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Contributions from the Breit interaction in atomic structure calculations account for 1.3s of the pre-
viously reported 2.5s deviation from the standard model in the 133Cs weak charge [S. C. Bennett and
C. E. Wieman, Phys. Rev. Lett. 82, 2484 (1999)]. The updated corrections for the neutron distribu-
tion reduce the discrepancy further to 1.0s. The updated value of the weak charge is QW �133Cs� �
272.65�28�expt�34�theor .

PACS numbers: 31.30.Jv, 32.80.Ys
Atomic parity-nonconserving (PNC) experiments
combined with accurate atomic structure calculations
provide powerful constraints on “new physics” beyond
the standard model of elementary particles [1]. Compared
to high-energy experiments or low-energy scattering
experiments, atomic single-isotope PNC measurements
are uniquely sensitive to new isovector heavy physics
[2]. Presently, the PNC effect in atoms has been most
precisely measured by Wieman and co-workers using
133Cs [3]. In 1999, Bennett and Wieman [4] updated the
value of the Cs weak charge by measuring a supporting
quantity, the vector transition polarizability b, and by
reevaluating the precision of atomic structure calculations
[5,6] from the early 1990s. The determined weak charge
[4] differed from the prediction [7] of the standard model
by 2.5 standard deviations s. The value of the 133Cs
weak charge from Ref. [4] (together with other precision
electroweak observables) has been employed in numerous
articles. In particular, recent theoretical investigations
[8,9] interpret this 2.5s deviation as possible evidence for
extra neutral vector Z-bosons.

The main focus of the two previous ab initio relativistic
calculations for the atomic structure of 133Cs [5,6] was the
correlation contribution from the residual Coulomb inter-
action [i.e., beyond the Dirac-Hartree-Fock (DHF) level].
The purpose of this work is to evaluate rigorously contri-
butions from the Breit interaction to PNC in 133Cs. The
previous calculations either omitted such contributions [6]
or evaluated them only partially [5]. The present analy-
sis is a higher-order extension of my recent calculation
[10]. It is found that the Breit contribution corrects the
weak charge by 0.9%, reducing the 2.5s deviation from
the standard model to 1.2s. Including a correction for the
neutron density distribution in the 133Cs nucleus further re-
duces the deviation to 1.0s. Thus the result reported here
brings the most accurate atomic PNC measurement to date
[3] into substantial agreement with the standard model.

The Breit interaction [11] arises due to an exchange of
transverse photons between electrons. Its low-frequency
limit, employed here, is given by
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It is convenient to separate the second-quantized Breit in-
teraction into zero-, one-, and two-body parts normally or-
dered with respect to the core: B � B�0� 1 B�1� 1 B�2�.

The parity-nonconserving amplitude for the 6S1�2 !
7S1�2 transition in 133Cs can be represented as a sum over
intermediate states mP1�2

EPNC �
X

m

�7SjDjmP1�2� �mP1�2jHW j6S�
E6S 2 EmP1�2

1
X

m

�7SjHW jmP1�2� �mP1�2jDj6S�
E7S 2 EmP1�2

. (1)

Here D [13] and HW are electric-dipole and weak interac-
tion matrix elements, and Ei are atomic energy levels. It is
convenient to break the total Breit correction dEPNC into
three distinct parts due to corrections in the weak interac-
tion and dipole matrix elements, and energy denominators,
respectively,

dEPNC � EPNC�dHW� 1 EPNC�dD� 1 EPNC�dE� .
(2)

The overwhelming contribution from parity-violating in-
teractions arises from the Hamiltonian

HW �
GFp

8
QWrnuc�r�g5 , (3)

where GF is the Fermi constant, g5 is the Dirac matrix, and
rnuc�r� is the neutron density distribution. To be consis-
tent with the previous calculations the rnuc�r� is taken to
be a proton Fermi distribution employed in Ref. [5]. The
slight difference between the neutron and proton distribu-
tions is addressed in the conclusion. The PNC amplitude
is expressed in units of 10211ijeja0�2QW �N�, where
N � 78 is the number of neutrons in the nucleus of 133Cs.
In these units the results of past calculations for 133Cs are
EPNC � 20.905, Ref. [5], and EPNC � 20.908, Ref. [6].
The former value includes a partial Breit contribution
© 2000 The American Physical Society
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10.002, and the latter includes none. The reference
Coulomb-correlated amplitude

EC
PNC � 20.9075 (4)

is determined as an average, with the partial Breit contri-
bution removed from the value of Ref. [5].

