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Anisotropic pseudopotential for polarized dilute quantum gases

Andrei Derevianko*
Department of Physics, University of Nevada, Reno, Nevada 89557
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An anisotropic pseudopotential arising in the context of collisions of two particles polarized by an external
field is rigorously derived and its properties are investigated. Such a low-energy pseudopotential may be useful
in describing collective properties of dilute quantum gases, such as molecules polarized by an electric field or
metastable3P2 atoms polarized by a magnetic field. The pseudopotential is expressed in terms of the reactance
~K! matrix and derivatives of the Diracd function. In most applications, it may be represented as a sum of a
traditional spherically symmetric contact term and an anisotropic part. The former contribution may be param-
etrized by a generalized scattering length. The anisotropic part of the pseudopotential may be characterized by
the off-diagonal scattering length for dipolar interactions and off-diagonal scattering volume for quadrupolar
interactions. The two-body matrix element of the pseudopotential in a basis of plane waves is also derived.

DOI: 10.1103/PhysRevA.67.033607 PACS number~s!: 03.75.Kk, 34.20.Gj
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I. INTRODUCTION AND PROBLEM SETUP

The concept of a pseudopotential, i.e., full interparti
interaction being replaced by some less complicated ‘‘eff
tive’’ potential, plays an important role in many subfields
physics@1#. In particular, the properties of traditional Bos
Einstein condensates~BEC! may be well understood just in
terms of ad-function potential, with its strength determine
by a single parameter—scattering length@2,3# that character-
izes low-energy scattering between two particles. A rigoro
derivation of a pseudopotential for spherically symmetric
teractions has been carried out by Huang and Yang@4#. Here
I extend their derivation toanisotropic interactions. I also
evaluate a matrix element of the derived anisotropic pseu
potential in the basis of plane waves; this matrix elem
may be useful in studies of many-body properties of qu
tum degenerate gasses.

Unusual collective properties of bosons and fermions w
anisotropic interactions have generated a considerable i
est over the last few years, see, e.g., Refs.@5–14#. Below I
enumerate several systems where the results of my ana
may be applicable. First, Yi and You@5# considered an ap
plication of strong electric field to an atomic condensate. T
electric field induces atomic electric dipoles and thus an
tropic dipole-dipole interactions between the atoms. Anot
novel systems where the anisotropic interactions domina
large separations are heteronuclear molecules@8#. Here an
application of electric field is required to freeze the rotatio
of the molecules and to align the intrinsic molecular dipo
moments with the field.Magneticdipole-dipole interactions
are present even for well-studied alkali-metal atoms. Th
interactions may be amplified for more complex atoms s
as europium and chromium@15–17# with larger magnetic
momenta of the ground atomic state. The influence of s
magnetic dipolar interactions on the condensate prope
was discussed in Ref.@9#. New systems where the anisotrop
of interactions may be also of interest are metastable3P2
alkaline-earth-metal atoms placed in external magnetic fi
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Here the long-range forces are dominated by interaction
atomic quadrupoles@18#. It should be noted that the applica
tion of external magnetic or electric field is important in a
these examples—the field fixes quantization axis and a c
densate may be described in terms of a single order par
eter.

In all the enumerated examples the collision process m
be formalized using Fig. 1. Here we show a pair of identi
particles interacting in the presence of an external unifo
field. Thez axis is chosen along the direction of the field a
angleu determines the orientation of collision~interatomic!

axis r̂ with respect to the field. At large separationsr the
particles are polarized along the direction of the field. In t
most general case, as a result of a collision, a chang
polarization may occur~e.g. dipole moment of a molecul
could end up pointing in the direction opposite to the fiel!.
We will disregard these nonadiabatic collisions. Then the
teraction between the particles may be described by a un
potential V(r ,u). Without loss of generality, this axially
symmetric potential may be expanded into Legendre poly
mials PL(cosu)

FIG. 1. Geometry of collision process. At large separations c
liding particles are polarized along external field. During t
collision the particles are assumed to follow a unique adiab
potential.
©2003 The American Physical Society07-1
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V~r ,u!5Vsph~r !1Vanis~r ,u!, ~1!

Vanis~r ,u!5 (
L52,4, . . .

VL~r !PL~cosu!. ~2!

