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The hyperfine structure of the long-lived 5D3/2 and 5D5/2 levels of Ba+ ion is analyzed. A procedure for
extracting relatively unexplored nuclear magnetic moments � is presented. The relevant electronic matrix
elements are computed in the framework of the ab initio relativistic many-body perturbation theory. Both the
first- and the second-order �in the hyperfine interaction� corrections to the energy levels are analyzed. It is
shown that a simultaneous measurement of the hyperfine structure of the entire 5DJ fine-structure manifold
allows one to extract � without contamination from the second-order corrections. Measurements to the re-
quired accuracy should be possible with a single trapped barium ion using sensitive techniques already dem-
onstrated in Ba+ experiments.
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I. INTRODUCTION

A nucleus as a source of the electromagnetic fields is con-
ventionally described using a hierarchy of static electromag-
netic moments: Magnetic dipole �M1,��, electric quadru-
pole �E2,Q�, magnetic octupole �M3,��, etc. Interaction of
atomic electrons with these moments leads to the hyperfine
structure �HFS� of the atomic energy levels. While the first
two moments, � and Q, have been studied extensively, the
octupole moments remain relatively unexplored.

While octupole moments may be approximated using the
nuclear-shell model �1�, the correct values depend strongly
on nuclear many-body effects and, in particular, on core-
polarization mediated by the nucleon spin-spin interaction
�2�. Senkov and Dmitriev �2� carried out a nuclear-structure
calculation of � for 209Bi. In this particular case, the polar-
ization effects enhance the shell-model values by a factor of
3. According to Dmitriev �3�, a systematic study of octupole
moments will help place constraints on the poorly known
isoscalar part of nuclear spin-spin forces. In another, even
more striking example, the deduced value of � of 133Cs is 40
times larger than the shell-model value �4� �this has not been
analyzed yet in nuclear theory�. We note that in the case of
Cs, the shell-model value is strongly suppressed due to an
accidental cancellation between the orbital and spin contri-
butions of the valence proton to the magnetic-octupole mo-
ment.

Measuring the effects of the octupole moments on the
hyperfine structure was so far limited to a small number of
atoms: Cl �5�, Ga �6�, Br �7�, In �8�, V �9�, Eu �10�, Lu �11�,
Hf �12�, and Bi �13�. Since deducing � from a measurement
requires knowing atomic-structure couplings, previous
analysis focused primarily on isotopic ratios because the
electronic coupling factor cancels out when ratios of HFS
constants are formed. An exception is the measurement on
the 6P3/2 state of 133Cs �4�, where sufficiently accurate cal-
culations are possible. In a recent paper �14�, we argued that
an accurate deduction of the octupole moments is feasible for
metastable 3P2 states of alkaline-earth-metal atoms.

Ba+, being an atomic system with one valence electron
outside a closed-shell core, also presents a case where both
high-accuracy measurements and high-accuracy calculations
are possible. The goal of this paper is to analyze the hyper-
fine structure of the 5D3/2 and 5D5/2 levels of Ba+, and to
show that Ba+ is a particularly favorable case for measuring
octupole moments, for both theoretical and experimental rea-
sons. Both 5D levels belong to the same fine-structure mani-
fold. We take advantage of a simultaneous analysis of the
hyperfine structure of both levels and show that such an
analysis allows us to eliminate the potentially troublesome
second-order hyperfine electron structure term thus provid-
ing a powerful consistency test for the measurements and
calculations and possibly improving the accuracy of deduc-
ing �. Furthermore, 5D3/2 and 5D5/2 are each long-lived
metastable states in Ba+, with lifetimes of about 80 s and 30
s, respectively. Hyperfine intervals thus could be measured in
principle to well below 0.1 Hz, much better than in previous
octupole experiments; techniques to exploit the sensitivity
inherent in the 5D levels have already been developed using
single trapped Ba+ �15�.

