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Abstract

We develop a theory of electric-field-induced magnetization of a medium. The rel-
evant polarizability, βCP , simultaneously violates the inversion symmetry (parity),
the time-reversal symmetry, and the combined CP symmetry. We focus on two
fundamental mechanisms mediating the appearance of βCP — the electric dipole
moment of the electron (eEDM) and the electron-nucleus pseudo-scalar weak neutral
currents. Measuring βCP may reveal so-far elusive eEDM and these neutral currents.
We start with computing βCP for rare-gas atoms and demonstrate that βCP scales
steeply as Z5 with the nuclear charge Z. Further, we show that βCP manifests itself
in permanent CP-violating magnetic moments of molecules. A macroscopic sample
of polarized molecules would exhibit a magnetization correlated with the direction
of the externally-applied polarizing electric field. We numerically estimate this un-
conventional moment for diamagnetic molecules. Finally, we introduce a thermally-
induced CP-violating magnetization of a sample of paramagnetic molecules. In all
cases, we evaluate the feasibility of an experimental search for eEDM. We find that
paramagnetic molecules HgH embedded in a rare-gas matrix at a temperature of a
few Kelvin have a remarkable sensitivity to eEDM. We conclude, that experiments
with such “artificial solids” can push the current limit on the eEDM by several
orders of magnitude, deep into the domain of predictions of competing extensions
to the Standard Model of elementary particles.
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1 Introduction

Much of the progress in understanding fundamental forces in the second half
of the 20th century has been guided by the realization that the physics laws
do not necessarily remain invariant under discrete symmetry operations: mir-
ror reflection, or parity (P), time (T) reversal, and charge (C) conjugation
(particle-antiparticle symmetry). Discovery of parity non-conservation in the
nuclear β-decay by Wu et al. (1957) is one of the hallmark discoveries of the
20th century. This discovery has lead to formulation of the theory of elec-
troweak interactions, the cornerstone of the modern Standard Model (SM) of
elementary particles. Demise of the parity conservation as the universal law
in 1956, was followed in 1964 by the fall of the combined CP symmetry in de-
cays of neutral kaons (Christenson et al. (1964)). This lead to augmenting the
SM with the celebrated Cabibbo-Kobayashi-Maskawa quark mixing matrix.
Except for this modification and the neutrino oscillations, the SM has been
verified in numerous experiments (Amsler et al. (2008)). Yet, the SM is still
far from being the ultimate theory of everything: there are several outsinging
puzzles, such as the strong force CP problem, the matter-antimatter asym-
metry, the hierarchy problem, etc. Contemporary experiments are driven by
searches for new physics beyond the Standard Model. The violation of discrete
symmetries plays a central role in this quest.

Developments in atomic physics followed those in particle and nuclear physics.
Here the ability to carefully listen (high precision), rather than smashing par-
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ticles at increasingly higher energies plays a decisive role. At sufficiently high
precision, the measurements may become sensitive to virtual contributions of
exotic, yet undiscovered elementary particles. The atomic experiments rely
on the fact that the Coulomb interactions and the well-established quantum
electrodynamics that governs atomic processes are C-, P-, and T- invariant.
This allows one to discriminate for otherwise strongly suppressed symmetry-
breaking forces. Generally, the low-energy results derived from atomic physics
are both unique and complementary to those generated from collider exper-
iments. Commonly, two directions in atomic physics: atomic parity violation
(APV) and the search for T,P-violating permanent electric dipole moments
(EDM) are considered to be the most fruitful so far.

Rich history of atomic parity violation is examined in a number of review
articles, e.g., Bouchiat and Bouchiat (1997); Ginges and Flambaum (2004)
and a book by Khriplovich (1991). Here we just briefly touch upon several im-
portant milestones. After the discovery of parity violation in nuclear physics,
Zel’dovich (1959) contemplated possibility of observing parity-nonconserving
signal in atoms. He concluded that the effect was too small to be of exper-
imental significance. In the 1970s, however, Bouchiat and Bouchiat (1974)
realized that the APV is amplified in heavy atoms. In atomic physics, the first
P-violating signal has been observed by Barkov and Zolotorev (1978) in Bi
atom. Over the following decades the experiments were refined, with the APV
signal observed in several atoms. So far the most accurate measurement has
been carried out in 133Cs by Boulder group (Wood et al. (1997)). The latest
high-precision atomic-structure analysis (Porsev et al. (2009)) of the Boulder
experiment pushed masses of hypothetical extra Z bosons to limits higher
than the constraints derived from direct searches with colliders.

In this contribution, we focus on new theoretical developments related to si-
multaneous violation of P and T symmetries in atomic and molecular physics.
One of such violations is related to yet undetected EDMs. Historically, searches
for EDMs may be traced back to Purcell and Ramsey (1950); at that time the
search was motivated by the fact that EDMs violate parity. After the discov-
ery of parity non-conservation, Landau (1957) pointed out that non-vanishing
EDMs would also violate time-reversal. Due to the compelling arguments of
the CPT theorem, the T-violation implies CP-violation, a subject of great
interest in the physics of fundamental interactions (Bigi and Sanda (2000);
Raidal et al. (2008)). While the CP-violation has been discovered in parti-
cle physics, the observed amount of violation is not sufficient to explain the
imbalance of matter and antimatter in the Universe. One of additional (and
tantalizing) motivations is that most supersymmetric extensions of the Stan-
dard Model predict electron EDMs (eEDMs) that are within a reach of planned
and on-going experimental searches (Fortson et al. (2003)).

A permanent EDM of an atom may arise due to a variety of CP-violating
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mechanisms. For example, experiments with diamagnetic (closed-shell) atoms
are sensitive to nuclear EDMs and nuclear CP-violating interactions: the best
nuclear EDM limits are set by experiments with Hg atoms by Griffith et al.
(2009). Experiments with paramagnetic (open-shell atoms) are sensitive to
electron EDM. Namely the eEDM will be the main focus of our present con-
tribution. The current limit on the eEDM,

|de| < 1.6× 10−27e · cm , (1)

is derived from a high-precision measurement by Regan et al. (2002) with a
beam of Tl atoms.

In Tl eEDM experiment, one spectroscopically searches for a tiny eEDM-
induced splitting of the magnetic sublevels of an atom in an externally applied
electric field. Presently, there are several alternative trends in searches for
eEDM:

• Employing molecules and molecular ions instead of atoms in spectroscopic
experiments (Hudson et al. (2002); Tarbutt et al. (2009); Bickman et al.
(2009)).

• Non-spectroscopic solid state experiments (Vasiliev and Kolycheva (1978);
Lamoreaux (2002); Baryshevsky (2004); Mukhamedjanov et al. (2003); Hei-
denreich et al. (2005)).

• Spectroscopy of ultracold atoms in optical traps, lattices, and fountains (Chin
et al. (2001); Amini et al. (2007)).

• Non-spectroscopic search with molecules frozen in artificial solids, discussed
here.

Here we review a new method for eEDM search (Ravaine et al. (2005); Dere-
vianko and Kozlov (2005); Kozlov and Derevianko (2006)). The method is
based on the CP-violating (T,P-odd) magnetic moments and polarizabilities
of atoms and molecules.

Central to our consideration will be a relation between macroscopic magneti-
zation M of a substance (gas, solid-state, matrix,...) and applied electric field
E

M = χCP E. (2)

As discussed in Section 2, this relation violates both parity and time reversals.
The magnetization could be measured using an idealized setup shown in Fig. 1.
Microscopically, the magnetization of the ensemble due to external E-field can
arise in a number of ways (Section 3.3). In this contribution, we consider three
mechanisms:

(1) Microscopic CP-violating (T,P-odd) polarizability βCP of an atom (Sec-
tion 4). Here a magnetic moment, µ, of an individual atom is induced by
the E-field, µ = βCP E.
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Fig. 1. An idealized scheme for measuring CP-violating (T,P-odd) polarizability of
a substance. An external electric field is applied to a sample; unlike the conventional
T,P-even electrostatics, the E-field induces macroscopic magnetization. By measur-
ing the resulting magnetic field one could determine the CP-violating polarizability
setting a limit on eEDM.

(2) Permanent CP-violating magnetic moment of a diamagnetic molecule
(Section 5). In this case, the strong internal molecular E-field, Eint, acts
on one the atomic constituents and induces the moment µCP . The re-
sulting CP-violating moment has a definite value in the molecular frame.
Then the macroscopic magnetization, Eq.(2), is induced by polarizing a
sample of molecules with external E-field.