Here Vsph(r ) and Vanis(r ,u) are spherically symmetric (L
50) and nonspherical contributions respectively. Althou
all evenL contribute, at sufficiently larger the anisotropic
contribution may be dominated by a singleL term. In par-
ticular, we will focus on two practically interesting cases
dipolar (L52)

Vanis~r ,u!→VDD5
C3

r 3
P2~cosu!, r→`, ~3!

and quadrupolar (L54)

Vanis~r ,u!→VQQ5
C5

r 5
P4~cosu!, r→` ~4!

interactions. In the above equations constantsCL11 param-
etrize strengths of interactions and are proportional to
squares of respective multipole moments~e.g., molecular di-
pole moment!.

Realistic interaction potentialsV(r ) are singular at smal
interparticle separations and this singularity leads to w
known problems@19# in formulating perturbative expansio
for many-body properties. In particular, the matrix eleme
of the interaction in basis of free-particle is divergent.
remedy this problem, the full interaction potentialV is usu-
ally replaced by a pseudopotentialV̂. A rigorous derivation
of the pseudopotential for spherically symmetric interactio
has been carried out by@4#. Here I extend their method to
anisotropic interactions.

Previously, for anisotropic dipolar interactions, Yi an
You @5# proposed the following pseudopotential:

V̂ DD
YY5gd~r !1

C3

r 3
P2~cosu!. ~5!

Here the first term is related to the spherically symmetric p
of the full potential~2! and the second contribution is simp
the long-range dipolar interaction~3!. This pseudopotentia
has been employed in a large number of studies of the p
erties of BECs with dipolar interactions, see, e.g., Re
@5–12#. Although straightforward to work with in applica
tions, the pseudopotential~5! has certain shortcomings. Fo
example, it is not valid in the vicinity of resonances. T
pseudospotential derived here resolves these shortcomin

The goal of this work is to consistently develop a pseu
potential method for nonspherical interaction potentials
will be required that two-body wave functions obtained w
the pseudopotentialV̂ and full original potentialV to be
equal at large interparticle separations. The derivation of
pseudopotential is carried out in Sec. II. Certain propertie
the derived pseudopotential are discussed in Sec. III and
specialize the discussion to dipolar and quadrupolar inte
tions in Sec. IV. The matrix element of the pseudopotentia
03360
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free-particle basis is evaluated in Sec. V. Finally, the App
dix contains a derivation of certain low-energy limits of th
K matrix in the Born approximation.

II. ANISOTROPIC PSEUDOPOTENTIAL

We consider a solution of the Schro¨dinger equation for a
relative motion of two particles interacting through a pote
tial V(r )

\2

2m
~“21k2!F~r !5V~r !F~r !, ~6!

wherem is the reduced mass of the pair andk is the relative
linear momentum. We assume that at sufficiently large se
rations r .r c , r 2V(r )→0 for any directionr̂ . We also as-
sume that the particles are contained in some large volu
with the characteristic size much larger than the extent of
potential r c . Some arbitrary boundary conditions may b
imposed on the surface of the enclosing volume. Atr @r c the
wave functionF(r ) may be expanded in free-particle sol
tions

F`~r !5(
lm

@a lmj l~kr !2b lmnl~kr !#Ylm~u,w!, ~7!

where j l(kr) andnl(kr) are spherical Bessel and Neuma
functions, respectively, anda lm andb lm are integration con-
stants.

Following Ref. @4# the pseudopotential is determined b
acting with\2/2m(“21k2) on the asymptotic form~7!

V̂F`~r !52
\2

2m (
lm

b lmYlm~u,w!
~2l 21!!! ~ l 11!

kl 11

d~r !

r l 12
.

~8!

Thus the original potentialV(r ) is replaced by a sum ove
‘‘lumped’’ multipole sources placed atr50. To complete the
construction of the pseudopotential, we need to determ
coefficientsb lm in terms ofF(r ). First we relate the inte-
gration constantsa lm andb lm by requiring the complete so
lution F to be regular atr 50

b lm5 (
l 8m8

K lm
l 8m8a l 8m8 . ~9!