Barium has two stable odd isotopes, 135 and 137. Both
isotopes possess nuclear ground states with spin of I=3 /2
and of positive parity. The values of the dipole and quadru-
pole moments are

135Ba: � = 0.837 943 �N, Q = + 0.160 b,

137Ba: � = 0.937 365 �N,Q = + 0.245 b, �1�

where �N is the nuclear magneton and b �barn�=10−24 cm2.
Both isotopes have unpaired neutrons in the d3/2 single-
particle state, and from the single-particle �shell� model �1�
we may estimate the octupole moment to be

�sp = 0.164�N�r2� � 0.0385 �N � b, �2�

where we used the rms value of the nuclear radius �r2�1/2

=4.84 fm. Of course, the shell model is only an approxima-
tion. For example, in contrast to the known properties �1� for
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the two isotopes, this model would produce identical values
of the magnetic moments and vanishing values of the quad-
rupole moments.

This paper is organized as follows. First we recapitulate
the theory of the hyperfine structure of atomic levels, includ-
ing octupole moments and the second-order effects. We
present specific formulas for the Ba case and show how to
extract the octupole constant C from hyperfine intervals �to
be measured�. Further we compute the electronic structure
factor required for extracting the octupole moment from the
constant C. Finally, we present a brief description of an ex-
perimental method with single Ba+ to determine the octupole
moments of 135Ba and 137Ba. We follow the notation and
formalism of the recent paper �14�. Unless specified other-
wise, atomic units, �= �e�=me=1, and Gaussian electromag-
netic units are employed throughout.

II. PROBLEM SETUP

The hyperfine-interaction �HFI� Hamiltonian, describing
coupling of electrons to various nuclear moments, may be
represented in the tensorial form of

HHFI = 	
k,q

�− 1�qTk,q
e Tk,−q

n .

Here the spherical tensors �of rank k� Tk,q
e act on the elec-

tronic coordinates. Tensor operators Tk,q
n are the components

of the nuclear electric and magnetic 2k-pole �MJ and EJ;
T , P even� moment operators. In particular, the convention-
ally defined magnetic-dipole, electric-quadrupole, and
magnetic-octupole moments of the nucleus are proportional
to the expectation values of the zero-component �q=0� op-
erators in the nuclear stretched states �I ,MI= I�: �= �Tk=1

n �I,
Q=2�Tk=2

n �I, and �=−�Tk=3
n �I. Explicit expressions for the

electronic operators and the corresponding reduced matrix
elements are tabulated in Ref. �14�.

The conserved angular momentum F for the hyperfine
coupling is composed from atomic, J, and nuclear, I, angular
momenta: F=I+J. It is convenient to work in a basis
spanned by the eigenfunctions ��IJFMF� which is formed by
coupling atomic, ��JMJ�, and nuclear, �IMI�, wave functions.
Here � encapsulates remaining electronic quantum numbers.
For I=3 /2 each of the 5DJ levels splits into four hyperfine
components: 5D3/2 has hyperfine components F=0,1 ,2 ,3,
and 5D5/2 has components F=1,2 ,3 ,4.

Owing to the HFI’s rotational invariance, a matrix ele-
ment of the HFI in the ��IJFMF� basis is diagonal in the
quantum numbers F and MF. If we limit our system of levels
to only the 5DJ fine-structure manifold, the hyperfine com-
ponents F=1,2 ,3 of the 5D3/2 and 5D5/2 levels become
coupled. The intervals within each manifold may be param-
etrized using the conventional hyperfine constants A, B, C
and the second-order corrections �in HFI� � and �. Constants
A, B, C are proportional to nuclear moments �, Q, and �.
M1-M1 correction � is of the second order in �, and �
comes from a cross term between M1 and E2 parts of the
HFI. Second-order corrections are suppressed by a large en-
ergy denominator equal to the fine-structure splitting be-
tween the 5DJ levels.

The energy intervals 	WF
�J�=WF

�J�−WF+1
�J� within each fine-

structure manifold 5DJ are as follows. For 5D3/2,

	W0
�3/2� = − A + B − 56C +

1

100
� −

1

100

7

3
� ,

	W1
�3/2� = − 2A + B + 28C +

1

75
� ,

	W2
�3/2� = − 3A − B − 8C +

1

300
� +

1

20

3

7
� , �3�

and for 5D5/2,

	W1
�5/2� = − 2A +

4

5
B −

96

5
C −

1

75
� ,

	W2
�5/2� = − 3A +

9

20
B +

81

5
C −

1

300
� −

1

20

3

7
� ,

	W3
�5/2� = − 4A −

4

5
B −

32

5
C +

2

75
� +

2

25
21
� . �4�

In the above equations the HFS constants A, B, and C are all
specific to the state of consideration while � and � represent
the same second-order HFS constant.

