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We report, to our knowledge, the first relativistic calculation for many-electron atoms complete through the
fourth order of many-body perturbation theory. Owing to an overwhelmingly large number of underlying
diagrams, the calculations are aided by our suite of symbolic algebra tools. We augment all-order single-double
excitation method with 1648 omitted fourth-order diagrams and compute amplitudes of principal transitions in
Na. The resultingab initio relativistic electric dipole amplitudes are in an excellent agreement with
0.05%-accurate experimental values. Analysis of previously unmanageable classes of diagrams provides a
useful guide to a design of even more accurate, yet practical, many-body methods.
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Many-body perturbation theory(MBPT) has proven to be
a powerful tool in physics[1] and quantum chemistry[2].
Although MBPT provides a systematic approach to solving
many-body quantum-mechanical problem, the number and
complexity of analytical expressions and thus challenges of
implementation grow rapidly with increasing order of MBPT
(see Fig. 1). Indeed, because of this complexity it has proven
to be difficult to go beyond the complete third order in cal-
culations for many-electron atoms(see, e.g., Ref.[3]). At the
same time, studies of higher orders are desirable for improv-
ing accuracy ofab initio atomic-structure methods. Such an
improved accuracy is required, for example, in interpretation
of atomic parity violation[4] and unfolding cosmological
evolution of the fine-structure constanta [5].

Here we report, to our knowledge, the first relativistic
calculation of transition amplitudes for alkali-metal atoms
complete through the fourth order of MBPT. We augment
all-order single-double excitation method[7] with 1648 dia-
grams so that the formalism is complete through the fourth
order (see Fig. 1). As an illustrative example, we compute
electric dipole amplitudes of the principal 3p3/2-3s1/2 and
3p1/2-3s1/2 transitions in Na. By contrast to previous, less
complete calculations[7], the results are in excellent agree-
ment with 0.05%-accurate experimental values[8]. Thus our
method may possibly define the new level of accuracy inab
initio relativistic atomic many-body calculations. In addition,
based on the analysis of previously unmanageable classes of
diagrams we propose even more accurate, yet practical,
many-body method of relativistic atomic structure. Atomic
units ueu="=me=4p«0;1 are used throughout this paper.

Method. We explicitly compute 1648 diagrams. To over-
come such an overwhelming complexity we developed a
symbolic problem-solving environment(PSE) that automates
highly repetitive but error-prone derivation and coding of
many-body diagrams. It is worth mentioning that similar
tools have been developed in other subfields. For example,
the pioneering “SCHOONSCHIP” program [9] and other sym-
bolic packages are employed for evaluating Feynman dia-
grams in quantum electrodynamics and high-energy physics.
We also note similar efforts in quantum chemistry[10]. In
relativistic MBPT, a similar PSE was developed by Pergeret
al. [11], however their package is so far limited to well-
studied [12,13] third order of MBPT. In contrast, here we

explore a wide range of new, previously unmanageable,
classes of diagrams. The large-scale symbolic calculations
are far from common and we highlight components of our
PSE below.

First we briefly reiterate MBPT formalism[14] for atoms
with a single valence electron outside a closed-shell core. For
these systems a convenient point of departure is a single-
particle basis generated in frozen-coresVN−1d Dirac-Hartree-
Fock (DHF) approximation[15]. In this approximation the
number of MBPT diagrams is substantially reduced[6,16].
The lowest-order valence wave functionuCv

s0dl is simply a
Slater determinant constructed from core orbitals and proper
valence statev. The perturbation expansion is built in powers
of residual interactionVI defined as a difference between the
full Coulomb interaction between the electrons and the DHF
potential. Thenth-order correction to the valence wave func-
tion may be expressed as

uCv
sndl = − RvhQVIuCv

sn−1dljlinked, s1d

where Rv is a resolvent operator modified to include so-
called “folded” diagramsf14g, projection operatorQ=1

