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Abstract
Manipulating expressions in many-body perturbation theory becomes unwieldy with
increasing order of the perturbation theory. Here I derive a set of theorems for efficient
simplification of such expressions. The derived rules are specifically designed for
implementing with symbolic algebra tools. As an illustration, we count the numbers of
Brueckner–Goldstone diagrams in the first several orders of many-body perturbation theory
for matrix elements between two states of a mono-valent system.

Many-body perturbation theory (MBPT) has proven to be
a powerful tool in physics [1] and quantum chemistry [2].
Although MBPT provides a systematic approach to solving the
many-body problem, the number and complexity of analytical
expressions becomes rapidly unwieldy with increasing order
of perturbation theory. At the same time, exploring higher
orders is desirable for improving accuracy of ab initio atomic-
structure methods. Here, a number of applications may benefit,
ranging from atomic parity violation [3] and atomic clocks
[4, 5] to a precision characterization of long-range inter-atomic
potentials for ultra-cold collision studies [6].

To overcome an overwhelming complexity of the MBPT
in high orders, one has to develop symbolic tools that
automate highly repetitive but error-prone derivation of many-
body diagrams. The advantage of using symbolic algebra
computing for these goals has been realized for a number of
decades. For example, the pioneering ‘Schoonschip’ program
[7] and other symbolic packages are employed for evaluating
Feynman diagrams in quantum electrodynamics and high-
energy physics. We also note similar efforts in quantum
chemistry [8] (see also [9] and references therein). In atomic
MBPT, developing symbolic tools was reported by the Notre
Dame [10], Michigan [11], and very recently by the Sydney
[12] and Kassel groups [13].

In practical applications of MBPT, one deals with products
of strings of creation and annihilation operators. Typically
such products are evaluated with Wick’s theorem (see, e.g.

discussion in [14]). This is the point of departure of the
symbolic calculations described in [10] and [11]. The
application of Wick’s theorem results in a series of Kronecker
delta symbols. The next step in the derivation requires carrying
out summation over the delta symbols. In a typical application,
the resulting terms are redundant and require additional
efforts to further simplify and combine the expressions. The
complexity of both the application of Wick’s theorem and the
further simplification grows rapidly as the order of perturbation
theory increases.

Over the past decade, our group in Reno has developed
an alternative set of symbolic tools for MBPT. The goal of
our work was to study high orders of MBPT, e.g. fourth-
order contributions to matrix elements for mono-valent atoms
[15, 16]. In our practical work, we found that the conventional
approaches based on the straightforward applications of
Wick’s theorem require prohibitively long computational
times. To overcome this difficulty, I have derived a set of
rules enabling efficient derivation of MBPT expressions for
fermionic systems in high orders of MBPT. These theorems
are reported here.

Wick’s theorem works at the level of elemental pairwise
contractions of creation and annihilation operators. The
basic idea of the present approach is to shortcut directly to
the resulting expressions for typical operations in MBPT,
without the need to apply expensive pairwise operations. The
theorems are formulated as a set of symbolic replacement
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rules, ideally suited for implementing with symbolic algebra
systems. We provide an accompanying Mathematica package
downloadable from the author’s website [17]. In this work,
we focus on mono-valent systems.

The paper is organized as follows. In section 1, we
review main results from the many-body perturbation theory
and introduce notation. In sections 2.1 and 2.3, we derive
rules for multiplying second-quantized operators with atomic
wavefunctions. Similar theorems are derived for determining
MBPT corrections to energies and matrix elements in
section 3. Finally, as an illustration, in section 4 we derive
explicit expressions for matrix elements in several first orders
of MBPT and count the number of resulting diagrams.

1. Background and notation

1.1. Second quantization, normal forms and Wick’s theorems

We start by recapitulating relevant notation and results from the
second-quantization method as applied to fermionic systems.

At the heart of the second quantization technique lies
an expansion of the true many-body wave function over
properly anti-symmetrized products of single-particle orbitals
(the Slater determinants). The machinery is simplified
by introducing the creation

(
a
†
k

)
and the annihilation (ak)

operators satisfying the anti-commutation relations

a
†
j a

†
k = −a

†
ka

†
j , ajak = −akaj ,

aja
†
k = δjk − a

†
kaj , ajaj ≡ 0, a

†
j a

†
j ≡ 0.