HereK lm
l 8m8 are the elements of the reactance~or K) matrix

used to parametrize multichannel scattering@20#. It is worth
noting that the entire dependence of the pseudopotentia
the original potential will be encapsulated in matrix eleme
of the K matrix.

Let us review some properties of theK matrix. First
it is related to more familiar scattering matrixS via S
5(11 iK)(12 iK)21 and further to transmission orT matrix
throughS512 iT. For low-energy collisionsK'2 1

2 T. The
K matrix is real and symmetric

K lm
l 8m8~k!5K l 8m8

lm
~k!. ~10!
7-2
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ANISOTROPIC PSEUDOPOTENTIAL FOR POLARIZED . . . PHYSICAL REVIEW A67, 033607 ~2003!
For identical bosons~fermions! only even ~odd! partial
waves need to be considered. TheK matrix is diagonal inl
andm for spherically symmetric potentials

@Ksph# lm
l 8m85d l l 8dmm8tand l , ~11!

whered l is the phase shift for partial wavel. Compared to
spherically symmetric case,anisotropicpotentials addition-
ally couple different partial waves. For example, dipolar
teractions, Eq.~3!, couple s and d waves so that@KDD#00

20

Þ0 and quadrupolar interactions~4! couples andg waves.
The scalar partVsph(r ) of the potential~2! assures nonvan
ishing K 00

00. In practice, theK matrix for nonspherical inter-
actions may be found from a solution of coupled radial eq
tions @21#. In particular, it may be shown that for potentia

parametrized by Eq.~2!, K lm
l 8m8}dmm8 , i.e., theK matrix is

diagonal with respect to magnetic quantum numbers. In
pendix, I derive some elements of theK matrix in the Born
approximation for dipolar and quadrupolar interaction.

At this point, we related the integration constantsa lm and
b lm via elements of theK matrix, Eq. ~9!. Further, in the
low-energy limit krc!1, the integration constantsa lm may
be expressed in terms ofF`(r ) @4#,

a lm5
1

2l l !

1

kl F S d

dr D
2l 11S r l 11E Ylm* ~V!F`~r !dV D G

r 50

.

~12!

Finally, combining Eqs.~8!–~12! we arrive at a generaliza
tion of pseudopotentialV̂ for anisotropic interactions,

V̂F~r !52
\2

M (
lml8m8

j lm
l 8m8~k!@ v̂ lm

l 8m8F~r !#, ~13!

where

v̂ lm
l 8m8F~r !

5
~2l !! ~ l 11!

2l 1 l 8l 8! l !
Ylm~u,w!

d~r !

r l 12

3F S d

dr D
2l 811S r l 811E Yl 8m8

* ~V!F~r ,V!dV D D
r 50

,

~14!

j lm
l 8m8~k!5

K lm
l 8m8

kl 1 l 811
, ~15!

andM52m is a mass of the collision partner.

III. SOME PROPERTIES OF A PSEUDOPOTENTIAL

The derived anisotropic pseudopotential~13! is one of the
main results of this work. The spherically symmetric pseu
potential of Huang and Yang@4# is subsumed in this equa
tion. Indeed, for spherically symmetric interactions theK
matrix is diagonal inl ,l 8 andm,m8 and is expressed in term
03360
-
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of conventional phase shifts, Eq.~11!. Upon substitution of
Eq. ~11! into pseudopotential~13! we recover as a limiting
case the result of Ref.@4#. As the pseudopotential of Huan
and Yang @4# the anisotropic pseudopotential is no
Hermitian and velocity dependent.

The pseudopotential~13! may be separated into spher
cally symmetricV̂sph and anisotropicV̂anis parts,

V̂5V̂sph1V̂anis, ~16!

where

V̂sph52
\2

M (
lm

j lm
lm~k! v̂ lm

lm ~17!

and

V̂anis52
\2

M (
( lm).( l 8m8)

j lm
l 8m8~k! ~ v̂ lm

l 8m81 v̂ l 8m8
lm

!. ~18!

In simplifying the anisotropic part we used symmetry pro
erty ~10! of the K matrix.

Let us focus first on the spherically symmetric part of t
pseudopotential and in the following section we will co
sider the anisotropic part of the pseudopotential for dipo
and quadrupolar interactions. We expect that as in traditio
BECs of dilute atomic gasses with spherically symmet
interactions, the effect ofV̂sphon collective properties will be
determined mainly by thes wave contribution, i.e.,l 50,m
50 term in Eq.~17!,

V̂sph'2
\2

M

K 00
00

k
v̂00

00.