FIG. 1. Number of diagrams grows rapidly with the order of
MBPT. Here we show number of topologically distinct Brueckner-
Goldstone diagrams for transition amplitudes for univalent atoms.
We assume that calculations are carried out inVN−1 Hartree-Fock
basis to minimize the number of diagrams and we do not count
“folded” [6] and normalization diagrams. All-order single-double
(SD) excitation method recovers all diagrams through the third or-
der, but misses roughly a half of diagrams in the fourth order. These
1576 missed diagrams and 72 related normalization diagrams are
explicitly computed in the present work.
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− uCv
s0dlkCv

s0du, and only linked diagramsf6g are to be kept.
From this recursion relation we may generate corrections to
wave functions at any given order of perturbation theory.
With such calculated corrections to wave functions of two
valence statesw and v, nth-order contributions to matrix

elements of an operatorẐ are

Zwv
snd = o

k=0

n−1

kCw
sn−k−1duZuCv

skdlval,conn+ Zwv,norm
snd . s2d

Here Zwv,norm
snd is a normalization correction arising due to

an intermediate normalization scheme employed in deri-
vation of Eq.s1d. Subscript “val, conn” indicates that only
connected diagrams involving excitations from valence
orbitals are included in the expansion.

Equations(1) and (2) completely define a set of many-
body diagrams at any given order of MBPT. In practice the
derivations are carried out in the second quantization and the
Wick’s theorem[6] is used to simplify products of creation
and annihilation operators. Although the application of the
Wick’s theorem is straightforward, as order of MBPT in-
creases, the sheer length of expressions and number of op-
erations become quickly unmanageable. We developed a
symbolic-algebra package written inMATHEMATICA [17] to
carry out this task. With the developed package we derived
fourth-order corrections to matrix elements of univalent sys-
tems[14].

This is one of the fourth-order terms from Ref.[14],

o
abc

o
mnr

zbvg̃canrgnrcmg̃mwab

s«w − «bds«mw− «abds«nrw − «abcd
. s3d

There are 524 such contributions in the fourth orderf18g.
Here abbreviation«xy,. . .,z stands for«x+«y+¯ +«z, with «x

being single-particle DHF energies. Further,gijlk are matrix
elements of electron-electron interaction in the basis of DHF
orbitals. The quantitiesg̃ijlk are antisymmetric combinations
g̃ijlk =gijlk −gijkl . The summation is over single-particle DHF
states. Core orbitals are enumerated by lettersa,b,c and
complementary excited states are labeled bym,n,r. Finally

matrix elements of the operatorẐ in the DHF basis are de-
noted aszij .

The summations over magnetic quantum numbers are
usually carried out analytically. This “angular reduction” is
the next major technically involved step. We also automate
this task. The details are provided in Ref.[19]. Briefly, the
angular reduction is based on application of the Wigner-
Eckart (WE) theorem[20] to matrix elementszij and gijkl .
The WE theorem allows one to “peel off” dependence of the
matrix elements on magnetic quantum numbers in the form
of 3j symbols and reduced matrix elements. In the particular
case of fourth-order terms, such as Eq.(3), application of the
WE theorem results in a product of seven 3j symbols. To
automate simplification of the products of 3j symbols we
employed a symbolic program developed by Takada[21].

The result of angular reduction of our sample term(3) is

o
abcmnr

o
L

d jajm
d jbjw

s− 1d ja+jc+jn+j r

s2L + 1dÎs2ja + 1ds2jw + 1d

3
kbizivlZLscanrdXLsnrcmdZ0smwabd

s«w − «bds«mw− «abds«nrw − «abcd
.

Here the reduced quantitieskiizi jl, XLsi jkl d, andZLsi jkl d de-
pend only on total angular momenta and principal quantum
numbers of single-particle orbitals.

As a result of angular reduction we generate analytical
expressions suitable for coding. We also automated the te-
dious coding process by developing custom parsers based on
PERL and MATHEMATICA . These parsers translate analytical
expressions intoFORTRAN90code. The resulting code is very
large—it is about 20 000 lines long. For numerical evalua-
tion we employed a B-spline library[22]. We employed a
sufficiently large basis of 25 out of 30 lowest-energy
sE.mc2d spline functions for each partial wave through
h11/2. To speed up numerical evaluation of the diagrams, the
Coulomb integrals were precomputed and stored in 2.5 Gb
of memory.

At this point we have demonstrated feasibility of working
with thousands of diagrams in atomic MBPT. Now we em-
ploy our PSE to compute transition amplitudes in Na.