Hartree-Fock analysis.—Before proceeding to the cor-
related calculations discussed in the second part of this
paper, it is worth examining the Breit contribution to the
PNC amplitude at the lowest-order level. The conventional
DHF equation reads

�hD 1 VHF�fi � ´ifi , (5)

where hD is the Dirac Hamiltonian including the interac-
tion of an electron in state i with a finite-size nucleus. VHF
is a mean-field Hartree-Fock potential; this potential con-
tains direct and exchange Coulomb interactions of electron
i with core electrons. A set of DHF equations is solved
self-consistently for core orbitals; valence wave functions
and energies are determined subsequently by “freezing”
the core orbitals. The Breit-Dirac-Hartree-Fock (BDHF)
approximation constitutes the introduction of the one-body
part of the Breit interaction B�1� into the above DHF
equation

�hD 1 ṼHF 1 B�1��f̃i � ˜́if̃i . (6)

Compared to the DHF equations, energies, wave functions,
and the Hartree-Fock potential are modified, as designated
by tildes. This self-consistent BDHF approximation was
used by Lindroth et al. [12] and a related iterative analy-
sis was considered by Johnson et al. [14]. Both papers
point out the importance of the “relaxation” effect, which
leads to modification of the Hartree-Fock potential through
adjustment of core orbitals. In the present work, the relax-
ation effect is taken into account automatically by direct
integration of Eq. (6).

Most of the Breit contribution to the PNC amplitude
can be determined by limiting the summation over inter-
mediate states in Eq. (1) to the two lowest valence P1�2
states: 6P1�2 and 7P1�2. In the DHF approximation one
then finds EPNC � 20.6888 (90% of the total value). The
lowest-order corrections to matrix elements and energy de-
nominators calculated as differences between BDHF and
TABLE I. Breit corrections to matrix elements and energy denominators in a.u.; dX, I �
XBDHF 2 XDHF , and dX, I 1 II 1 III are the differences in the third order of MBPT.

6S1�2-6P1�2 6S1�2-7P1�2 7S1�2-6P1�2 7S1�2-7P1�2

HW , DHF 0.031 59 0.018 91 0.016 56 0.009 913
dHW , I 20.000 10 20.000 06 20.000 05 20.000 031

dHW , I 1 II 1 III 20.000 28 20.000 16 20.000 14 20.000 084
D, DHF 2.1546 0.151 76 1.8017 4.4944
dD, I 0.0001 0.000 73 0.0019 20.0004

dD, I 1 II 1 III 20.0004 0.000 77 0.0020 20.0012
DE, DHF 20.041 752 20.085 347 0.030 429 20.013 166
dDE, I 20.000 020 0.000 003 20.000 030 20.000 007

dDE, I 1 II 20.000 045 20.000 023 20.000 034 20.000 012
DHF values are listed in Table I. The resultant BDHF cor-
rections to EPNC are

EPNC�dHW� � 0.0022�0.32%� ,

EPNC�dD� � 0.0020�0.29%� , (7)

EPNC�dE� � 20.0019�20.28%� .

The sum of these three terms leads to dEPNC � 0.0023
in agreement with the 0.002 correction found by Blun-
dell et al. [5,15]. Inclusion of intermediate states beyond
6P1�2 and 7P1�2 leads to a small additional modification to
dEPNC of 20.000 04. Note that if experimental energies
(which effectively include the Breit interaction) are used
in the energy denominators of Eq. (1), then the EPNC�dE�
term must be excluded and the total correction becomes
twice as large: dEPNC � 0.0042.

With further examination of the modifications of indi-
vidual uncorrelated matrix elements presented in Table I,
one notices the following.

(i) Weak interaction matrix elements are each reduced
in absolute value by 0.3%, which is directly reflected in a
0.3% correction to the PNC amplitude.