It may be shown that for realistic potentials the followin
low-energy limit is finite:

ass52 lim
k→0

K 00
00~k!

k
, ~19!

this quantity is a generalized scattering length. With this d
nition, the truncated pseudopotential reduces to

V̂sphF~r !'4p
\2

M
ass d~r !

]

]r
@r F~r !#,

where we usedd(r )5d(r )/(4pr 2) consistent with Ref.@4#.
Finally, for sufficiently slowly varying wave function
ud ln F/d ln ru!1, we recover a conventional contact pseud
potential

V̂sph'4p
\2

M
ass d~r ! ~20!

widely employed in studies of BECs.
Having discussed the spherically symmetric part of

pseudopotential, in the following section we consider the
isotropic part of pseudopotential~18! for dipolar and quadru-
polar interactions.
7-3
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ANDREI DEREVIANKO PHYSICAL REVIEW A 67, 033607 ~2003!
IV. DIPOLAR AND QUADRUPOLAR INTERACTIONS

At this point we derived an anisotropic pseudopotent
Eq. ~13!. We separated the pseudopotential into spheric
symmetric and anisotropic contributions. We found that
spherically symmetric contribution reduces to a familiar co
tact term~20!, widely employed in studies of Bose conde
sates; the only modification being an introduction of gen
alized scattering length~19!. In this section we focus on th
anisotropic contribution and illustrate some of its propert
for dipolar and quadrupolar interactions of identical boso
These interactions were defined in the introductory sectio
potentials that at large separationsr are dominated by

Vanis
DD ~r ,u!→C3

r 3
P2~cosu! ~21!

for dipolar interactions and

Vanis
QQ~r ,u!→C5

r 5
P4~cosu! ~22!

for quadrupolar interactions.
Anisotropic interactions mix different partial waves (lm)

and (l 8m8) via off-diagonal elements of theK matrix. From
examining Eq.~A2! in the Appendix, one may determine th
angular selection rules lead to coupling ofs andd waves for
dipolar interactions ands andg waves for quadrupolar inter
actions. In the following we assume that the dominant an
tropic effect on condensate properties arises due to these
ticular couplings. Therefore,

V̂ anis
DD'2

\2

M

K 00
20

k3
~ v̂00

201 v̂20
00!,

V̂ anis
QQ'2

\2

M

K 00
40

k5
~ v̂00

401 v̂40
00!.

For dipolar interactions it may be shown~Refs.@22,23# and
the Appendix of this paper! that the following low-energy
limit is finite:

asd
DD52 lim

k→0

K 00
20~k!

k
. ~23!

We will call this quantity off-diagonal scattering length
Similarly, for quadrupolar interactions we may introduce o
diagonal scattering volume

asg
QQ52 lim

k→0

K 00
40~k!

k3
. ~24!

In the Appendix we employ the Born approximation and fi

asd
DD'

1

12A5

M

\2
C3 ,
03360
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asg
QQ'

2

7!

M

\2
C5 .

It is worth noting that the above results are valid only aw
from resonances. In a general case one has to find
diagonal scattering length or volume by solving correspo
ing scattering problem.

Finally the total truncated pseudopotential is given by

V̂'4p
\2

M
assd~r !1V̂ anis

DD,QQ, ~25!

with

V̂ anis
DDF~r !'

\2

M

asd
DD

k2
A5

3H 1

8
d~r !F S ]

]r D
5

r 3E P2~cosu!F~r !dVG
19

d~r !

r 4
P2~cosu!F ]

]r
@r F~r !#G

r→0
J ~26!

for dipolar interactions and

V̂ anis
QQF~r !'

1

27

\2

M

asg
QQ

k2

3H d~r !F S ]

]r D
9

r 5E P4~cosu!F~r !dVG
15~8! !

d~r !

r 6
P4~cosu!F ]

]r
@r F~r !#G

r→0
J
~27!

for quadrupolar interactions. Quantitiesd(r )/r n may be rec-
ognized as thenth derivatives of the Dirac delta-function.