If we assume all other second- and higher-order effects
are negligible �see justification in Sec. IV�, then we may
solve for the HFS constants A, B, and C in terms of the HFS
intervals and these two second-order constants. Specifically,
solving for the C constants,

C�5D3/2� = −
1

80
	W0

�3/2� +
1

100
	W1

�3/2� −
1

400
	W2

�3/2�

−
1

2000
21
� ,

C�5D5/2� = −
1

40
	W1

�5/2� +
1

35
	W2

�5/2� −
1

112
	W3

�5/2�

+
1

200
21
� . �5�

The C constants do not depend on the M1-M1 � correction,
as was proven in Ref. �14� on general grounds.

It is possible to use Eqs. �5� to cancel the constant � and
therefore eliminate the second-order effects from the prob-
lem altogether. In doing so, we obtain the equation

C�5D3/2� +
1

10
C�5D5/2� = −

1

80
	W0

�3/2� +
1

100
	W1

�3/2�

−
1

400
	W2

�3/2� −
1

400
	W1

�5/2�

+
1

350
	W2

�5/2� −
1

1120
	W3

�5/2�.

�6�
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Since each of the constants C is proportional to the same
octupole moment, knowing the hyperfine splitting inside
each of the fine-structure manifolds provides direct access to
�.

III. ELECTRONIC-STRUCTURE FACTORS

Provided that the measurements of the HFS intervals are
carried out, one could extract the octupole moment by com-
puting the matrix elements of the electronic coupling tensor
T3

e. Specifically,

C��J� = − �� J 3 J

− J 0 J
���J�T3

e��J� .

We may also compute the second-order M1-E2 HFS correc-
tion � by computing the off-diagonal matrix elements of the
electronic coupling tensors T1

e and T2
e. For I=3 /2, � is given

by

� = −
20

3

�Q�5D3/2��T1
e��5D5/2��5D5/2��T2

e��5D3/2�
E5D5/2

− E5D3/2

.

Matrix elements of the electronic tensors are given in Ref.
�14�.

To calculate the electronic-structure factors for the HFS
constants C�5D3/2� and C�5D5/2� and for the second-order
term � we employ the correlation potential method �16� using

all-order correlation correction operator 
̂��� as suggested in
Refs. �17,18�. The method was used for Ba+ previously �19�
for accurate calculation of the parity nonconservation. It is
also known that the method produces accurate results for the
magnetic dipole hyperfine-structure constants of alkali-metal
atoms�see, e.g., Ref. �20��.

Calculations start from the Hartree-Fock procedure for the
closed-shell Ba2+ ion

�Ĥ0 − �c�c = 0, �7�

where Ĥ0 is the single-electron relativistic Hartree-Fock
�RHF� Hamiltonian

Ĥ0 = c� · p̂ + �� − 1�mc2 − Ze2/r + V̂core, �8�

index c in Eq. �7� numerates core states, and V̂core is the sum
of the direct and exchange self-consistent potential created
by Z–2 core electrons.

States of the external electron are calculated using the
equation

�Ĥ0 + 
̂ − �v�v = 0, �9�

which differs from the equation for the core �7� by an extra

operator 
̂. The so-called correlation operator 
̂ is defined in
such a way that in the lowest order the correlation correction
to the energy of the external electron is given as an expecta-

tion value of the 
̂ operator

	�v = �v�
̂�v� . �10�

The correlation potential 
̂ is a nonlocal operator which is
treated in the Hartree-Fock-type equation �9� the same way
as a nonlocal exchange potential. Solving these equations we
obtain the energies and the orbitals which include correla-
tions. These orbitals are usually called Brueckner orbitals.