(ii) Modification of dipole amplitudes is strongly
nonuniform. There are substantial corrections only to the
6S1�2-7P1�2 (0.5%) and 7S1�2-6P1�2 (0.1%) matrix ele-
ments. The large 0.5% Breit correction to �6S1�2jDj7P1�2�
provides partial resolution to a long-standing discrepancy
of spectroscopic experiment [16] and ab initio calculations
[17–19]. The relatively large Breit correction is caused
both by an accidentally small matrix element and by
admixture into �6S1�2jDj7P1�2� from a 30 times larger
7S1�2-7P1�2 matrix element.

(iii) The largest modification in the energy denomina-
tors is 0.1% for E7S-E6P; however, this leads to a 0.3%
correction EPNC�dE�. As recently emphasized by Dzuba
et al. [20], such large sensitivity of the resulting PNC am-
plitude to small variations in individual atomic properties
entering Eq. (1) arises due to a cancellation of relatively
large terms in the sum over states.

Correlated calculations.—It is well known that correla-
tions caused by residual Coulomb interactions not included
1619
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in the Hartree-Fock equations can lead to substantial modi-
fications of the lowest-order values. For example, the weak
matrix element �6S1�2jHW j6P1�2� is increased by a factor
of 1.8 by correlations due to residual Coulomb interactions.
It will be shown that the correlations are also important for
a proper description of the Breit corrections.

The major correlation effects in atoms appear because
of shielding of externally applied (e.g., electric) fields by
core electrons and an additional attraction of the valence
electron by an induced dipole moment of the core [21].
The former effect is described by contributions beginning
at second order and the latter in third order of many-
body perturbation theory (MBPT). Since these two effects
lead to the dominant contributions in Coulomb-correlated
calculations, the third-order analysis reported here seems
sufficient [22].

MBPT calculations were performed with the two-body
Breit interaction B�2� treated on equal footing with the
residual Coulomb interaction. Sample many-body dia-
grams are presented in Fig. 1. To treat the one-body contri-
bution B�1�, an extension of the B-spline basis set technique
[23] was developed, based on the Breit-Dirac-Hartree-
Fock equation (6). Such a formulation made it possible
to handle B�1� and the associated relaxation effect exactly.
Contributions of negative-energy states, discussed, for ex-
ample, in Ref. [24], were also included and found to be
relatively small [10]. Two series of third-order calcula-
tions were performed, first with the Breit and Coulomb
interactions fully included using the BDHF basis set, and
second in the DHF basis set without the Breit interaction
and negative-energy states. The obtained differences are
the Breit corrections reported in Table I.

Breit corrections to 133Cs hyperfine-structure magnetic-
dipole constants A are discussed first, since these were
considered in the literature previously. The correction to
hyperfine constants is very sensitive to correlations: e.g.,

v

w

v

w

(a) (b)

FIG. 1. Sample many-body diagrams included in the cal-
culations. Dashed (solid) horizontal lines represent the Breit
(Coulomb) interaction. All orbitals are obtained in the
Breit-Dirac-Hartree-Fock approximation. Diagram (a) is one
of the contributions in the random-phase approximation, and
diagram (b) is one of the Brueckner-orbital contributions [21].
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Ref. [18] found a numerically insignificant modification
for A6S , while Refs. [10,19] determined the modification
to be large �24.64 MHz�, and the approach reported
here yields 14.89 MHz. In the calculation of Ref. [18]
the correction was determined as a difference of the
BDHF and DHF values, however such an approach
misses two-body Breit corrections of comparable size. In
Refs. [10,19] a second-order perturbation analysis was
used for the Breit interaction, but the important relax-
ation effect discussed earlier was omitted. The present
calculation incorporates all mentioned diagrams and is
also extended to third order. Using this same calculational
scheme, the corrections to hyperfine constants for other
states of 133Cs are 11.16 MHz for 7S1�2, 20.51 MHz
for 6P1�2, and 20.146 MHz for 7P1�2. These corrections
improve agreement with experiments for the ab initio all-
order Coulomb-correlated calculations [18] to 0.1% for all
states except 6P1�2 where the discrepancy becomes 0.5%.