The constructed pseudopotential depends on the rela
momentumk, i.e., the potential is velocity dependent.
practice, the velocity dependence is most easily treated in
momentum representation and in the following section
evaluate the matrix element of the derived pseudopotentia
the basis of plane waves.

V. MATRIX ELEMENT OF ANISOTROPIC
PSEUDOPOTENTIAL IN FREE-PARTICLE BASIS

While considering effects of two-particle interactions o
properties of a quantum many-body system, one may req
a matrix element of the derived pseudopotential in fre
particle~plane-wave! basis. We define this matrix element a
7-4
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ANISOTROPIC PSEUDOPOTENTIAL FOR POLARIZED . . . PHYSICAL REVIEW A67, 033607 ~2003!
V̄~k1 ,k2 ,k18 ,k28![
1

~2p!6E drdr 8e2 ik1•re2 ik2•r8

3V̂~r2r 8!eik18•reik28•r8. ~28!

The pseudopotentialV̂, Eq. ~13!, depends on the momentum
of relative motion of the interacting pairk5 1

2 (p̂2p̂8),
wherep̂ andp̂8 are momenta conjugated tor andr 8, respec-
tively. To separate center of mass and relative motions,
change the variables toR5(r1r 8)/2 and r125r2r 8. With
such a substitution

V̄~k1 ,k2 ,k18 ,k28!5
1

~2p!3
dk

181k
28 ,k11k2S 2

\2

M D
3 (

l l 8mm8
j lm

l 8m8~k8!E dr12

3exp@2 ik•r12#v̂ lm
l 8m8exp@ ik8•r12#.

Here we introduced two relative momenta

k5 1
2 ~k12k2! and k85 1

2 ~k182k28!. ~29!

The delta functiondk
181k

28 , k11k2
ensures conservation of th

total linear momentum. Further we use partial-wave exp
sion

exp@ ik8•r12#54p (
l 1m1

i l 1 j l 1
~k8r 12!Yl 1m1

* ~ k̂8!Yl 1m1
~ r̂ 12!

and arrive at

E dr12exp@2 ik•r12#v̂ lm
l 8m8~r12!exp@ ik8•r12#

5~4p!2 i l 82 l
l 11

2l 11
~k8! l 8kl Yl 8m8

* ~ k̂8!Ylm~ k̂!.

Finally, the matrix element of the anisotropic pseudopoten
may be expressed in terms of relative momenta as

V̄~k1 ,k2 ,k18 ,k28!5dk
181k

28 ,k11k2

3 v̄S 1

2
~k12k2!,

1

2
~k182k28! D ,

with

v̄~k,k8!52
\2

M

1

p (
l l 8mm8

i l 82 l
K lm

l 8m8~k8!

k8

3S k

k8
D l

2l 12

2l 11
Yl 8m8

* ~ k̂8!Ylm~ k̂!. ~30!

Let us once again specialize the discussion to dipolar
quadrupolar interactions. As in Sec. IV we assume that
dominant anisotropic effect arises due to couplings ofs andd
03360
e
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l

d
e

partial waves for dipolar interactions and due to mixing os
andg waves for quadrupolar interactions. The correspond
truncated matrix element~30! may be represented as

v̄~k,k8!'
1

2p2

\2

M
$ass1F~k,k8!% ~31!

with F replaced by

F DD~k,k8!52asd
DDH A5P2~cosuk8!

1
3

A5
S k

k8
D 2

P2~cosuk!J
for dipolar interactions and by

F QQ~k,k8!5asg
QQH 3~k8!2P4~cosuk8!

1
10

3
k2S k

k8
D 2

P4~cosuk!J
for quadrupolar interactions. In these expressionsass is a
generalized scattering length~19! andasd

DD andasg
QQ are off-

diagonal scattering length and volume defined by Eq.~23!
and Eq.~24!, respectively.

