the total value.

Now we would like to minimize the size of the set by choos-
ing a different number of radial basis functions Nκ for different
angular symmetries κ . To preserve a numerical balance be-
tween the fine-structure components (for example, this may be
important while recovering non-relativistic limit) we keep the
same number of functions for a given orbital angular momen-
tum �, e.g., Np1/2 = Np3/2 .

In Table 2, we present an example of an optimized basis
(marked as “Small set”). We also list resulting numerical er-
rors for each partial wave by comparing δE

(2)
6s (�) with the result

from the “Large set” calculations. We see that while the basis-
set error in higher partial waves is as large as 40%, this hardly
makes any influence on the total value of the correlation energy,
because of contributions of higher � are suppressed. The total
value of the correlation correction differs by about 1% from its
saturated value. Considering that the correlation contribution to
the energy is about 10% for the 6s state, the less complete set
would introduce only 0.1% error for the total ionization energy.

So far we discussed the correlation energy correction for the
6s1/2 state. The optimized set remains sufficiently robust for
other low-lying states as well. We have carried out a compari-
son similar to Table 2 for 6p1/2, 6p3/2, 5d3/2, and 5d5/2 states.

In all these cases the difference between the total E
(2)
v values

computed with the “Large” and “Small” sets is about 0.5%.
In practical calculations one is often required to reproduce a
number of properties with the same set. The atomic properties
may be quite dissimilar—like hyperfine-structure interactions
accumulated near the nucleus and dipole matrix elements de-
termined by the valence region. Apparently, one has to carry
out a similar low-order MBPT analysis for the relevant quanti-
ties to verify the suitability of the optimized set.

From the computational point of view, using the optimized
sets speeds up the numerical evaluations. In our illustrative ex-
ample, the “Large set” contains Nt = (1 + 2 × 6)× 100 = 1300
orbitals, while the “Small set” is about four times smaller (Nt =
285 orbitals). The resulting speed-up is sizable: our computa-
tions of Eq. (23) for the 6s1/2 state (� = 6) are about 14 times
faster with the optimized set, as expected due to N2

t scaling
of the number of contribution in the most computationally de-
manding second term of Eq. (23). Similar scaling should hold
for storage of expansion coefficients in all-order methods, e.g.,
for storing triple excitations [13] one expects N3

t scaling of the
storage size. Usually higher partial waves produce larger num-
ber of angular channels and the scaling should be even steeper
than N3

t . Further speed-up in MBPT summations and reduc-
tion in storage size may be attained by skipping a few basis
set functions at the upper end of the quasispectrum. Such addi-
tional truncation of the spectrum becomes apparent from Fig. 1,
where contributions to the PNC amplitude for the upper three-
quarters (n � 25 out of N = 100) of the quasi-spectrum affect
the total value below 10−4 level of accuracy.

4. Conclusion

Calculations of certain atomic properties, such as parity-
violating amplitudes, transition polarizabilities between hyper-
fine levels, and many-body corrections to hyperfine interactions
require accurate representation of atomic orbitals at both small
and intermediate electron-nucleus distances. Solving the many-
body problem in high orders of perturbation theory additionally
calls for an efficient representation in terms of the basis sets.
The dual-kinetic-basis set is shown here to adequately meet
both these demands.

Previously the DKB basis was applied to systems with a sin-
gle electron in a Coulomb field, i.e., hydrogen-like ions [6,7].
Here we extended the DKB method to many-electron systems
by generating the single-particle quasi-spectrum of the Dirac–
Hartree–Fock potential. Several numerical examples for Cs
atom were presented. We showed that the DKB method out-
performs the widely-employed Notre Dame B-spline method
of Johnson et al. [5] for problems involving matrix elements
accumulated at small distances.

In addition, we presented a strategy for optimizing the size
of the basis sets by choosing progressively smaller number of
basis functions for increasingly higher partial waves. This strat-
egy exploits suppression of contributions of high partial waves
to typical many-body correlation corrections.
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