(3) Thermally-induced magnetic moments of paramagnetic molecules (Sec-
tion 6). This scheme exploits the link between the EDM of the elec-
tron and it’s spin, d = deσ, and therefore it’s magnetic moment, µe ≈
−µBσ = −µBd/de. In an external E-field, because of the coupling of
the eEDM to the E-field, thermal populations of the spin-up and spin-
down states slightly differ, leading to the magnetization of the sample
(Shapiro (1968)). This idea was the basis for solid-state eEDM searches
(Vasiliev and Kolycheva (1978); Heidenreich et al. (2005)). Pryor and
Wilczek (1987) extended this idea to an ”artificial solid”: a macroscopic
sample of paramagnetic atoms frozen in a matrix of rare-gas atoms. Here
we argue that paramagnetic molecules in a matrix have about five orders
of magnitude higher sensitivity, than atoms.

In this contribution, we carry out a systematic study of these CP-violating
magnetic moments and polarizabilities. We find that the eEDM search with
thermally-induced magnetic moments of paramagnetic molecules embedded
in a matrix has the largest sensitivity to eEDMs. This scheme combines
advantages of solid-state and molecular searches. Indeed, the eEDM effects
in molecules are markedly amplified because of the strong internal molec-
ular electric field (Sushkov and Flambaum (1978); Kozlov and Labzowski
(1995)), much larger than attainable laboratory fields. In the present solid-
state schemes the atomic enhancement of the external electric field for ions
of a solid is of the order of unity (Ignashevich (1969); Mukhamedjanov et al.
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(2003)). By using matrix-isolated diatomic radicals, one can gain up to six or-
ders of magnitude in the effective electric field. At the same time one retains
a great statistical sensitivity of the solid-state searches. We show that this
particular combination seems to drastically improve sensitivity of the eEDM
search. Conservative estimates project that the present limit on eEDM can be
improved by several orders of magnitude.

Unless specified otherwise, atomic units |e| = ~ = me ≡ 1 and Gaussian
system for electro-magnetic equations are used throughout. In these units, the
Bohr magneton is µB = α/2, where α ≈ 1/137 is the fine structure constant,
and the unit of magnetic field is m2

ee
5/~4 ≈ 1.72× 107 Gauss.

2 T, P-violating electrodynamics

We start by reviewing transformation properties of electromagnetic fields and
related quantities under the parity and time reversals (see Table 1.) As an illus-
tration, consider the electrostatics, governed by the Gauss and the Ampere’s
laws. According to the Gauss law, electric field is created by an instantaneous
distribution of charges; an inversion of a charge distribution about an arbi-
trary point in space reverses the direction of the electric field at that point:
E-field is a P-odd vector. By contrast, magnetic fields remains unaffected by
the charge inversion: B-field is a P-even (axial or pseudo-) vector. Now if we
flip the arrow of time (time-reversal), the currents would flow in the opposite
directions, while the instantaneous distribution of charges remains the same:
apparently, B is a T-odd vector, while E is T-even.

Table 1
Transformational properties of electrodynamic quantities under parity and time
reversals.

Quantity Name P T

E Electric field − +

B Magnetic field + −
ρ Charge density + +

j Current density − −
d Dipole moment − +

µ Magnetic moment + −
ϕ Electric potential + +

A Magnetic potential − −

The Maxwell equations are invariant under both T and P reversals. For exam-
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ple, both sides of the Maxwell-Faraday equation, ∇×B = j + ∂E
∂t

, transform
identically (e.g., the l.h.s. of the equation is P-odd, since the curl operator
is P-odd). Notice, however, that the set of four Maxwell equations is incom-
plete. It has to be supplemented by specifying how individual charges respond
to electromagnetic fields. In classical physics this is achieved with the Newton
and the Coulomb-Lorentz laws. Since both these laws are P- and T-invariant,
these supplementing laws do not spoil the overall symmetry.

2.1 Violation of discrete symmetries and the phenomenology of constitutive
relations

Paramount to our consideration is that in more sophisticated theories, the
laws that link charge and current densities to driving electromagnetic fields
may break the discrete symmetries. Indeed, the parity is broken in the theory
of electroweak interactions. To facilitate a phenomenological description of
such laws we follow the conventional approach and introduce the macroscopic
polarization, P , and magnetization, M . Relations

D = E + 4π P , (3)

B = H + 4π M ,

simply shuffle the effects of bound charges due to P and bound currents caused
by magnetization into the definition of the fields.

In the absence of free charges and currents, the Maxwell equations become
complete by specifying dependence of P and M on E and H (so-called “con-
stitutive relations”).

We start from a linearized local response theory for these relations. In the
traditional (T,P-even) electrodynamics,

P = χeE , (4)

M = χmH , (5)

where χm,e are the conventionally-defined susceptibilities (true scalars). Notice
that both sides of these equations conserve P and T, so that the resulting
Maxwell equations remain P- and T-invariant.

To motivate further development, we may, however, also try another linear
combination

P = χT,P H , (6)

M = χT,P E. (7)
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These two relations violate both P and T simultaneously, and, therefore, are
inadmissible in the traditional electrodynamics. Matching transformational
properties of both sides of these equations (reviewed in the upper panel of
Table 2) requires that the susceptibility χT,P have a pseudo-scalar character
and also change sign under the time-reversal. Notice that the very same χT,P

enters both equations; this symmetry will be addressed in Section 2.1.1.

Table 2
Transformational properties of quantities relevant to phenomenological description
of electrodynamics of media with violation of discrete symmetries. The last two
columns compile the phases acquired by a given quantity due to parity (P) and
time (T) reversals.

Quantity Name P T

D Displacement field − +

H Auxiliary magnetic field + −
P Macroscopic polarization − +

M Macroscopic magnetization + −
χe, χm Conventional susceptibilities + +

χP P-odd susceptibility − +

χT,P ≡ χCP T,P-odd susceptibility − −
χT T-odd susceptibility + −
gE , gH Conventional gyration vectors + +

gP P-odd gyration vector − −
gT,P ≡ gCP T,P-odd gyration vector − +

gT T-odd gyration vector + −

One may proceed with characterizing the substance with all possible scalar,
χ, and vector, g, quantities which transform in all possible ways under the
T and P reversals (there are 10 such quantities, compiled in Table 2). Then
we may construct a generalized set of constitutive relations by forming prod-
ucts of electric and magnetic fields with these quantities and requiring that
the resulting combinations transform as the D and B fields. Such a set of
P-, T-violating local linearized phenomenological relations was proposed by
Moskalev (1986). Here, for completeness, we augment the Moscalev’s relations
with purely T-odd effects.

For static fields,

D = (1 + 4πχe)E + χT,P H − gP ×H , (8)

B = (1 + 4πχm)H + χT,P E + gP ×E. (9)
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Apparently, the last terms involving a constant vector gP describe a non-
uniform (gyrotropic) media, characterized by a preferred direction.

For time-dependent fields, the additional terms to the r.h.s. of Eqs. (8,9) are

D′ = iE × gE + χP ∇×E + χT ∇×H − gT,P × (∇×E) + gT × (∇×H) ,
(10)

B′ = iH × gH + χP ∇×H + χT ∇×E + gT,P × (∇×H)− gT × (∇×E) .
(11)

The first term on the r.h.s. of each equation is present in the traditional, T,P-
even, electrodynamics: the gyration vector gE is a real pseudo-vector. The
enumerated effects do appear only for the time-dependent cases: according
to the Maxwell’s equations, for stationary fields and in the absence of free
currents, all the curls vanish.

2.1.1 Energy conservation

Insights can be drawn from computing the energy density of the electromag-
netic field u. The elementary variation of the energy density is expressed in
terms of the fields as (Jackson (1999))

δu =
1

4π
(E · δD + H · δB) .

By plugging in Eqs. (8,9) we arrive at

u =
1

8π

(
εE2 + µH2

)
+

1

4π
χT,P E ·H +

1

4π
(E ×H) · gP .

Here the first term comes from the conventional electrodynamics. A particular
choice of signs and symmetry of coefficients in Eqs.(8–11) becomes especially
transparent if we were to use this energy density as a starting point for a
Lagrangian formulation of the Maxwell equations. For example, the second
term would contribute equally to both D and B fields, thus we have the very
same material coefficient χT,P for both cases. The third term contains the
cross product, E × H ; it is antisymmetric with respect to swapping E and
H , therefore the relevant contributions to the r.h.s. of Eqs.(8,9) have opposite
signs.

To reiterate, we keep the original Maxwell equations; the violations of funda-
mental symmetries are rather associated with the substance properties (Ta-
ble 2). In this regard it is important to distinguish between “simulated” and
“true” substance effects in violation of fundamental symmetries. For example,
the Ohm’s law, j = σE, violates the time reversal. This violation, however, is
related to the second law of thermodynamics (which fixes the direction of the
time arrow).
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3 Fundamental mechanisms of P and T violation

All mechanism of T,P-violation in atoms necessarily involve either nuclear or
electron spin degrees of freedom. In this section, we briefly review fundamental
mechanisms of CP violation associated with the electron spin, the focus of our
present contribution (see Khriplovich and Lamoreaux (1997) for a discussion
of CP violating mechanisms associated with the nuclear spin, such as the
Schiff and M2 nuclear moments). There are two possible sources of T and
P violation: the permanent EDM of the electron, Sec. 3.1, and the T,P-odd
electron-nucleus interaction via neutral currents, Sec. 3.2.