Applying strings of creation and annihilation operators
to the vacuum state |0〉 builds the Slater determinants. A
one-particle operator in the second quantization (such as an
interaction with an external field) reads

Z =
∑
kl

zkla
†
kal. (1)

A two-particle operator (such as a pairwise Coulomb
interaction between electrons) is represented as

G = 1

2

∑
ijkl

gijkla
†
i a

†
j alak (2)

= 1

4

∑
ijkl

g̃ijkla
†
i a

†
j alak. (3)

Matrix elements zkl and gijkl are conventionally defined on
the basis of single-particle orbitals. Symmetry of the two-
particle operator with respect to permuting electron labels
leads to gijkl = gjilk . By renaming summation indices in
equation (2) and using anti-commutation rules, we may
express G in terms of the anti-symmetrized combination
g̃ijkl = gijkl − gijlk , equation (3). Apparently, swapping
indices leads to the following properties,

g̃ijkl = −g̃ij lk = −g̃j ikl = g̃j ilk. (4)

Conventionally, in applications of the second quantization
technique to many-electron systems, one distinguishes
between three groups of single-particle states (orbitals): core,
virtual (excited) and valence orbitals. The core orbitals are

occupied and form the quasi-vacuum state |0c〉. Virtual orbitals
are unoccupied in |0c〉. We will treat valence orbitals as a part
of the set of virtual orbitals. We follow a convention of [14]
and label core orbitals as a, b . . . , excited (virtual) orbitals
as m, n, . . . , and valence orbitals as v,w. Indexes i, j, k, l

run over both core and virtual orbitals. For example, in the
independent-particle-approximation, a state of a mono-valent
atom may be represented as a†

v|0c〉, where the quasi-vacuum
state |0c〉 = (∏

a∈core a
†
a

)|0〉 represents a closed-shell atomic
core.

Further, we review several results related to the normal
form of operator products, : · · · :. The operators are rearranged
so that acore and a†

virt appear to the left of a†
core and avirt. When

acted on the |0c〉 quasi-vacuum state, most of the strings of
operators in the normal form produce vanishing result.

One of the central results related to the normal forms is
Wick’s expansion into normal products

A =: A : + : A :,

: A : being a sum of normal ordered terms obtained by making
all possible single, double, triple, . . . contractions within A.
Contractions between two creation/annihilation operators x
and y are defined as xy ≡ xy− : xy :. The overall sign of
: A : is (−1)p, p being a number of permutations to bring
A into the normal form. The same rule holds for terms in
: A :—we count permutations necessary to bring the operators
being contracted next to each other and also the permutations
needed to arrange the resulting term in the normal form. The
only nonvanishing contractions are

ama
†
n = δmn, a

†
aab = δab.

All contractions between the core and excited (including
valence) orbitals vanish.

Using Wick’s expansion, one can rewrite a single-particle
operator Z, equation (1), as a sum of zero-body (scalar) and
one-body contributions [14]

Z = Z0 + Z1,

Z0 =
∑

a

zaa

Z1 =
∑
ij

zij : a
†
i aj : .

(5)

Similarly, any two-particle operator G, equation (2), may be
represented as a sum of zero-body G(0), one-body G(1) and
two-body G(2) terms,

G = G0 + G1 + G2,

G0 = 1

2

∑
ab

g̃abab,

G1 =
∑
ij

(∑
a

b̃iaja

)
: a

†
i aj :,

G2 = 1

4

∑
ijkl

b̃ijkl : a
†
i a

†
j alak : .

(6)

Technically, the MBPT formalism requires multiplying
second-quantized operators. Simplification of the resulting
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expressions is greatly aided by Wick’s theorem for operator
products. For two strings of operators in the normal form : A :
and : B :, the theorem states

: A : : B :=: AB : + : AB : . (7)

Here : AB : represents the sum of the normal-ordered terms
with all possible contractions between the operators in A and
those in B.