We use the Feynman diagram technique �17� and B-spline

basis set �21� to calculate 
̂. The many-body perturbation

theory �MBPT� expansion for 
̂ starts from the second-order

and has the corresponding notation 
̂�2�. However, we also
include two dominating classes of the higher-order diagrams

into the calculation of 
̂, as described in Ref. �17�. These
higher-order effects are �1� screening of Coulomb interaction
between core and valence electrons by other core electrons
and �2� an interaction between an electron excited from
atomic core and the hole in the core created by this excita-
tion. Both these effects are included in all orders and corre-

sponding 
̂ is called 
̂���. Another class of higher-order cor-
relations is included in all orders when Eq. �9� is iterated for
the valence states. These higher-order effects are propor-

tional to �
̂�2, �
̂�3, etc.
The effect of the second- and higher-order correlations on

the energies of Ba+ are illustrated by the data in Table I. As
one can see, the inclusion of the correlations leads to system-
atic improvement in the accuracy for the energies. Note that
since solving Eq. �9� for Brueckner orbitals produces not
only the energies but also the wave functions of the external
electron, the better accuracy for the energy should translate
into better accuracy for the wave function and for the matrix
elements. Therefore, we can try to improve the wave func-
tion even further by fitting the energies to the experimental

values by rescaling the 
̂ operator in Eq. �9�. This is done by

replacing 
̂ by f
̂, where rescaling parameter f is chosen to

TABLE I. Removal energies of Ba+ in different approximations �cm−1�.

State J RHF 
�2� 
��� Fitteda Expt.b

6S 1/2 75339 82227 80812 80685 80687

6P 1/2 57265 61129 60584 60442 60425

6P 3/2 55873 59351 58863 58735 58734

5D 3/2 68138 77123 76380 75816 75813

5D 5/2 67664 76186 75543 75004 75012

af�6s�=0.978, f�6p�=0.960, f�5d�=0.934.
bNIST, Ref. �22�.
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fit experimental energies. The values of f for different states
of Ba+ are listed in Table I.

To calculate the HFS constants we need to include extra
fields which are the fields of the nuclear P-even electromag-
netic moments such as magnetic dipole, electric quadrupole,
etc. This is done in the self-consistent way similar to the
RHF calculations for the energies in the frameworks of the
well-known random-phase approximation �RPA�. Corre-
sponding equations have the form

�Ĥ0 − �c�	c = − �F̂ + 	V̂core�c, �11�

where F̂ is the operator of external field, 	c is the correction

to the core state due to the effect of external field, and 	V̂core
is the correction to the self-consistent Hartree-Fock potential
due to the change in field-perturbed core states. The RPA
equation �11� can be considered as a linearized �in external
field� expansion of the RHF equation �7�; these are also
solved self-consistently for all the core states. This corre-
sponds to the inclusion of the so-called core polarization
�CP� effect. Matrix elements for states of the external elec-
tron are given by

�v�F̂ + 	V̂core�v� . �12�

Dominant correlations are included by simply using the
Brueckner orbitals as the wave functions v in �12�. There
are, however, correlation corrections to the matrix elements
which are not included in �12�. These are the structure radia-
tion �SR� and the effect of normalization of the many-
electron wave function �16�. Structure radiation can be de-

scribed as a contribution due to the change in 
̂ caused by
the effect of the external field,

�v�	
̂�v� . �13�

We calculate SR and renormalization contributions using the
MBPT similar to the third-order calculations presented in
Ref. �23� �second order in Coulomb interaction and first or-
der in external field�. However, we use the “dressed” opera-

tors of the external field: F̂+	V̂core rather than just F̂ as in

Ref. �23�. Therefore, core polarization effect is included in
all orders in the SR and renormalization calculations. We
also use two different basis sets of single-electron states. One
is the dual kinetic-balance basis �DKB� set �24,25�, and an-
other is the B-spline basis set developed at the University of
Notre Dame �21�.

The results of the calculations are presented in Table II.

Here the RHF approximation corresponds to the �v
HF�F̂�v

HF�
matrix elements with the Hartree-Fock orbitals v

HF. RPA

approximation corresponds to the �v
HF�F̂+	V̂core�v

HF� matrix
elements. The Brueckner and CP approximation corresponds

to the �v
Br�F̂+	V̂core�v

Br� matrix elements with Brueckner

orbitals v
Br, etc. The values of the SR and renormalization

corrections listed in Table II were computed with the DKB
basis set.