In principle, it is also possible to discuss T- and CP-odd, but P-even inter-
actions. However, such interactions are less natural within the modern field
theory as they correspond to the Lagrangians with derivatives. Experimentally
such interactions are also less studied. However, Conti and Khriplovich (1992)
obtained strong indirect limits on them from the EDM experiments. Possible
direct experiments were suggested by Kozlov and Porsev (1989); Baryshevsky
and Matsukevich (2002) and realized by Hopkinson and Baird (2002). We will
not consider such interactions in the present contribution.

The focus of this work is exclusively on the T,P-odd interactions. To be con-
sistent with our previous work and to emphasize the relation to the important
CP violation through the CPT theorem, we will use the superscript CP instead
of T,P from now on.

All CP violating interactions in atoms and molecules are described by highly
singular relativistic operators and their consistent treatment is possible only
within the fully relativistic four-component Dirac formalism. In this formalism,
atomic electron orbitals can be written as (Johnson (2007))

unκm(r) =
1

r




iPnκ(r) Ωκm(r̂)

Qnκ(r) Ω−κm(r̂)


 , (12)

where P and Q are the large and small radial components, respectively, and
Ω is the spherical spinor. The angular quantum number κ = (l − j) (2j + 1).
These atomic orbitals will be also used for evaluating the CP-odd effects in
molecules; the molecular orbitals will be expanded in terms of (12).

3.1 Permanent electric dipole moment of the electron

In the nonrelativistic approximation an average electric field on the electron
in an atom should be zero (because average acceleration on a stationary orbit
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is zero). This means that the external E-field is completely screened out by
polarization of the electronic cloud. In order to account for this screening, the
relativistic interaction of the eEDM with the electric field E can be written in
the following form (Khriplovich (1991)):

V CP,EDM = 2de




0 0

0 σ · E


 . (13)

This interaction vanishes if we neglect the small component of the bi-spinor
(12). Atomic matrix element of this interaction is given by

V CP,EDM
ab = de

{
2Z

∫ ∞

0

dr

r2
Qa (r) Qb (r)

}
δκa,−κb

δma,mb
, (14)

where we used the fact that the dominant contribution is accumulated close
to the nucleus, so that E can be approximated by the unscreened nuclear field
Z/r2. Note that if we use the operator (13), the external electric field can be
neglected. The selection rules in (14) with respect to the angular quantum
numbers m and κ arise because V CP is a pseudoscalar.

3.2 CP-odd neutral currents

It is known that in atomic experiments the effects of eEDM are indistinguish-
able from those from the scalar CP-odd weak neutral currents. More generally,
they lead to the same terms in Eqs. (8–11). Such interactions were discussed
since the weak neutral currents were introduced into the electroweak theory.
They may be written as (Khriplovich and Lamoreaux (1997))

V CP,NC = i
GF√

2
(Zkp

1 + Nkn
1 )γ0γ5ρ(r) ≡ i

GFZ√
2

knuc
1 γ0γ5ρ(r), (15)

where GF = 2.2225× 10−14 a.u. is the Fermi constant, kp,n
1 are dimensionless

coupling constants of the scalar P, T -odd weak neutral currents for proton and
neutron (knuc

1 ≡ kp
1 + N

Z
kn

1 ). Further, Z and N are the numbers of protons and
neutrons in the nucleus, γ0,5 are the Dirac matrices, and ρ(r) is the nuclear
density normalized to unity. The presence of ρ(r) in Eq. (15) means that the
interaction takes place only when the electron is inside the nucleus.

Matrix elements of interactions (13, 15) depend on the short distances and
become strongly suppressed with increasing total angular momentum j. To a
good approximation, one may neglect all matrix elements involving j ≥ 3/2.
For the remaining matrix elements between orbitals s1/2 and p1/2 an analytical
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expression can be found in Khriplovich (1991):

〈s1/2|V CP,EDM|p1/2〉 =
16

3

α2Z3REDM

(νsνp)3/2
de, (16)

〈s1/2|V CP,NC|p1/2〉 =
GF

2
√

2π

αZ3RNC

(νsνp)3/2
knuc

1 . (17)

Here the effective principal quantum number ν is defined in terms of one-
particle energy of atomic electron ε, ν = (−2ε)−1/2. REDM and RNC are the
relativistic enhancement factors:

REDM =
3

γ(4γ2 − 1)
=





1, Z = 1,

1.4, Z = 54, (Xe),

2.7, Z = 86, (Rn),

(18)

RNC =
4γ(2ZrN)2γ−2

Γ2(2γ + 1)
=





1, Z = 1,

2.5, Z = 54,

8.7, Z = 86,

(19)

where γ =
√

1− (αZ)2 and the radius of the nucleus is taken to be rN =

1.2 (Z + N)1/3 fm.

We see that both CP-odd operators scale as Z3 R with the relativistic enhance-
ment factors R given by (18) and (19). Because of the similarity between the
matrix elements (16) and (17), there is no need in calculating independently
the NC contribution to CP-odd atomic properties. It is sufficient to substitute
matrix elements (16) in all the equations with matrix elements (17). This way
we find that the contribution induced by the CP-odd weak neutral currents is
obtained from the respective eEDM contribution by the following substitution:

de

er0

⇐⇒ 0.64× 10−13 RNC

REDM
knuc

1 , (20)

where r0 is the Bohr radius and REDM and RNC are given by (18) and (19).
The accuracy of Eq. (20) is typically 15 – 20%, which is sufficient for our
purposes.

3.3 Microscopic relations

Consider an isotropic medium of weakly interacting quantum species (e.g.,
atoms and molecules) and express material coefficients introduced in Sec. 2 in
terms of their individual properties. For brevity we restrict ourselves to the
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case of the static fields. Then we can use Eqs. (8) and (9). For the isotropic
medium gP = 0. The remaining three susceptibilities can be written in terms
of the operators of the electric and magnetic dipole moments d and µ:

χe =
2n

3

∑

k

da,k · dk,a

Ek − Ea

, χm =
2n

3

∑

k

µa,k · µk,a

Ek − Ea

, (21)

χCP =
2n

3
<∑

k

da,k · µk,a

Ek − Ea

, (22)

where n is the number density. The expressions (21,22) assume that a system
is in a fixed quantum state |a〉; these are to be averaged over thermodynamical
distribution over states. Such an averaging will become important for macro-
scopic samples of molecules, discussed in Sec. 5 and 6.

The relations (21) may be recast into a form involving polarizabilities of the
individual species. For example, χe = nα, where α is the conventional static
electric polarizability. Similarly,

χCP = nβCP . (23)

Then the CP-violating magnetic moment of an individual atom will be

µCP = βCP E . (24)

All non-chiral species have eigenstates of definite parity P . Operator d = −er
is P-odd and mixes states with different parity. Operator µ is, on the contrary,
P-even and can only mix states with the same parity. Therefore, βCP turns
to zero. If we take into account P-odd, T-even interaction between atomic
electrons and the nucleus, these selection rules would be broken. However,
βCP would still be zero, because a product of matrix elements da,k and µk,a

would be purely imaginary. Similar situation takes place in the chiral medium,
where parity is not a good quantum number, but the time-reversal symmetry
is not violated.

Nonzero polarizability βCP appears only when we include CP-odd interactions
V CP from Sec. 3. Then the quantum states are no longer eigenstates of P;
moreover, T-reversal symmetry is also broken. In this case, polarizability βCP
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in (24) has the form (Ravaine et al. (2005)):

βCP = βCP
1 + βCP

2 + βCP
3 , (25)

βCP
1 = −2

3

∑

k,l

V CP
a,k µk,l · dl,a

(Ea − Ek)(Ea − El)
, (26)

βCP
2 = −2

3

∑

k,l

µa,kV
CP
k,l · dl,a

(Ea − Ek)(Ea − El)
, (27)

βCP
3 = −2

3

∑

k,l

µa,k · dk,l V
CP
l,a

(Ea − Ek)(Ea − El)
. (28)

4 CP-violating polarizability of diamagnetic atoms

Armed with the general understanding of CP-violating magnetic moments
and polarizabilities, now we proceed to systematically analyzing these effects
in specific scenarios. In this Section, we treat the simplest case of a closed-shell
atom and compute the eEDM-induced CP-violating polarizabilities, (25), of
rare-gas atoms He through Rn.