1.2. MBPT for mono-valent atoms

To gain insight into a general structure of MBPT expressions,
here we briefly reiterate MBPT formalism [15] for atoms with a
single valence electron outside a closed-shell core. The lowest
order valence wavefunction is simply

∣∣�(0)
v

〉 = a†
v|0c〉, where

v is a valence orbital. The perturbation expansion is built in
powers of the residual interaction VI defined as a difference
between the full Coulomb interaction between the electrons
and the model potential used to generate the single-particle
basis. The nth-order correction to the valence wavefunction
may be expressed as∣∣�(n)

v

〉 = −Rv

{
QVI

∣∣�(n−1)
v

〉}
linked, (8)

where Rv is a resolvent operator modified to include so-called
folded diagrams [15], projection operator Q = 1−∣∣�(0)

v

〉〈
�(0)

v

∣∣
and only linked diagrams [14] are to be kept. For mono-
valent systems, a convenient starting point is a single-particle
basis generated in the frozen-core (V N−1) Hartree–Fock (HF)
approximation [18]. In this approximation, the residual
interaction is simplified to a two-body part, G2, of the Coulomb
interaction and the number of MBPT diagrams is substantially
reduced [10, 14].

The recursion relation, equation (8), systematically solves
the many-body problem, as we may generate corrections to the
wavefunction at any given order of the perturbation theory.
With such calculated corrections to wavefunctions of two
valence states w and v, the nth-order contribution to matrix
elements of an operator Ẑ may be determined as

Z(n)
wv =

n−1∑
k=0

〈
�(n−k−1)

w

∣∣Z∣∣�(k)
v

〉
val,conn + Z(n)

wv, norm. (9)

Here Z(n)
wv, norm is a normalization correction arising due to

an intermediate normalization scheme employed in derivation
of equation (8). Subscript ‘val, conn’ indicates that
only connected diagrams involving excitations from valence
orbitals are included in the expansion.

1.3. Generic contribution to wavefunction

Now we would like to introduce short-hand notation for strings
of creation

(
a
†
k

)
and annihilation (ak) operators in the Fermi

statistics. A string of x operators

E†
α = a

†
1a

†
2 · · · a†

x

combines creation operators for excited orbitals and symbol α

ranges over the set 1, 2 . . . x. Similarly,

Cβ = a1a2 · · · ay

represents a string of y annihilation operators for core orbitals,
with symbol β spanning the indices 1, 2 . . . y. Finally, V † is
either a†

v or 1 depending on the presence of the valence creation
operator.

On very general grounds, a generic piece of atomic
wavefunction for a mono-valent atom may be represented as

|�〉 =
∑

{α},{β}
L[(1, 2 . . . x)α, (1, 2 . . . y)β]E†

αCβV †|0c〉,

(10)

where
∑

{α} = ∑
1 · · ·∑x , and L[(1, 2 . . . x)α, (1, 2 . . . y)β]

is a c-number object which depends on the indices.
As an illustration, a doubly-excited core state of a

mono-valent atom may read
∑

mnab ρmnaba
†
ma

†
naaaba

†
v|0c〉.

Apparently, x = y = 2, E†
α = a

†
ma

†
n, Cβ = aaab, V † = a†

v

and the groups of indices are (1, 2 . . . x)α = (m, n) and
(1, 2 . . . y)β = (a, b). In summations, the symbolic index α

would run over symbols m and n (which range over all excited
orbitals). Similarly, the symbolic index β assumes symbolic
values a and b, i.e. the labels of the core orbitals.

The equation (10) will be the central object in our
derivations presented below. We will act on this ‘generic
piece of wavefunction’ with one- and two-body operators and
also bring the resulting expressions into the very same form of
equation (10).

2. Simplification theorems

We would like to follow the MBPT prescription (8) and
compute the wavefunction in an arbitrary order. To this
end, we will derive rules for simplifying products of one-
and two-particle operators with the generic wavefunction |�〉,
equation (10). The wavefunction |�〉 is in the normal form
with respect to the quasi-vacuum state. Therefore, we take
the second-quantized operators expanded in the normal forms,
equations (5), (6), and apply Wick’s theorem (7). Apparently,
the zero-body terms Z0 and G0 (c-numbers) do not produce
non-trivial results and in the derivation below we focus on
contractions of one- and two-body operators with strings of
operators entering |�〉. Finally, we bring the resulting chain
of operators in the same standardized sequence of operators
E†

α Cβ V †, as in (10); of course the number of operators in
each group may differ from the starting numbers of operators
in |�〉.