IV. EXTRACTING OCTUPOLE MOMENT

Our final results for the magnetic octupole hyperfine-
structure constants are

C�5D3/2� = − 0.585�11�� �

�N � b
�kHz,

C�5D5/2� = 0.036�16�� �

�N � b
�kHz. �14�

Here central values and the errors are found from the scat-
tering of the results due to effects of energy fitting and
change of basis for the SR and renormalization calculations.
Notice that the error bars are purely theoretical and reflect
the fact that only certain classes of diagrams are included in
the calculations. In particular, there are strong cancellations
between various contributions to the C�5D5/2� constant, lead-
ing to a large, 45%, uncertainty in the value of this constant.

The above error estimates are consistent with the general
trend for the experimentally known constants A and B of the
5DJ states �26�. Our employed method is off by as much as
10% for A�5D3/2� and 30% for A�5D5/2�. The computed val-

TABLE II. Magnetic octupole hyperfine-structure constant C of the 5D3/2 and 5D5/2 states of Ba+ and
off-diagonal matrix elements of the magnetic dipole and electric quadrupole operators in different
approximations.

C�5D3/2� C�5D5/2� �5D3/2T1
�e�5D5/2� �5D5/2T2

�e�5D3/2�
Approximation (kHz / �� / ��N�b��) (kHz / �� / ��N�b��) �MHz /�N� �MHz /b�

RHF −0.4294 −0.1514 −95 180

RPA�RHF+CP −0.5843 0.9636 −1360 184


�2�+CP −0.6863 0.9254 −1496 222


���+CP −0.6822 0.9244 −1489 220

Energy fitting �Br� −0.6758 0.9282 −1481 218

SR 0.0842 −0.8472 280 14

Norm 0.0178 −0.0287 42 −5

Total −0.5738 0.0523 −1160 227

�Br+SR+Norm�
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ues of B generally agree at the level of a few percent with
experiment. Another insight comes from understanding that
the theoretical method includes the RPA and Brueckner
chains to “all orders;” as long as these classes of diagrams
dominate, the theoretical accuracy is excellent. By contrast,
in the case of C�5D5/2� the result is accumulated due to re-
maining SR and norm diagrams �see Table II�, which are
computed nominally in the third-order MBPT only. This ex-
plains the relatively poor accuracy for the 5D5/2 states. As
demonstrated in Ref. �27� �at least for the constants A and B�
the theoretical accuracy could be improved to 1% by em-
ploying the relativistic coupled-cluster method.

The results, Eqs. �14�, may be used to extract the values
of the nuclear magnetic octupole moment from the measure-
ments. For example, if Eq. �6� is used then

C�5D3/2� +
1

10
C�5D5/2� = − 0.581�13�� �

�N � b
�kHz.

�15�

Alternatively, one can use the first equation of �5�. Then the
correction due to the second-order term � needs to be taken
into account. With the values of the magnetic dipole and
electric quadrupole HFS matrix elements presented in the
last columns of Table II this correction reads

�C�5D3/2� = −
1

2000
21
� = �− 1.84 Hz for 135Ba+,

− 3.17 Hz for 137Ba+.
�
�16�

Notice that in this second scenario we advocate using the
5D3/2 hyperfine manifold for extracting the nuclear octupole
moment because of the poor theoretical accuracy of comput-
ing electronic couplings for the 5D5/2 state.

We may evaluate the relative influence of � on the HFS
by using the single-particle �shell-model� estimate for the
nuclear octupole moment, Eq. �2�; we arrive at

C�5D3/2�s.p. � − 23 Hz,

C�5D5/2�s.p. � 1.4 Hz.

We see that the second-order correction, �C�5D3/2�, is below
the anticipated value of the constant.

At this point we briefly discuss the effect of all other
second- and higher-order terms past � and �, which until this
point have been assumed negligible. One might expect other
second-order dipole-dipole terms which mix in states outside
of the 5D fine-structure manifold to have an appreciable ef-
fect on the hyperfine structure. However, the proof in Ref.
�14� can easily be generalized to show that no second-order
dipole-dipole terms enter into the equations for the C con-
stants, Eqs. �5�. Furthermore, it is found that the leading
third-order term, the dipole-dipole-dipole term mixing the
fine-structure levels, drops out of Eq. �6� along with �.
Therefore, we can expect the largest terms neglected from
Eq. �6� to be the second-order dipole-octupole and
quadrupole-quadrupole terms; we have estimated these
effects to both be at the �10−3 Hz level. This provides

sufficient confirmation that all second- and higher-order
terms may be neglected in our proposed scheme of extracting
the octupole moment.