Notice that it is generally assumed that diamagnetic atoms are not useful for
the search of the eEDM. A question has been raised by Baryshevsky (2004) if
measuring βCP may provide a better route to finding eEDM. To answer this
question, we need to carry out computations of this quantity. At the end of
this section we estimate sensitivity of the eEDM experiment with liquid Xe
(LXe). This experiment appears to be not competitive because of the rela-
tively small signal, but it has an advantage of a low magnetic noise. Another
advantage is purely theoretical: here the polarizability βCP may be reliably
estimated (Ravaine et al. (2005)). This section will set an important stage for
understanding and evaluating CP-violating polarizabilities of molecules and
more promising molecular experiments. In particular, we will set up the DHF
formalism for computing polarizabilities and prove that βCP scale steeply, as
Z5, with the nuclear charge.

The rest of this section is organized as follows: In Sec. 4.1 we present results
of our DHF calculations of βCP for rare-gas atoms. In Sec. 4.2 we derive the
Z-scaling of βCP. Finally, in Section 4.3 we evaluate the feasibility of setting a
limit on electron EDM by measuring the CP-violating magnetization of liquid
Xe.
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4.1 Results for rare-gas atoms

Having derived a general third-order expressions for the CP violating po-
larizability, Eq. (26–28), here we proceed with the atomic-structure part of
the evaluation. We employ the conventional Dirac-Hartree-Fock (DHF) or
independent-particle approximation for that purpose. In this approach, the
atomic many-body wavefunction |Ψ〉 is represented by the Slater determinant
composed of single-particle orbitals (12), which satisfy DHF equation:

(
c(α · p) + βc2 + Vnuc + VDHF

)
ui(r) = εiui(r) , (29)

where Vnuc is a Coulomb potential of the finite-size nucleus and VDHF is non-
local self-consistent DHF potential.

Using a complete set of Slater determinants Eq. (26–28), may be expressed as

βCP
1 = −2

3

∑
amn

V CP
an µnm · dma

(εm − εa) (εn − εa)
+

2

3

∑

abm

V CP
bm µab · dma

(εm − εa) (εm − εb)
, (30a)

βCP
2 = −2

3

∑
amn

µanV
CP
nm · dma

(εm − εa) (εn − εa)
+

2

3

∑

abm

µbmV CP
ab · dma

(εm − εa) (εm − εb)
, (30b)

βCP
3 = −2

3

∑
amn

µan · dnm V CP
ma

(εm − εa) (εn − εa)
+

2

3

∑

abm

µbm · dab V CP
ma

(εm − εa) (εm − εb)
. (30c)

Here indexes a and b run over single-particle orbitals occupied in the atomic
ground state |Ψ〉, indexes m and n run over virtual orbitals, and εi are the
energies of the DHF orbitals.

Equations (30) are now ready for use in calculations with standard atomic
codes. They hold for any atomic or molecular system with a state composed
from a single Slater determinant. Below we use these for calculations of βCP

for the rare-gas atoms. These closed-shell atoms have the 1S0 ground state.
The intermediate many-body states in Eq. (26–28) are particle-hole excita-
tions, with the total angular momenta of J = 0 or J = 1, depending on the
multipolarity of the involved operator.

To carry out the numerical evaluation, we solved the DHF equations (29)
in the cavity using a B-spline basis set technique by Johnson et al. (1988).
The resulting set of basis functions while being finite, may be considered as
numerically complete. In a typical calculation, we used a set of basis functions
expanded over 100 B-splines. An additional peculiarity related to the Dirac
equation is an appearance of negative energy states (εm < −mec

2) in the
summation over intermediate states in Eq. (30). In our calculations we used
the so-called “length form” of the electric-dipole operator and we found the
contribution of the negative-energy states to be insignificant.
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Table 3
CP-violating polarizability, βCP, in Gaussian atomic units, for rare-gas atoms. CP-
violation is either due to the electron EDM, de, or due to the neutral currents (15).
Notation x[y] stands for x× 10y.

Atom Z βCP/de βCP/knuc
1

He 2 3.8[−9] 2.4[−22]

Ne 10 2.2[−6] 1.5[−19]

Ar 18 7.4[−5] 5.2[−18]

Kr 36 3.6[−3] 3.1[−16]

Xe 54 4.5[−2] 5.3[−15]

Rn 86 1.07 2.2[−13]

We compute βCP, Eq. (30), using the eEDM-mediated interaction V CP,EDM.
The required atomic matrix element is given by Eq. (14). The reduced matrix
elements of the magnetic-dipole and electric-dipole moment operators between
two bi-spinors are given by

〈a||µ||b〉= 1
2
(κa + κb) 〈−κa||C1||κb〉

×
∫ ∞

0
r dr{Pa (r) Qb (r) + Qa (r) Pb (r)} , (31)

〈a||D||b〉=−〈κa||C1||κb〉
∫ ∞

0
r dr{Pa (r) Pb (r) + Qa (r) Qb (r)} , (32)

C1(r̂) being normalized spherical harmonic.

Numerical results for rare-gas atoms are presented in Table 3 and also plotted
in Fig. 2. In Table 3, the values in the column marked βCP/de were com-
puted directly, while the values βCP/knuc

1 (the last column) were obtained
from βCP/de using relation (20). From Fig. 2 we observe a pronounced depen-
dence of the polarizability on the nuclear charge Z. Such a steep scaling of the
CP-odd polarizabilities is expected from the considerations presented below
in Sec. 4.2.

To illustrate the (doubly) relativistic origin of the CP-odd polarizability βCP,
we compile values of various contributions to βCP in Table 4 for an isolated
Xe atom. Apparently, the dominant contributions are from the two terms in
Eq. (30a), but there is strong cancelation between these two terms. As we will
see in Sec. 4.2, this cancelation is not accidental.
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Fig. 2. Dependence of the CP-violating polarizability βCP on the nuclear charge Z
for rare-gas atoms. CP-violation is due to the electron EDM, de. The ratio βCP/de

is given in atomic units. The Z5 line is drawn through Ar value for comparison.

Table 4
Contributions to CP-violating polarizability, βCP/de, in Gaussian atomic units, for
an isolated Xe atom. CP-violation is due to the electron EDM, de. Notation x[y]
stands for x×10y. Indexes 1 and 2 refer to two terms in each of the equations (30)).

k Eq. βCP
k,1 /de βCP

k,2 /de sum

1 (30a) -0.108 0.132 2.44[−2]

2 (30b) 6.53[−3] -6.63[−5] 6.46[−3]

3 (30c) 8.19[−3] 5.13[−3] 1.33[−2]

total 4.42[−2]

4.2 Z5 scaling of βCP for diamagnetic species

Let us consider non-relativistic limit of Eqs. (26 – 28). The one-particle mag-
netic moment operator is reduced to the form:

µ =
α

2
(2s + l). (33)

This operator can not change electronic principal quantum numbers. Because
of that the contributions (27) and (28) vanish, as there µ should mix occupied
and excited orbitals. Thus, we are left with the single term (26), which can be
further split in two parts (30a). We will show now that these two contributions
cancel each other, as observed from numerical results of Table 4.
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In the non-relativistic approximation the operator V CP is given by a scalar
product of the spin vector and the orbital vector. In the LS-coupling scheme
we have following selection rules: ∆J = 0, ∆S ≤ 1, and ∆L ≤ 1. Therefore,
V CP can couple the ground state 1S0 only with excited 3P0 states. Further, the
operator µ (33) is diagonal in the quantum numbers L and S and can couple
3P0 only with 3P1. To return back to the ground state, the dipole operator d has
to connect 3P1 with 1S0. However, this matrix element requires a spin flip and
vanishes in the non-relativistic approximation. The intermediate states 3P0,1

are formed from the excited electron and a hole in the core, which account for
two sums in (30a). We conclude that these two contributions must cancel in
the non-relativistic approximation.

The matrix element 〈3P1|d|1S0〉 is proportional to the spin-orbit mixing, which
is of the order of (αZ)2. It follows from (31) that the relativistic correction
to operator (33) is of the same order. This correction accounts for the matrix
elements of µ which are non-diagonal in the principle quantum numbers and
leads to the nonzero values of the terms (27) and (28). Thus, we see that
all three terms in Eq. (25) are suppressed by the relativistic factor (αZ)2,
in agreement with the numerical results from Table 4. The overall scaling of
the answer is given by the α2Z3R scaling of the matrix elements (16,17) and
relativistic suppression (αZ)2, i.e., we arrive at the Z5R law in agreement with
Fig. 2.

4.3 Discussion of experiment with liquid Xe

Consider experimental setup from Fig. 1 to measure the CP-violating polariz-
ability: A strong electric field E0 is applied to a sample of diamagnetic atoms
of number density n. A macroscopic magnetization (7) arises due to the CP-
violating atomic polarizability, χCP = nβCP. This magnetization generates a
very weak magnetic field B. One could measure this induced magnetic field
and set the limits on the electron EDM and on the CP-odd neutral currents.
In particular, for a spherical cell, the maximum value of the generated mag-
netic field at the surface of the sphere can be related to the CP-violating
polarizability as

Bmax =
8π

3
n βCPE0 . (34)

Clearly, one should increase the number density to enhance the signal, and it
is beneficial to work with a condensed sample (Shapiro (1968)).