Fourth-order diagrams complementary to single-double
excitation method. One of the mainstays of practical applica-
tions of MBPT is an assumption of convergence of series in
powers of the perturbing interaction. Sometimes the conver-
gence is poor and then one sums certain classes of diagrams
to “all orders” using iterative techniques. In fact, the most
accurate many-body calculations of parity violation in Cs by
Dzubaet al. [23] and Blundellet al. [24] are of this kind.
These techniques, although summing certain classes of
MBPT diagrams to all orders, still do not account for an
infinite number of residual diagrams(see Fig. 1). In Ref.[14]
we proposed to augment a given all-order technique with
some of the omitted diagrams so that the formalism is com-
plete through a certain order of MBPT. As in that work, here
we consider an improvement of all-order single-double(SD)
excitation method employed in Ref.[24]. Here a certain level
n of excitations from lowest-order wave function refers to an
all-order grouping of contributions in whichn core and va-
lence electrons are promoted to excited single-particle orbit-
als. The SD ansatz is a simplified version of the coupled-
cluster expansion[6] truncated at single and double
excitations.

The next step in improving the SD method would be an
inclusion of triple excitations. Although a full treatment of
triples has been demonstrated by several groups in nonrela-
tivistic quantum chemistry[25], in fully relativistic calcula-
tions for heavy atoms such a complete treatment seems yet
not practical. Relativistic calculations require very large ba-
sis sets. For each value of orbital angular momentuml sl
Þ0d, relativistically there are two values of the total angular
momentum j . In addition, in calculations of atomic parity
violating amplitudes[24], the employed basis sets have to be
substantially complete. They have to adequately reproduce
wave functions both inside the nucleus and at large values of
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electronic coordinates. Finally, excitations from all occupied
orbitals have to be included. The resulting long computa-
tional times impose limitations on the complexity of the for-
malism. Over the last decade there was little progress made
in clarifying the role of triple excitations in relativistic many-
body calculations.

Here we investigate the lowest-order contribution of
triples in a direct fourth-order MBPT for transition ampli-
tudes(Fig. 1). We also account for contribution of discon-
nected quadruple excitations in the fourth order. In Ref.[14],
we separated these complementary diagrams into three major
categories by noting that triples and disconnected quadruples
enter the fourth-order matrix elementZwv

s4d via (i) an indirect
effect of triples and disconnected quadruples on single and
double excitations in the third-order wave function—we de-
note this class asZ033; (ii ) direct contribution to matrix ele-
ments labeled asZ132; (iii ) correction to normalization de-
noted asZnorm. Further these categories were broken into
subclasses based on the nature of triples, so that

sZwv
s4ddnon-SD= Z132sTvd + Z132sTcd + Z033sSvfTvgd

+ Z033sDvfTvgd + Z033sScfTcgd + Z033sDvfTcgd

+ Z132sDnld + Z033sDnld + ZnormsTvd. s4d

Here we distinguished between valencesTvd and coresTcd
triples and introduced a similar notation for singlessSd and
doublessDd. Notation such asSvfTcg stands for effect of
second-order core triplessTcd on third-order valence singles
Sv. DiagramsDnl are contributions of disconnected qua-
druplessnonlinear contributions from double excitationsd.
The reader is referred to Ref.f14g for further details and
discussion.

Transition amplitudes in Na. Using our PSE we derived
the 1648 complementary diagrams[14], carried out angular
reduction[19], and generatedFORTRAN90 code suitable for
any univalent system. We evaluate reduced electric dipole
matrix elements of 3s1/2-3p1/2,3/2 transitions in Na(eleven
electrons) [26]. Our numerical results are presented in Table
I. We observe that leading contributions come from valence
triples Tv. A similar conclusion can be drawn from our pre-
liminary calculations for heavier Cs atom. Dominance of va-
lence triplessTvd over core triplessTcd may be explained by
smaller energy denominators forTv terms. Based on this ob-
servation we propose to fully incorporate valence triples into
a hierarchy of coupled-cluster equations and add perturbative
contributions of core triples. Such an all-order scheme would
be a more accurate and yet practical extension of the present
calculations.