Examination of the third-order corrections listed in
Table I reveals the significant effect of correlations on
the Breit contribution. For example, corrections to
weak interaction matrix elements become 3 times larger
than those in the lowest order. Compared to hyperfine-
structure constants there is no cancellation of various
contributions to the weak interaction matrix elements.
Using third-order matrix elements and second-order
energies the following ab initio corrections are deter-
mined: EPNC�dHW� � 0.0043, EPNC�dD� � 0.0035, and
EPNC�dE� � 20.0028. Thus the lowest-order corrections
given in Eq. (7) are increased.

To improve the consistency of the calculation, one
can combine all-order Coulomb-correlated matrix ele-
ments and experimental energy denominators tabulated
in Ref. [5] with the present third-order Breit corrections.
The results are

EPNC�dHW� � 0.0047�0.5%� ,

EPNC�dD� � 0.0037�0.4%� .
(8)

The Breit correction in energy denominators EPNC�dE�
was set to zero because the experimental energies were ex-
tensively used in Refs. [5,6]. For example, the experimen-
tal energies were employed in eight out of ten test cases in
the scatter analysis of Ref. [5] based on Eq. (1). The total
0.9% Breit correction, dEPNC � 0.0084, is 2 times larger
than the corresponding lowest-order modification, which
is rather common in conventional Coulomb-correlated cal-
culations. An even larger 2% Breit correction was found
in related calculations of the electric-dipole-moment en-
hancement factor in thallium [12].

Discussion.—Combining the calculated 0.9% Breit
correction with the reference Coulomb-correlated value,
Eq. (4), one obtains the parity-nonconserving amplitude

EC1B
PNC �133Cs� � 20.8991�36� 3 10211i�2QW �N� .

A 0.4% theoretical uncertainty is assigned to the above
result following the analysis of Ref. [4]. Since the Breit
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interaction contributes at the 0.9% level to the total PNC
amplitude, even a conservative 10% uncertainty in dEPNC

barely affects the accuracy of EPNC. When EC1B
PNC is com-

bined with the experimental values of the transition polar-
izability b [4] and EPNC�b [3], one obtains for the weak
charge:

QW �133Cs� � 272.65�28�expt�34�theor .

This value differs from the prediction [7] of the stan-
dard model QSM

W � 273.20�13� by 1.2s, versus 2.5s

of Ref. [4], where s is calculated by taking experimen-
tal and theoretical uncertainties in quadrature. This 1.2s

deviation is slightly reduced further by taking into account
corrections for the neutron nuclear distribution in 133Cs,
estimated but not included in the final EPNC of Ref. [5].
Recently Pollock and Welliver [25] determined the rele-
vant modification to be DQSM

W � 10.11, which reduces
the deviation from the standard model to 1.0s.

The present calculation also provides a large Breit cor-
rection to the 6S1�2-7P1�2 electric-dipole matrix element.
Using the ab initio all-order Coulomb-correlated value
[18], �6S1�2jjDjj7P1�2� � 0.279, and adding the 0.7%
Breit correction of 0.0019, one finds �6S1�2jjDjj7P1�2� �
0.281 in much better agreement with the 0.284(2) ex-
perimental value [16]. The calculated Breit corrections
bring most of the ab initio Coulomb-correlated hyperfine-
structure constants for 133Cs [18] into 0.1% agreement
with experimental values.

To summarize, third-order many-body calculations of
the contribution of the Breit interaction to the 133Cs parity-
nonconserving amplitude EPNC and relevant atomic prop-
erties are reported. The difference between the present and
the earlier calculations [5] is due to the additional inclusion
of two-body Breit interaction, correlations, and the con-
sistent use of experimental energies. The present analy-
sis is a higher-order extension of my recent calculation
[10]. Since the major correlation effects are included, the
present third-order analysis seems sufficient. The calcu-
lations reveal a 0.9% correction to EPNC leading to a re-
duction to 1.2s of the recently reported 2.5s deviation [4]
of the 133Cs weak charge from the standard model value.
If corrections for the neutron distribution in 133Cs nucleus
are included, then the agreement between the atomic PNC
in 133Cs and the standard model stands at 1.0s. Thus the
result reported here brings the most accurate atomic PNC
measurement to date [3] into substantial agreement with
the standard model.
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