Xenon has the most suitable properties for such an experiment among all
rare-gas atoms. Xe is the heaviest non-radioactive rare-gas atom; LXe has a
large number density (n ∼ 1022 1/cm3) and a high electric field breakdown
strength (E0 ∼ 4 × 105V/cm). Our calculations in Section 4.1 were carried
out for isolated atoms. However, in a liquid, there are certain environmental
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effects (such as confinement of electronic density) that affect the CP-violating
signal. To estimate the confinement effects in the liquid, we employ the liquid-
cell model. The calculations are similar to those performed by Ravaine and
Derevianko (2004). In brief, we solve the DHF equations for a Xe atom in a

spherical cavity of radius Rcav =
(

3
4π

1
n

)1/3
, with certain boundary conditions

imposed at the cavity surface. For a density of LXe of 500 amagat 1 Rcav ' 4.9
bohr. For a solid state, Rcav ' 4.2 bohr and we use the latter in the calculations
(see discussion by Ravaine and Derevianko (2004)). Technically, we applied the
variational Galerkin method on a set of 100 B-spline functions. We find, that
compared to an isolated atom, the CP-violating polarizability of a Xe atom
in LXe is reduced by about 65%,

βCP(LXe) ≈ 1.5× 10−2de . (35)

From Eq. (34) it is clear that the more sensitive the measurement of the B-field,
the tighter the constraints on βCP (and de) are. Presently, the most sensitive
measurement of weak magnetic fields has been carried out by Princeton group
(Bui Dang and Romalis (2009)). Using atomic magnetometry, this group has
reached the sensitivity level of 2 × 10−12 G/

√
Hz. The projected theoretical

limit of this method is 10−13 G/
√

Hz (Kominis et al. (2003)). Notice that this
estimate has been carried out for a sample of volume 0.3 cm3. The sensitivity
increases with volume V as V 1/3, so a 100 cm3 cell would have sensitivity of
about 10−14 G/Hz1/2. More optimistic estimate, based on nonlinear Faraday
effect in atomic vapor (Budker et al. (2000)), is given by Lamoreaux (2002);
here the projected sensitivity is 3×10−15 G/

√
Hz. For the review of the general

trends in modern magnetometry see Budker and Romalis (2007).

Assuming 10 days of averaging, the most optimistic published estimate of the
sensitivity to magnetic field (Lamoreaux (2002)) leads to the weakest measur-
able field of B ' 3 × 10−18 G. Combining this estimate with the breakdown
strength of the E-field for LXe, E0 ∼ 4 × 105 V/cm, and our computed value
of CP-odd polarizability, Eq. (35), we arrive at the constraint on the electron
EDM,

de(LXe) < 6× 10−26 e · cm. (36)

This projected limit is more than an order of magnitude worse than the present
limit on the electron EDM from the Tl experiment (1). Note, that for the
present B-field sensitivity record (Bui Dang and Romalis (2009)), the con-
straint of electron EDM would be several orders of magnitude weaker.

We conclude, that eEDM experiment with LXe is not competitive. This should
not be surprising: as we have seen above, the CP-violating magnetization for
diamagnetic LXe is significantly suppressed. In the next section we apply

1 Amagat density unit is equal to 44.615 moles per cubic meter (mol/m3)
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the developed formalism to polar diamagnetic molecules. We will show that,
compared to atoms, the molecular CP-violating magnetization is strongly en-
hanced.

5 CP-violating magnetic moment of diamagnetic molecules

It is a common knowledge, that heteronuclear diatomic molecules have static
electric dipole moment aligned with the internuclear axis n̂, D = D n̂. How-
ever, there is no similar magnetic moment. An existence of such a magnetic
moment would violate both P and T symmetries. Because of the CPT the-
orem, it would also violate CP symmetry. Thus, we arrive at the permanent
molecular CP-violating magnetic moments, µCP = µCPn̂, analogous to simi-
lar atomic moments considered above. Discussion in this section follows the
original paper by Derevianko and Kozlov (2005).

Fig. 3. A strong internal molecular E-field, Eint, acts on the heavier atomic con-
stituents and induces the magnetic moment µCP. The resulting CP-violating mo-
ment has a definite value in the molecular frame.

An origin of such a CP-violating magnetic moment becomes qualitatively clear
by reverting to the CP-violating polarizability of the previous Section. For the
sake of the argument, consider a BiF molecule (see Fig. 3). The chemical bond
here is of ionic character, leading to a strong redistribution of charges inside
the molecule (the outer-shell electron is stripped off Bi). This charge imbalance
generates an enormous E-field, Eint, acting on individual atomic constituents.
Therefore, according to Sec. 4 each ionic center acquires µCP = βCPEint (since
βCP ∝ Z5, µCP will be dominated by the heavier center). As a result, the
molecule acquires the CP-violating magnetic moment. This argument holds
for both diatomic and polyatomic molecules.

What is the role of the external electric field in producing the macroscopic
magnetization measured in experiment of Fig. 1? The molecular µCP is fixed
in the molecular frame. For a rotating molecule, µCP would average out to zero
in the laboratory frame. An external E-field interacting with the traditional
electric-dipole moment of the molecule is needed to align the molecular axes
and thus the individual µCP. Then the macroscopic magnetization will be
related to the external field via the now familiar Eq.(2).

The discussed mechanism for generating µCP is applicable to both diamagnetic
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and paramagnetic molecules. However, the regular magnetic moments µ of
diamagnetic (closed electronic shells) molecules are strongly suppressed, while
for paramagnetic species they are in the order of the Bohr magneton. Notice
that the regular µ, however, are not correlated with electric fields and in an
experimental setup, Fig. 1, would only lead to a magnetic noise. Clearly, this
noise will be smaller for diamagnetic molecules, the subject of this section.
We will return to paramagnetic molecules in Sec. 6, where we show that the
thermally-induced, rather than the permanent µCP of this section, become
dominant.

At the end of this section we will discuss a possible experiment to search for
the CP-violating magnetic moments of heavy polar molecules. We will see that
the limit on µCP derived from such experiments would imply constraints on
de that are several orders of magnitude better than the values from liquid Xe
considered in the previous Section. This is due to the fact that the internal
molecular fields are several order of magnitude larger than the attainable
laboratory fields.

5.1 Molecular formalism

Diatomic molecule is characterized by the projection Ω = (J · n̂) of the total
electronic angular momentum J = L + S on the internuclear axis n̂. For a
molecular state with a definite Ω, the molecular magnetic moment is directed
along n̂ and, phenomenologically, we may construct the following combina-
tions of the two vectors

µ = µCPn̂ + µBG‖Ω n̂, (37)

where µCP and G‖ are numbers. For the Hund’s case (a) G-factor is given by
an expression G‖Ω ≈ Λ + 2Σ, where Λ = (L · n̂) and Σ = (S · n̂) (Landau
and Lifshitz (1997)). While the second term in (37) is T,P-even, the µCPn̂
term violates both time-reversal and parity. Indeed, under the time reversal
the magnetic moment acquires a minus sign, while n̂ is T-invariant. Similarly,
under parity transformation, µ is not affected, while n̂ flips direction. Thus,
the quantum number Ω changes sign under T and P operations.

Given a complete set of molecular states |k〉 with energies Ek, the magnetic
moment µCP of a state |0〉 can be computed as

µCP = 2
∑

k

〈0| (M · n̂) |k〉〈k|V CP|0〉
E0 − Ek

, (38)

where M is the operator of magnetic dipole moment, and the CP-violation is
due to interaction V CP. We will focus on eEDM as a source of CP-violation.
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In this case V CP is given by Eq. (14). A reanalysis for the CP-odd neutral
currents, Eq. (15), can be done in the same way as for atoms using Eq. (20).

The matrix element of V CP depends on short distances from the heaviest
nucleus of the molecule (it scales as Z3). In this matrix element we can neglect
screening and put E int ≈ (Z/r2) r̂, where r is the radius-vector of the electron
with respect to the nucleus. Below we will evaluate the molecular sum (38)
using an approach similar to the LCAO method (linear combination of atomic
orbitals).

Note that Eq. (38) is expressed in the body-frame of the molecule. After µCP is
found one has to average Eq. (37) over rotations. In the external electric field
〈n〉 6= 0 and we get magnetization in the direction of the electric field. The
second T,P-even term in Eq. (37) does not contribute to this magnetization.
For diamagnetic molecules (J · n̂) = Ω = 0 and this term vanishes. For
paramagnetic molecules in the absence of the magnetic field the levels with
different signs of Ω are equally populated and this term is averaged to zero.