Finally, using the single-particle approximation for the
nuclear octupole moment, we obtain an estimated value for
the left-hand side of Eq. �6� of −22 Hz. Assuming a conser-
vative value of 1 Hz uncertainty in the 5D HFS intervals
yields an overall uncertainty of 0.017 Hz in the right-hand
side of Eq. �6�. In the next section we describe how such
measurements should be capable of much smaller uncertain-
ties, 0.1 Hz or better. Thus we may conclude that HFS inter-
val measurements with readily attainable accuracy, combined
with the theoretical result �15�, would be capable of extract-
ing an octupole moment of the estimated size for the 135Ba
and 137Ba nuclei.

V. EXPERIMENTAL POSSIBILITIES

The measurements can be carried out by a technique simi-
lar to one already used to study transitions among sublevels
of the 5D3/2 state of Ba+ �15�, in which optical pumping is
used to place the ion in a particular sublevel and an rf tran-
sition to another sublevel is detected by the effect of “shelv-
ing” as described below. Such measurements are performed
on a single ion held by radio frequency electric fields in a
three-dimensional effective potential well typically
�100 eV deep, with the ion at the bottom of the well after
being laser cooled to a temperature �10−3 K, with an orbital
diameter �10−2 �m.

The electronic energies of the lowest S, P, and D states of
Ba+ are shown in Fig. 1. The cooling laser operates on the
6S1/2-6P1/2-allowed E1 absorption line near 493 nm, mis-
tuned slightly to the red of resonance to effect Doppler cool-
ing. A “cleanup” laser beam operates at the 6P1/2-5D3/2 tran-
sition near 650 nm to keep the ion from getting stuck in the
metastable D state and lost to the cooling process.

To measure the hyperfine splitting of either 5D state, the
ion can be initially placed in the �Fg=2, MF=0� Zeeman
sublevel of the 6S1/2 ground state by optical pumping with a
polarized 493 nm beam. As shown in Fig. 2, in the case of
the 5D5/2 measurement the ion is then transferred to a par-
ticular hyperfine sublevel �F, MF� of 5D5/2 by applying a
pulse of resonant 1762 nm light. The rf field coils are then

493nm
650nm

1762nm
� = 32 s

� = 83 s

6P1/2

5D5/2

5D3/2

6S1/2

6P3/2

2051nm

PMT

� = 8 ns

FIG. 1. The lowest S, P, and D states of Ba+, showing the
cooling 493 nm and cleanup 650 nm transitions plus the 2051 nm
and 1762 nm E2 transitions to the metastable D states.
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turned on for driving a �F= �1 transition, after which a
second pulse of the 1762 nm laser will transfer from �F, MF�
back to the ground state. The ion therefore ends up in the
ground state if there was no hyperfine transition, and in 5D5/2
if the rf is on resonance and the hyperfine transition was
successful. In the former case there will be fluorescence
when the ion is illuminated by the 493 nm–650 nm lasers
while in the latter case there will not be fluorescence; the ion
is “shelved” in the 5D5/2 state. The process is repeated for a
range of radio frequencies and a hyperfine transition reso-
nance curve is acquired. For the 5D3/2 measurement, the
same procedure is followed with 2051 nm resonant light to
populate 5D3/2 sublevels, but an extra step is needed at the
end—the shelving of the 6S1/2 state population to the 5D5/2
state.

In the previous measurements of Zeeman transitions
among 5D3/2 sublevels, sensitivities of a few Hz were
achieved �15�, limited by incompletely shielded magnetic
field fluctuations. In the hyperfine measurements proposed
here, this source of broadening can be eliminated by using
transitions that have a weak magnetic field dependence, such
as MF=0→MF=0. In practice, it is often easiest to perform
laser cooling in nonzero magnetic fields �typically B�1 G�
to avoid formation of inefficiently cooled dark states. Such
modest magnetic fields will introduce only a small B2 depen-
dence in the 0→0 transition when the energy separations
between hyperfine levels are sufficiently large. In fact the
Zeeman effect for B=1 G can indeed be considered a small
perturbation to the hyperfine splitting for all the 5D3/2 states
and for the F=1 and F=2 states of the 5D5/2 manifold.