VI. CONCLUSION

I rigorously derived the anisotropic pseudopotential ar
ing in the context of adiabatic collisions of two particle
polarized by an external field. Such a low-energy pseudo
tential may be useful in describing collective properties
dilute quantum gases, such as molecules polarized by an
ternal electric field or metastable3P2 atoms polarized by
magnetic field. The pseudopotential is given by Eq.~13!. It is
naturally expressed in terms of the reactance~K! matrix. The
potential is non-Hermitian and velocity dependent. It
worth noting that in the derivation I did not require the v
lidity of the Born approximation as in Ref.@5#. Rather I
followed the method of Huang and Yang@4# and at large
separations demanded the equality of solutions of the t
body Schro¨dinger equation with a full original potential an
with a pseudopotential. Thus, compared to Eq.~5! by Yi and
You @5#, the derived two-body pseudopotential is expected
be also valid in the vicinity of scattering resonances.

I argued that in most applications the pseudopotential m
be represented as a sum of the traditional spherically s
metric contact term and the anisotropic part, Eq.~25!. The
former contribution may be parametrized by a generaliz
scattering length~19!. We specialized discussion of the a
isotropic part of the pseudopotential to dipolar and quad
polar interactions and found that it can be characterized
off-diagonal scattering lengthasd

DD , Eq. ~23!, for dipolar in-
teractions and off-diagonal scattering volumeasg

QQ, Eq. ~24!,
for quadrupolar interactions. Although in a particular app
cation these parameters should be determined from a s
7-5
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ANDREI DEREVIANKO PHYSICAL REVIEW A 67, 033607 ~2003!
tion of a multichannel scattering problem, I have derivedasd
DD

andasg
QQ in the Born approximations. Keeping in mind man

body applications, I have also derived a two-body matr
element in the plane-wave basis, Eq.~30!. Thus in this work
I have rigorously derived an anisotropic pseudopotential
polarized dilute quantum gases and investigated its pro
ties.
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APPENDIX: OFF-DIAGONAL SCATTERING LENGTH asd
DD

AND SCATTERING VOLUME asg
QQ IN THE BORN

APPROXIMATION

Here we obtain expressions for the reactance~K! matrix
in the Born approximation. Using the derivedK matrix we
estimate off-diagonal scattering lengthasd

DD and scattering
volumeasg

QQ for dipolar ~DD! and quadrupolar~QQ! interac-
tions.

The full solution of the Schro¨dinger equation~6! may be
represented as

F~r !5(
lm

Ylm~u,f!
ulm~r !

kr
. ~A1!

It can be shown that the radial functionsulm(r ) satisfy the
following system of coupled differential equations:

H d2

dr2
2

l ~ l 11!

r 2
1k2J ulm~r !

52m (
l 8m8

^ lmuVu l 8m8&ul 8m8~r !, ~A2!

with

^ lmuVu l 8m8&~r !5E dVYlm* ~V!V~r !Yl 8m8~V!. ~A3!

It is convenient to introduce regular and irregular solutio
of homogeneous radial equations

Fl~kr !5kr j l~kr !,

Gl~kr !52kr nl~kr !

and corresponding standing-wave Green’s function

gl~r ,r 8!52
1

k H Gl~kr8!Fl~kr !, r ,r 8

Gl~kr !Fl~kr8!, r .r 8.

Using these definitions, solutions to the system of inhom
enous equations~A2! regular atr 50 may be represented a
03360
-
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ulm~r !5a lmFl~kr !1E
0

`

dr8gl~r ,r 8!

3F2m (
l 8m8

^ lmuVu l 8m8&ul 8m8~r 8!G , ~A4!

where constantsa lm are chosen to satisfy some bounda
conditions. In the spirit of the Born approximation we ma
find the solution of integral equations~A4! iteratively start-
ing from

ulm~r !'a lmFl~kr !.

In the lowest order inV at larger one obtains

ulm~r !→a lmFl~kr !1Gl~kr !a lm

3 (
l 8m8

F2
2m

k E
0

`

dr8Fl~kr8!

3^ lmuVu l 8m8&Fl~kr8!G .
By comparing with Eqs.~7! and~9!, we arrive at an expres
sion for elements of theK matrix in the Born approximation

K lm
l 8m8'2

2mk

\2 E
0

`

r 2 j l~kr ! j l 8~kr !^ lmuVu l 8m8&dr. ~A5!