In this section we are interested in a macroscopic magnetization of a sample
of polarized diamagnetic molecules with Ω = 0 due to CP-violating magnetic
moments. In this case, the last term in Eq. (37) turns to zero. Some of the
molecules may still have non-zero nuclear magnetic moments. However, the
magnetization due to the nuclear moments is not correlated with polarization
of molecules in the external electric field. Moreover, in a macroscopic sam-
ple it will effectively average out to zero. Therefore, the magnetic noise in a
diamagnetic system is much lower than in paramagnetic one.

To illustrate our qualitative approach to evaluating CP-violating magnetic
moments, consider a polar molecule CsF in its ground 1Σ state. Halides exhibit
a chemical bond of a strong ionic character, and we model the CsF molecule as
the Cs+ ion perturbed by the electric field E of negative ion F−. The perturbing
field at the Cs+ is E ≈ q/R2

e, where Re is the internuclear separation and q = 1
is the valency of Cs. The CP-violation is enhanced near the heavier atom and
we may evaluate the magnetic moment as

µCP(CsF) ≈ βCP(Cs+)
q

R2
e

, (39)

where βCP(Cs+) is CP-violating polarizability of the Cs+ ion. Thus the molec-
ular two-center problem is reduced to computing a one-center property —
CP-violating polarizability of the heavier constituent. If both constituents of
the diatomic molecule AB have comparable nuclear charges, then µCP(AB) ≈
[βCP(A(+q)) + βCP(B(−q))] qR−2

e , where q is the observed valency of the atoms.
In both cases we can calculate molecular moment µCP using results of Sec. 4.
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5.2 Results for polar diatomic molecules

In Table 5 we present numerical results for CP-violating magnetic moments
for several diatomics: CsF, BaO, TlF, PbO, and BiF. All these diamagnetic
molecules have the 1Σ ground state. The heavier atoms of these diatomic pairs
are metals, and we assume that the molecules exhibit a pure case of ionic
bond, i.e., these heavier atoms fully lend their valence electrons to their elec-
tronegative companions (F and O) and become closed-shelled 1S0 ions. The
second and third columns of Table 5 list the resulting heavy atomic ions with
their nuclear charges, and in the fourth column we present our computed val-
ues of CP-violating polarizabilities of these ions. Finally, we combine ionic
βCP with the equilibrium internuclear separations (see Eq.(39)) and obtain an
estimate for the molecular CP-violating magnetic moments. Our sign conven-
tion in expression µCP = µCPn̂ is such that the unit vector n̂ is directed from
the heavier to the lighter nucleus. Notice that we express the µCP in terms of
eEDM. As above, one can use Eq. (20) to relate present results to the strength
of the T,P-odd electron-nucleon interaction Eq. (15).

Table 5
Molecular CP-violating magnetic moments, µCP/de, divided by the eEDM for sev-
eral diamagnetic molecules. The values of µCP/de are dimensionless, de and µCP

being expressed in the Gaussian atomic units. The second, third, and the fourth
columns list the heavier ion in the molecule, its nuclear charge, and its CP-violating
polarizability, βCP/de.

Molecule Ion ZIon βCP(Ion)/de µCP/de

CsF Cs+ 55 −3.0[−2] 1.5[−3]

BaO Ba++ 56 −2.3[−2] 3.4[−3]

TlF Tl+ 81 2.9[−1] −1.9[−2]

PbO Pb++ 82 3.2[−1] −4.9[−2]

BiF Bi+ 83 4.8 −3.2[−1]

For all the considered molecules, the internuclear separation Re ≈ 2Å, and
thus the internal molecular fields are comparable. More significant is the effect
of increasing CP-violating polarizabilities (the fourth column of Table 5) as
one progresses to heavier elements. This trend is largely due to the Z5 scaling
of βCP (see Sec. 4.2). Yet, there is an order of magnitude of difference between
βCP for Pb++ (Z = 82) and Bi+ (Z = 83). A part of this large enhancement lies
in a softer excitation spectrum of Bi+ and thus smaller energy denominators
in Eq. (30). Also, while solving the DHF equations we assumed that the outer
shell of Bi+ ion has the 6p2

1/2 electronic configuration. However, the ground

state of Bi+ in a molecule would contain a combination of 6p2
1/2 and 6p2

3/2

configurations. Since the p1/2 states couple to EDM strongly, while p3/2 orbitals
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contribute at a much smaller level, we expect that our result for βCP of Bi+

is somewhat overestimated.

Results of Table 5 should be considered as a qualitative estimate for another
reason as well. Expression (39) is based on atomic wavefunctions |Φi〉, instead
of the molecular wavefunctions of the defining expression (38). An underlying
assumption is that the molecular wavefunctions |i〉 in the vicinity of the heavier
atomic ion can be expressed perturbatively as

|i〉 ≈
[
|Φi〉+

∑

k

〈Φk| −DzE|Φi〉
εi − εk

|Φk〉
]
|Ψ0〉 , (40)

where |Ψ0〉 is the wavefunction of the lighter ion (we left out excitations from
|Ψ0〉 as being non-essential for computing µCP). Certainly, this model can
give only an order of magnitude estimate. For more accurate results the ab
initio relativistic ( !) molecular-structure calculations of CP-violating magnetic
moments are necessary.

5.3 Hypothetical experiment with BiF

Combining present limit on the eEDM (1) with the computed value of µCP/de

for BiF, we obtain:

µCP(BiF) . 2.4× 10−37erg/Gauss . (41)

While this is a remarkably small value, only 2.6×10−17 of the electron magnetic
moment, measuring such small magnetic moments seems to be possible with
the modern magnetometry.

Let us consider a hypothetical experiment, Fig. 1, similar to the one with liquid
Xe discussed in Sec. 4.3. Because of rotations, the body-fixed µCP moment
averages to zero in the laboratory frame. Experimentally, one needs to apply
a polarizing electric field E0 to orient the molecules along the field. For the
efficient polarization of a molecule in its ground rotational state, the coupling
to the field must be stronger than the rotational spacing, DE0 > 2B, where B
is the rotational constant. For the ground state of BiF, the rotational constant
is B ≈ 0.231 cm−1, requiring the application of the field E0 of a few kV/cm. Full
polarization of molecules in thermal equilibrium takes place when DEpol > KT
(Varentsov et al. (1982)). Polarization of a sample of BiF molecules at 10K
requires a few tens of kV/cm.

For the experimental setup Fig. 1 and for a fully polarized sample the value of
the magnetic field at the surface of the cell in analogy with Eq. (34) is given
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by

Bmax =
8π

3
nµCP . (42)

As for all such experiments, the signal is proportional to the number density
n of a sample. However, condensing polar molecules with ionic bonds leads
to dimerization and subsequent crystallization of the sample. To maintain the
individuality of the molecules, one should keep the density sufficiently low, for
example, using matrices (see below).

For a qualitative estimate, let us assume the sample number density for BiF to
be 1021 cm−3, which is 10 times lower than the density of liquid Xe. If we take
µCP from Eq. (41), which is derived from the present limit on eEDM, from
Eq.(42) we obtain a generated B-field of B ' 2× 10−15 Gauss. Such field can
be measured within 20 days of integration time at the present best sensitivity
limit of 2× 10−12 G/

√
Hz (Bui Dang and Romalis (2009)).

Comparing this estimate with Eq. (36) for the liquid Xe, we find that molecular
experiment has a substantially better sensitivity to eEDM. This enhancement
is due to (i) larger nuclear charge of Bi (Z = 83) than that of Xe (Z = 54) and
(ii) much larger E-field applied to heavy atom/ion: in case of BiF, the internal
molecular field is ∼ 4× 108 V/cm, while in liquid Xe the E-field is limited by
the breakdown strength of 4×105 V/cm. This large difference in the maximum
attainable laboratory field and the internal molecular field (Sandars (1967);
Sushkov and Flambaum (1978)) is exploited in more conventional searches for
EDMs with molecules by Cho et al. (1989); Tarbutt et al. (2009); Bickman
et al. (2009). By contrast to this, all ongoing, or planned eEDM experiments
with solids do not use this enhancement (Lamoreaux (2002); Mukhamedjanov
et al. (2003); Heidenreich et al. (2005); Sushkov et al. (2009)).

Let us return to the question how to obtain high density sample of polar
molecules without dimerization and crystallization. One of the methods to
study individual molecules is to use the low-temperature matrices of rare-gas
atoms with molecules embedded inside the matrix (Andrews and Moskovits
(1989)). The matrix isolation is a well established technique in chemical physics.
For chemically stable molecules, the number of guest molecules per host atom
(matrix ratio), could be as high as 1/10, i.e., one could attain the number
densities of molecules in the order of 1021 cm−3. However, the rare-gas ma-
trix is stable only as a thin layer on a surface of a solid substrate (typical
thickness is about 0.1 – 1 mm). This will lead to the geometrical suppression
of the magnetic field, compared to the spherical sample, considered above,
and will also reduce signal to noise ratio. On the other hand, matrix isolation
technique allows to work with paramagnetic molecular radicals as well, as with
diamagnetic stable molecules. As we will see in the next section, paramagnetic
molecules provide much stronger CP-violating magnetization and significantly
improve potential of the discussed experiments. Therefore, we postpone the
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discussion of a more realistic experiment until the end of Sec. 6.