2.1. Product with a one-body operator

Here we focus on acting with the operator

Z1 =
∑
ij

z(i, j) : a
†
i aj : (11)

on a generic wavefunction |�〉, equation (10). According to
Wick’s theorem, we may have 0, 1 and 2 contractions between
Z1 and operators entering |�〉. There are only six distinct
possibilities classified by the number and type of contractions

{Z1|�〉} = {Z1|�〉}0 + {Z1|�〉}1e + {Z1|�〉}1c + {Z1|�〉}1v

+ {Z1|�〉}1e,1c + {Z1|�〉}1v,1c.
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The first term corresponds to no contractions. The term
1e results from contracting one excited orbital from Z1 and
one orbital from the string E†

α of the operators entering |�〉.
Subscript 1v, 1c labels double contraction: one contraction
1v involves an operator from the valence string V † and the
other contraction 1c involves an operator from the core string
Cβ . The labeling scheme for other contributions follows from
these examples.

Note that a straightforward application of the Wick
theorem (7) is inefficient. Operators resulting from expanding
equation (7) ultimately act on |0c〉 and many terms in Wick’s
expansion will produce zero result. Indeed, we may write
explicitly

Z1 =
∑
mn

z(m, n)a†
man +

∑
ma

z(a,m)a†
aam

−
∑
ab

z(a, b)aba
†
a +

∑
ma

z(m, a)a†
maa.

As an example, consider term with no contractions. Only
the last contribution from the above expansion will contribute,
because the first two terms annihilate an unfilled orbital in
|0c〉 and the third term promotes an electron into already
occupied core orbital. Based on this discussion, we shortcut
the application of the Wick theorem and limit ourselves to a
much smaller subset of terms.

2.1.1. No contractions. In this case, the relevant part of the
operator Z1 contains one core annihilation operator and one
creation operator involving an excited orbital. Then, we may
simply move the operators from Z1 to the ends of the excited
E†

α and core Cβ operator strings in the wave-function. The
additional core and excited orbital indices are absorbed in the
summation:

{Z1|�〉}0 =
∑

{α},{β}
L0[(1, 2 . . . x, x + 1)α, (1, 2 . . . y, y + 1)β]

× (
E†

αa
†
x+1

)
(Cβay+1)V

†|0c〉,
where

L0[(1, 2 . . . x, x + 1)α, (1, 2 . . . y, y + 1)β]

= (−1)yz(x + 1, y + 1)L[(1, 2 . . . x)α, (1, 2 . . . y)β].

Moving a pair of operators together does not produce a
phase. The phase factor appears because the excited orbital
operator was additionally moved through (anti-commuted
with) y operators in the Cβ string.

2.1.2. Single contraction with the creation operator in the

E†
α group: 1e. There are x such contractions

(
aja

†
α = δjα

)
;

we contract the operators in turn. By contracting with a
†
1,

we obtain a string of operators a
†
2 · · · a†

x and we bring the a
†
i

to the end of this string thus acquiring a phase (−1)x−1. By
renaming the dummy summation indices, we may bring the
resulting sequence of operators to the same form a

†
2 · · · a†

xa
†
i .

For example, as a result of contracting with a†
μ, we obtain

δjμ(−1)μ−1(−1)x−1a
†
1a

†
2 · · · a†

μ−1a
†
μ−1a

†
xa

†
i .

Now we rename (μ ←→ 1) and bring the resulting string into
the form a

†
2 · · · a†

xa
†
i

δj1(−1)μ−1(−1)x−1a†
μa

†
2 · · · a†

μ−1a
†
μ−1a

†
xa

†
i

= δj1(−1)μ−1(−1)x−1(−1)μa
†
2 · · · a†

μ−1a
†
μa

†
μ−1a

†
xa

†
i

= −δj1(−1)x−1a
†
2 · · · a†

μ−1a
†
μa

†
μ−1a

†
xa

†
i .

Finally,

{Z|�〉}1e =
∑

{α},{β}
L1e[(2 . . . x, x + 1)α, (1 . . . y)β ]

× (
a
†
2 · · · a†

xa
†
x+1

)
α
CβV †|0c〉,

with

L1e[(2 . . . x, x + 1)α, (1, 2 . . . y)β] = (−1)x−1

×
∑

1e

z(x + 1, 1e)A1e
L[(1e, 2 . . . x)α, (1, . . . y)β],

where the operator A1e
anti-symmetrizes L over the first

excited index, i.e.