The Born approximation generally does not hold for lo
energy atomic collisions, since realistic interactions are s
gular at smallr. However, for dipolar interactions You an
co-workers@22,23# found numerically that away from reso
nances Born approximation works well for off-diagonal m
trix elements. Keeping this observation in mind, below w
derive off-diagonal scattering length and volume introduc
in the main body of the paper. These parameters were
fined as low-energy limits

asd
DD52 lim

k→0

@K DD#00
20~k!

k
,

asg
QQ52 lim

k→0

@K QQ#00
40~k!

k3

for DD and quadrupolar QQ interactions. In Sec. I the D
and QQ interactions were parametrized as

VDD5
C3

r 3
P2~cosu!,
7-6



the
ters
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VQQ5
C5

r 5
P4~cosu!.

Using these definitions and Eq.~A5!, we arrive at

asd
DD5

1

6A5

m

\2
C3 , ~A6!
v.

in

03360
asg
QQ5

1

1260

m

\2
C5 . ~A7!

It is worth emphasizing that these results were derived in
Born approximation. In a general case, to obtain parame
entering anisotropic pseudopotential~13!, one has to numeri-
cally solve the system of equations~A2!, especially in the
vicinity of resonances.
.
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Erratum: Anisotropic pseudopotential for polarized dilute quantum gases
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The presented derivation has made use of certain intermediate results by Huang and Yang �1,2�. These Huang-Yang
formulas contained an algebraic mistake which was recently rectified by me in Ref. �3�. Taking into account the corrected
Huang-Yang construction, here I present the revised versions of the affected expressions for anisotropic pseudo-potential.

Reference �3� corrects the erroneous Huang-Yang prefactor in Eq. �8�. The revised Eq. �8� reads

V̂���r� = −
�2

2�
�
lm

�lmYlm��,��
�2l + 1� ! !

kl+1

��r�
rl+2 , �1�

where �2l−1� ! ! �l+1� is replaced by �2l+1� ! !.
In Eq. �14� the prefactor �2l� ! �l+1� is replaced by �2l+1�!. The revised Eq. �14� is

v̂lm
l�m���r� =

1

2l+l�l� ! l!
�2l + 1� ! Ylm��,��

��r�
rl+2 �� d

dr
�2l�+1�rl�+1	 Yl�m�

* �	���r,	�d	�

r=0

. �2�

The anisotropic parts of truncated pseudopotential for dipolar interaction, Eq. �26� Sec. IV, is changed to �in the second term
the prefactor of 9 is replaced by 15�.

V̂anis
DD ��r� �

�2

M

asd
DD

k2
�51

8
��r��� �

�r
�5

r3	 P2�cos ����r�d	
 + 15
��r�
r4 P2�cos ��� �

�r
�r ��r��


r→0
� .

Similar modifications are introduced in the pseudopotential for quadrupolar interactions, Eq. �27�,

V̂anis
QQ ��r� �

1

27

�2

M

asg
QQ

k2 ��r��� �

�r
�9

r5	 P4�cos ����r�d	
 + 9 !
��r�
r6 P4�cos ��� �

�r
�r ��r��


r→0
� ,

where in the second contribution a prefactor of 5�8!� is replaced by 9!.
The matrix element of an anisotropic pseudopotential in free-particle basis �Sec. V� is modified to read

	 dr12exp�− ik · r12�v̂lm
l�m��r12�exp�ik� · r12� = �4
�2il�−l�k��l�klYl�m�

* �k̂��Ylm�k̂� ,

where the prefactor of �l+1� / �2l+1� has been removed. Equation �30� becomes

v̄�k,k�� = −
�2

M

2



�

ll�mm�

il�−l
Klm

l�m��k��
k�

� k

k�
�l

Yl�m�
* �k̂��Ylm�k̂� ,

with �2l+2� / �2l+1� replaced by 2.
Finally, the corrected kernel F in Eq. �30� specialized for dipolar interaction is �the prefactor 3 /�5 in front of the second

term of the original equation is replaced with prefactor �5; the resulting equation is simplified�

FDD�k,k�� = − asd
DD�5P2�cos �k�� + � k

k�
�2

P2�cos �k�� .

For quadrupolar interactions, the corrected kernel reads �the prefactor 10/3 in front of the second term of the original equation
is replaced with a value of 3�

FQQ�k,k�� = asg
QQ3�k��2P4�cos �k�� + k2� k

k�
�2

P4�cos �k�� .
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