6 Thermally-induced CP-violating magnetization of paramagnetic
molecules

In this section we focus on molecular radicals (i.e., molecules with unpaired
electron) in the ground 2Σ1/2 state. We consider a sample of radicals in ther-
modynamic equilibrium at temperature T . Because of the eEDM coupling to
the internal molecular E-field, molecular states with different signs of Ω have
slightly different energies. This mechanism leads to a thermodynamically av-
eraged CP-violating (P,T-odd) magnetic moment in molecular body-frame:

〈µCP〉 = µB deEeff/(kBT ) , (43)

where Eeff is the large molecular effective electric field acting on the EDM
of the unpaired electron. For paramagnetic molecules Eeff grows ∝ Z3 with
the nuclear charge Z of the heavier molecular constituent (Sandars (1965);
Flambaum (1976)) and one would choose to work with heavy radicals. Such
molecules as BaF, YbF, and HgH belong to this broad category. Their param-
eters are summarized in Table 6. Below we will see, that the mercury hydride
(HgH) is most suitable for the proposed experiment. For the HgH molecule
Eeff ≈ 8× 1010 V/cm and its ESR spectrum in Ar matrix has been studied by
Stowe and Knight Jr. (2002).

Table 6
Parameters of several heavy molecules with the ground state 2Σ1/2. Molecular dipole
moments D were measured by Ernst et al. (1986); Sauer et al. (1995); Nedelec et al.
(1989). The effective electric field Eeff for BaF and YbF was calculated by Kozlov
and Labzowski (1995); Titov et al. (1996); Kozlov (1997); Nayak and Chaudhuri
(2008). For HgH we rescale results of Kozlov (1985) using relation similar to Eq. (20).
Last three columns present polarization 〈nz〉, the maximal number density nmax,
and the accumulation time tacc required to reach S/N=1 for the current limit on
eEDM (1). These parameters are calculated with the help of Eqs. (50), (47), and
(55) for E = 10 kV/cm, T = 1K, and sample volume 0.1 cm3.

Molecule Eeff D 〈nz〉 nmax tacc
(
109 V

cm

)
(D)

(
1020 1

cm3

)
(ms)

BaF 8 3.17 0.13 0.03 300

YbF 26 3.91 0.16 0.02 30

HgH 79 0.47 0.02 1.5 3

CP-violating moment (43) in analogy with Eq. (38) is directed along inter-
nal molecular field and, therefore, along the molecular axis n̂. However, there
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is important difference between diamagnetic and paramagnetic molecules: in-
stead of electronic denominator in Eq. (38) now we have thermal energy kB T !
This results in a huge enhancement of the effect.

For a randomly oriented sample, however, the net magnetization would van-
ish. When an external E-field is applied, it couples to the traditional molecu-
lar electric-dipole moment D and orients the molecules. Taking into account
molecular polarization, the CP-moment can be expressed as

〈µCP
mol〉 ≈ µB

deEeff

kBT
× 〈nz〉 , (44)

where 〈nz〉 is the average projection of the molecular axis onto the E-field
(the field is directed along z-axis). Now the sample acquires a macroscopic
magnetization. This magnetization generates an ultraweak magnetic field BCP

proportional to eEDM
BCP = 4πγ n 〈µCP

mol〉 , (45)

where n is the molecular number density and γ is a geometry-dependent factor.
For example, near the center of a disk-shaped sample of radius R and thickness
L,

γ = L/2R , (46)

and near the surface of a spherical sample γ = 2
3

(see Eq. (42)).

Orientation of B-field (45) is linked to that of the applied E-field through
〈nz〉 in Eq. (44). Such a link is forbidden in the traditional electrodynamics.
Its very presence is a manifestation of the parity and time-reversal violation.
By measuring BCP one constrains eEDM via Eqs. (44) and (45). Again we
are interested in maximizing density n. However, bringing radicals together is
problematic — they react chemically. Here is where the matrix isolation tech-
nique becomes key (Andrews and Moskovits (1989)). In this well-established
method, the molecules are co-deposited with rare-gas atoms or other species
onto a cold (T ∼ 1 K) substrate and become trapped in the matrix (see Fig. 4).
Small trapped molecules exhibit properties similar to those for free molecules
and a variety of studies, including determination of hyperfine-structure con-
stants has been carried out.

There is an upper limit on the density of trapped molecules; to avoid align-
ment in the subsystem of guest molecules one requires that thermal agitations
are stronger than dipole-dipole interactions between the molecules. We can
estimate the maximum density as:

nmax ≈ 3

4π

kBT

D2
. (47)

A particular advantage of HgH is that its dipole moment is relatively small,
D = 0.47 Debye (Nedelec et al. (1989)) and at T = 1 K, the density nmax ≈
1.5× 1020 cm−3.
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Fig. 4. Scheme of searching for EDM of electron with diatomic radicals embedded
in a matrix of rare-gas atoms. A polarizing electric field E is applied to the matrix.
As a result, molecular CP-violating magnetic moments µCP become oriented and
generate ultraweak magnetic field BCP.

Estimate (47) agrees with experimental observations that 1:100 guest to host
ratio is possible. According to Knight and Sheridan (private communication)
the realistic matrix thickness and area are L = 1 mm and S = 1 cm2. That
corresponds to γ ≈ 0.1 in (45). Recently developed low density plasma beam
source (Ryabov et al. (2006)) produces permanent beam of heavy radicals
with intensity ∼ 1018 mol/sterad/s. Placing 1 cm2 target at 20 cm from the
source, one can accumulate necessary number of radicals, i.e. 1019, in 1 hour.

How are the relevant molecular properties modified by the matrix environ-
ment? A free non-rotating molecule may be described by the electronic wave
function |Ω〉, with Ω = ±1/2 characterizing projection of spin onto molec-
ular axis. The time-reversal operation T converts Ω-states into each other:

|Ω〉 T→ | − Ω〉. In the matrix, a molecule can be considered as an individual
entity perturbed by the host atoms. The local symmetry of the perturbing
fields depends on the position of the molecule in the matrix. Independent of
the spatial symmetry the time-reversal symmetry remains. According to the
Kramers’ theorem, in the absence of magnetic fields, all levels of diatomics with
half-integer spin remain two-fold degenerate for any possible electric field.

EDM interaction operates at short distances near the heavier nucleus. Expand-
ing the electronic wavefunction in partial waves we notice that contribution to
the eEDM signal of total angular momenta beyond s1/2– and p1/2–waves are
strongly suppressed because of the growing centrifugal barrier and properties
of the eEDM (see Sec. 3). The truncated wave function has the C∞,v sym-
metry and Ω still remains a good quantum number for the degenerate states
of matrix-isolated radicals. Within this approximation, the effective molecular
Hamiltonian in the external field E reads

Heff = −D ·E∗ + 2deEeffΩ , (48)

where E∗ is microscopic E-field; for small fields E∗ = E/ε. We used Heff to
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arrive at Eq. (44).

Using the estimate (44) with the present limit on eEDM (1), we obtain for
the thermally-induced CP-odd magnetic moment of HgH molecule trapped at
T = 1 K

〈µCP
mol(HgH)〉 < 1.4× 10−12〈nz〉µB . (49)

Comparing this value with Eq. (41) for BiF we see, that thermally induced
CP-violating moment of paramagnetic molecule is about 5 orders of magnitude
larger, than that of a diamagnetic molecule with similar Z!

An important parameter entering 〈µCP
mol〉 is the degree of molecular polariza-

tion 〈nz〉 in the external E-field. Free diatomic molecules can be easily polar-
ized by the laboratory fields ∼ 104V/cm, but there is a paucity of data on
polarizing matrix-isolated molecules (Kiljunen et al. (2005)). Certainly, the
rotational dynamics of the guest molecule is strongly affected by the matrix
cage. The molecular axis evolves in a complex multi-valley potential, subject
to the symmetry imposed on the molecules by the matrix cage. Depending
on the barrier height between different spatially oriented valleys, the guest
molecule may either execute hindered rotation or librations about the valley
minima. Khriachtchev et al. (2005) report evidence for hindered rotation of
HXeBr and Weltner, Jr. (1990) suggests that other hydrides can rotate. Note
also, that for Ar matrix the cell size is 4.5Å, while internuclear distance for
HgH is only 1.7Å. That gives us a confidence that the HgH radical can be
polarized by the external electric field.