However, for the 5D5/2 F=3 and F=4 states, the situation
is more complicated because the hyperfine splitting between
these states is small, �0.49 MHz �26�, so the Zeeman
Hamiltonian cannot be considered a weak perturbation to the
hyperfine Hamiltonian. The Zeeman and hyperfine Hamilto-
nians must therefore be treated on an equal footing. The
manifold of F=3 and F=4 states are then all degenerate in
zeroth order, and the first-order energy shifts due to
HZeeman+Hhyp are obtained by diagonalizing the matrix of
HZeeman+Hhyp within the manifold of F=3 and F=4. In the

�IJFMF� basis, the matrix is 2�2 block diagonal, with each
block having a given value of MF. The eigenvalues are then
given by

E� =
1

2
E3 + a1B �
1

4
E3

2 + a2E3B + a3B2, �17�

where E+ reduces to the F=3 hyperfine energy E3 for B=0
and E− reduces to the F=4 hyperfine energy, which is here
taken as zero. The values of a1, a2, and a3 are given in Table
III. These are related to the matrix elements of the Zeeman
Hamiltonian H� as follows:

a1B =
1

2
��4,MF�H��4,MF� + �3,MF�H��3,MF�� ,

a2B = −
1

2
��4,MF�H��4,MF� − �3,MF�H��3,MF�� ,

a3B2 =
1

4
��4,MF�H��4,MF� − �3,MF�H��3,MF��2

+ ��4,MF�H��3,MF��2. �18�

A portion of the graph of the energy levels as a function of B
is given in Fig. 3. Note that for even small magnetic fields
there is a great deal of mixing between the F=3 and F=4

TABLE III. Zeeman splitting coefficients defined in Eq. �18�.

MF a1�MHz /G� a2�MHz /G� a3�MHz2 /G2�

3 3.359 0.2099 0.7052

2 2.239 0.1400 1.153

1 1.120 0.06998 1.422

0 0 0 1.511

−1 −1.120 −0.06998 1.422

−2 −2.239 −0.1400 1.153

−3 −3.359 −0.2099 0.7052
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FIG. 2. Procedure for measuring the hyperfine intervals in the 5D5/2 state. �a� First, a 1762 nm resonant laser pulse transfers the ion into
the F=2 hyperfine sublevel of the 5D5/2 state. �b� The rf is then applied to drive a hyperfine transition in the 5D5/2 state. �c� The second pulse
of the 1762 nm laser depopulates the 5D5/2 F=2 level. �d� To determine if the hyperfine transition in the 5D5/2 state occurred, the cooling
and the cleanup lasers are turned on and any ion fluorescence is detected. Absence of fluorescence indicates that the rf is on resonance and
caused the transition to take place.
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states, and there are two energy levels, originating from F
=3, MF=−1, and F=4, MF=1, that are almost field inde-
pendent for B in the range of �0.6 G−1.2 G. Each of these
levels can be connected to the F=2, MF=0 level by an rf

transition, with very weak dependence on B. Likewise, the
desired zero-field hyperfine intervals can be extracted from
these rf measurements using only a relatively low resolution
determination of B by a field-dependent Zeeman resonance.
Thus measurement of all hyperfine intervals to 0.1 Hz seems
feasible.

We have shown that a simultaneous measurement of the
hyperfine splittings in the 5D3/2 and the 5D5/2 fine-structure
levels of Ba+ allows one to unambiguously extract the value
for the nuclear magnetic octupole moment. We performed
the ab initio calculations of the relevant matrix elements in
the framework of relativistic many-body perturbation theory,
analyzing the first- and the second-order corrections to the
hyperfine energy levels. We have also outlined an experi-
mental procedure for measuring the hyperfine intervals to the
required accuracy with single trapped Ba+ ions.
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FIG. 3. D5/2 F=3 and F=4 hyperfine Zeeman levels. Energies
are measured relative to the F=4 energy at zero magnetic field.
Very small mixing of the F=3 state with the F=2 state has been
neglected.
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