Another point we would like to discuss is a sensitivity of
our results to higher-order corrections. In Table I, all large
contributions add up coherently, possibly indicating a good
convergence pattern of MBPT. However, we found large,
factor of 100, cancellations of terms inside theZ033sSvfTvgd
class. In principle higher-order MBPT corrections may offset
a balance between canceling terms, and an all-order treat-
ment is desired. Fortunately, theZ033sSvfTvgd class of dia-
grams [combined with parts ofZ132sTvd] have been taken
into account in all-order SDpT(SD 1 partial triples) method

[24,27]. We correct our results for the difference between
all-order[28] and our fourth-order values for these diagrams
(last row of Table I). These all-order corrections modify our
final values of complementary diagrams by 15%.

In Table II we add our complementary diagrams to SD
matrix elements[7] and compare with experimental values.
Several high-accuracy experiments have been carried out for
Na, resolving an apparent disagreement between an earlier
measurement and calculated lifetimes(see Ref.[29], and ref-
erences therein). In Table II we compare the results of the
two most accurate experiments[8,30]. The SD method[7]
overestimates these experimental values by 2.5s and 2.8s,
respectively(s is experimental uncertainty). With our fourth-
order corrections taken into consideration the comparison
significantly improves. The resultingab initio matrix ele-
ments for both 3p1/2-3s1/2 and 3p3/2-3s1/2 transitions are in an
excellent agreement with 0.05%-accurate values from Ref.
[8] and differ by 1.2s from less-accurate results of Ref.[30].

TABLE I. Fourth-order complementary contributions to reduced
electric dipole matrix elementsk3pjiDi3s1/2l in Na. Last row
marked “+dsSDpTd” is the total value corrected using all-order
SDpT values as discussed in the text. Notationxfyg stands forx
310y.

Class
Number of
diagrams 3p1/2-3s1/2 3p3/2-3s1/2

Connected triples

Z033sSvfTvgd 72 −0.8f−3g −1.1f−3g
Z033sDvfTvgd 432 −2.2f−3g −3.0f−3g
Z132sTvd 504 −0.7f−3g −1.0f−3g
ZnormsTvd 72 −0.7f−3g −1.2f−3g
Z033sDvfTcgd 144 −0.01f−3g −0.01f−3g
Z033sScfTcgd 72 0.06f−3g 0.09f−3g
Z132sTcd 216 0.03f−3g 0.04f−3g
Total triples 1512 −4.3f−3g −6.3f−3g

Disconnected quadruples

Z033sDnld 68 1.1f−3g 1.6f−3g
Z132sDnld 68 0.2f−3g 0.3f−3g
Total quads 136 1.4f−3g 2.0f−3g

Total 1648 −2.6f−3g −4.3f−3g
+dsSDpTd −3.3f−3g −4.9f−3g

TABLE II. Comparison of the calculated reduced electric dipole
matrix elementk3pjiDi3s1/2l of principal transitions in Na with
experimental data.

3p1/2-3s1/2 3p3/2-3s1/2

Singles doubles[31] 3.5307 4.9930

sZs4ddnon-SD −0.0033 −0.0049

Total 3.5274 4.9881

Experiment

Joneset al. [8] 3.5267(17) 4.9875(24)

Volz et al. [30] 3.5246(23) 4.9839(34)
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Considering this level of agreement it would be desirable to
have experimental data accurate to 0.01%.

To summarize, here we presented, to our knowledge, the
first relativistic calculations for many-electron atoms com-
plete through the fourth order of MBPT. The computed tran-
sition amplitudes for Na indicate anab initio accuracy of a
few 0.01%. The calculations allowed us to gain insights into
relative importance of various contributions and to propose
even more accurate, yet practical, many-body method. With

an all-order generalization[14] of the derived diagrams we
plan to address a long-standing problem[23,24] of improv-
ing theoretical accuracy of interpretation of parity violation
in Cs atom[32].

We would like to thank W. R. Johnson, V. A. Dzuba, W. F.
Perger, and K. Takada for useful discussions and M. S. Sa-
fronova for providing detailed breakdown of SDpT and SD
results. This work was supported in part by the National
Science Foundation.
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