We will distinguish between two limiting cases of molecular polarization:
strong and weak fields. In the former limit 〈nz〉 ∼ 1, and in the latter,

〈nz〉 =
1

Z

∑
nz

nz exp
(

DE∗nz

kBT

)
≈ DE∗

kBT
〈n2

z〉. (50)

For isotropic orientational distribution, characteristic for the polycrystalline
matrixes, 〈n2

z〉 = 1/3, and we get

〈µCP
mol〉 ≈

1

3
µB

DE∗

kBT

Eeffde

kBT
. (51)

The dielectric constant of the rare-gas matrix is close to unity, but addition
of polar molecules results in

ε ≈ 1 + 4πnα = 1 + 4πn
D2〈n2

z〉
kBT

≈ 1 +
4π

3
n

D2

kBT
, (52)

where α is molecular polarizability. For maximum density (47), ε ≈ 2 and
E∗ ≈ E/2.

The parameter differentiating the weak- and the high-field regimes is the ratio
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DE∗/kBT . For HgH trapped at T = 1 K, the transition occurs at E∗ ≈
100 kV/cm. The breakdown fields for the rare-gas matrices are unknown, we
only notice that for liquid Xe it is 400 kV/cm so that both weak- and high-
field regimes may be possibly realized. The moderate E = 10 kV/cm field
corresponds to 〈nz〉 ≈ 0.02.

Finally, we proceed to evaluating the sensitivity of the proposed eEDM search.
There are two crucial criteria to consider: weakest measurable B-field and
signal-to-noise ratio. Presently, the most sensitive measurement of magnetic
fields has been carried out by the Princeton group (see Kominis et al. (2003)
and references therein). This group has reached the sensitivity level of 5.4 ×
10−12 G/

√
Hz. A projected experimental sensitivity of 3 × 10−15 G/

√
Hz is

published in Lamoreaux (2002). We find that for 〈nz〉 ∼ 1 and for γ = 0.1 the
present eEDM limit may be recovered within integration time of t = 5 s for
the demonstrated sensitivity and within 10−6 s for the projected sensitivity.
Alternatively, during a week-long measurement, the present eEDM limit may
be improved by 3× 102 for the demonstrated and by 6× 105 for the projected
B-field sensitivity. These values are reduced by a factor of 50 for a moderate
10 kV/cm polarizing field.

In addition to limitations imposed by the weakest measurable B-field one
must also consider signal-to-noise ratio Budker et al. (2006). As we pointed
out above, the thermally-induced 〈µCP

mol〉 of radicals is many orders larger than
permanent µCP

mol of diamagnetic molecules discussed in Sec. 5. The magnetic
noise from paramagnetic radicals is also much higher as they have traditional
magnetic moments associated with unpaired electron spin,

〈µmol〉 = 2µBΩ〈nz〉. (53)

These moments lead to random magnetization of the sample and generate a
fluctuating B-field. Unlike BCP, this field is not correlated with the direction
of the external E-field and it is the main source of the noise. In our case, the
signal-to-noise ratio is

S/N = 3
〈µCP

mol〉
µB

√
N t

τ
, (54)

where N is the number of molecules, t is the observation time, and τ is the
correlation time for the random thermal magnetization. Factor 3 at the right
hand side appears because of the averaging of the magnetic moment (53) over
orientations of the molecular axis n.

For a strong spin-rotation coupling, as in the case of HgH, τ is determined
by interaction of molecular axis with environment. One of such mechanisms
is the dipolar interaction between guest radicals, so that τ ∼ ~/(D2n) =
4π~/(3kBT ) for the optimal density (47). For the weak-field limit (51) we get
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the final expression for S/N:

S/N =
3

8π

EEeffde

kBT

√
V t/~ , (55)

where V is the sample volume. This equation is used in Table 6 to estimate ac-
cumulation time needed to reproduce the current limit (1). For HgH molecule
we find that for a volume of 0.1 cm3 and strong polarizing field, the present
eEDM limit may be recovered within t = 10−6 s (3 ms for the field 10 kV/cm).
By integrating the signal for one week, the present eEDM limit may be im-
proved by a factor of 2 × 106. Note that these estimates are close to the
estimates based on the projected sensitivity to the weak magnetic fields Lam-
oreaux (2002).

7 Conclusion

In this contribution we developed general formalism for CP-violating polariz-
ability and made estimates for three different systems. The first is liquid Xe,
two others include heavy diatomic molecules in a rare-gas matrix. All three
systems are supposed to be at a temperature of few Kelvin.

CP-violating polarizability of all systems considered here is described by the
third order expressions (26–28). However, the size of the effect is very differ-
ent. This difference can not be attributed to the Z-scaling, as all three systems
have comparable values of Z. The important difference is the nature of inter-
mediate states in the sums (26–28). For a diamagnetic atom, like Xe, both
intermediate states are electronic excited states. Consequently, both energy
denominators are of the order of a fraction of atomic unit (104 – 105 cm−1).
For a polar diamagnetic molecule, like BiF, there is non-zero dipole moment of
the ground electronic state and one of the intermediate states in the sums (26–
28) can be taken to be rotational excited state. Now one of the denominators is
of the order of the rotational constant B, typically less than 1 cm−1. On such
a small energy scale thermal averaging over rotational states becomes impor-
tant. As a result, the effective size of the denominator is equal to kBT . That
gives us four, or five orders of magnitude enhancement of the effect, compared
to atoms. Diamagnetic molecules have zero magnetic moment of the ground
state and we need to decouple electron spins in the second intermediate state.
Thus, another denominator is still large. Paramagnetic molecules, like HgH,
have uncoupled electron spin in the ground electronic state and we can take
second intermediate state also to be rotationally excited. Now we have both
denominators of the order of the rotational constant B, or of the order of
kBT after averaging over the thermal distribution. That gives us one more en-
hancement factor of the order of 104 – 105. This last enhancement is similar to
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the enhancement of the conventional magnetic susceptibility of paramagnetic
substances, compared to diamagnetic ones.

We see, that the effect for paramagnetic molecules is about nine orders of
magnitude stronger, than for diamagnetic atoms. There is a price to be paid
for such an enhancement. First, the density of molecules in a matrix is two,
three orders of magnitude smaller, than the density of LXe (according to
Eq. (34), the signal is directly proportional to the density). Second, the ma-
trix isolation technique requires smaller sample size. This leads to additional
geometrical factor γ ∼ 0.1 and the enhancement becomes 105 – 106. Finally,
the smaller number of particles in a sample affects S/N ratio. With all these
factors included, the overall gain is still huge, and experiment with paramag-
netic molecules looks very promising.

It is also interesting to compare this proposal with solid state experiments
prepared by Sushkov et al. (2009). Formally, for the solid it is also possible
to use (26–28), but realistic calculations are much more difficult (Mukhamed-
janov et al. (2003)). For an estimate, though, we can use the same argument
as above. For the paramagnetic system one of the intermediate states can be
a low energy lattice excitation, but the second electronic polarization requires
excited electronic states. Consequently, we end up with one energy denomi-
nator of the order of kBT and another one of the order of 104 cm−1. Thus,
for the individual paramagnetic center we loose roughly four orders of mag-
nitude in enhancement, compared to paramagnetic molecule. In addition we
loose one, or two orders of magnitude due to the high orbital angular mo-
mentum (l = 3) of the unpaired electrons. As a result, an effective electric
field felt by the electron in a gadolinium-gallium garnet (GGG) is about 105

V/cm (Mukhamedjanov et al. (2003)), compared to 1010 V/cm for HgH. On
the other hand, the spin density in GGG is 8×1022 cm−3 about three orders of
magnitude higher, than for HgH in a matrix. The sample size for GGG can be
also made larger optimizing geometry and improving S/N ratio. We conclude
that these two proposed experiments have roughly comparable sensitivity. The
advantage of the HgH in a matrix is a much more transparent theory, which
allows for a reliable estimate of the βCP .

At the present stage when actual experiments have not started the detailed
discussion of the systematic effects is difficult. From the general considerations
one can expect that they will be similar to those in the solid state experiments.
When the high voltage is applied to the sample the unavoidable leakage cur-
rents can cause T-odd spurious effects. In our case such currents are suppressed
due to cryogenic temperatures and relatively small electric field, compared to
other solid state experiments. In addition, all volume effects are suppressed
by the small size of the sample. Therefore, we think that systematic effect
for the matrix isolation experiment can be made smaller than in solid state
experiments.

32



To summarize, our proposed eEDM search combines advantages of the strong
intermolecular field with a high attainable number density of molecules embed-
ded in a matrix of rare-gas atoms. We argue that our proposal has a potential
of improving the present eEDM limit by several orders of magnitude. That
will allow constraining the “new physics” beyond the Standard Model at an
important new level and, in particular, testing predictions of competing SUSY
models.
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