A1e
L[(1e, 2 . . . x)α, ()β]

= L[(1e, 2 . . . x)α, ()β] − L[(2, 1e, 3, . . . x)α, ()β]

−L[(3, 2, 1e, . . . x)α, ()β] − . . . (12)

or

Aif (1, 2 . . . x)=f (1, 2 . . . x)−
∑
μ �=i

f (1, 2 . . . μ, . . . x)μ←→i .

(13)

As an example,

A1e
ρmn,ab = ρmn,ab − ρnm,ab.

Computationally, in symbolic algebra implementations, the
symbol replacement operations in equation (13) are efficient.
We note that A1e

L̃ = x L̃.

2.1.3. Single contraction with the annihilation operator in the
Cβ group: 1c. The derivation is similar to the previous case;

a
†
i aβ = δiβ . There is a phase factor (−1)x+y due to the transfer

of aj through E†
α Cβ and an additional factor (−1)x due to

moving the a
†
i to the beginning of the Cβ group, resulting in

the total phase of (−1)y . The result reads

{Z|�〉}1c =
∑

{α},{β}
L1c[(1 . . . x)α, (2 . . . y, y + 1)β]

×E†
α(a2 · · · ayay+1)βV †|0c〉,

L1c[(1 . . . x)α, (2 . . . y, y + 1)β]

= (−1)y
∑

1c

z(1c, y + 1)A1c
L[(1 . . . x)α, (1c, 2, . . . y)β].

The operator A1c
anti-symmetrizes L over the first core index

and is defined similarly to A1e
.
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2.1.4. Single contraction with the valence creation operator:

1v. Contraction aja
†
v = δjv . The phase (−1)x+y arises due

to bringing aj to the end of E†
α Cβ and the phase (−1)x due to

transferring a
†
i to the end of E†

α . The result reads

{Z|�〉}1v =
∑

{α},{β}
L1v[(1 . . . x, x + 1)α, (1 . . . y)β ]

× (
a
†
1 · · · a†

x+1

)
α
Cβ |0c〉,

with

L1v[(1 . . . x, x + 1)α, (1, 2 . . . y)β]

= (−1)yz(x + 1, v)L[(1, . . . x)α, (1, . . . y)β].

2.1.5. Double contractions: one excited and one core
operators (1e,1c). Here, the number of operators in both core
and excited orbitals strings is reduced by 1. The derivation is
similar to the 1e case:

{Z|�〉}1e,1c =
∑

{α},{β}
L1e,1c[(2, . . . x)α, (2, . . . y)β]

× (
a
†
2 · · · a†

x

)
α
(a2 · · · ay)βV †|0c〉,

L1e,1c[(2, . . . x)α, (2, . . . y)β]

= (−1)x−1
∑
1c,1e

z(1c, 1e)A1c
A1e

×L[(1e . . . x)α, (1c, . . . y)β].

2.1.6. Double contractions : valence and one core operators
(1v,1c).

{Z|�〉}1v,1c =
∑

{α},{β}
L1v,1c[(1, . . . x)α, (2, . . . y)β ]

×E†
α(a2 · · · ay)β |0c〉,

L1v,1c[(1, . . . x)α, (2, . . . y)β ]

= (−1)y
∑

1c

z(1c, v)A1c
L[(1 . . . x)α, (1c, 2, . . . y)β].

2.2. Example: zeroth-order Hamiltonian

To illustrate the derived simplification rules, consider a zeroth-
order Hamiltonian in the second quantization,

H0 =
∑

i

εi : a
†
i ai : .

This is a special case of a one-body operator, equation (11),
with z(i, j) ≡ εi δij . While the result of applying H0 to � is
trivial, arriving at it via the application of the derived rules is
instructive. We would like to show that

H0 |�〉 = (	αεα − 	β εβ + δv εv)|�〉. (14)

Here δv = 0, if there no valence operator present in |�〉 and
δv = 1 otherwise. 	α is a sum over all indices in the E†

α string
and 	β is a sum over core indices in the Cβ group.

Because the matrix element z(i, j) = εi δij is diagonal,
the only contraction classes which contribute are 1e, 1c and

1v. For example, consider the case of 1e. We deal with the
object

L1e[(2 . . . x, x + 1)α, (1, 2 . . . y)β]

= (−1)x−1
∑

1e

εx+1δ1e,x+1A1e
L[(1e, 2 . . . x)α, (1, . . . y)β ]

= (−1)x−1εx+1Ax+1L[(x + 1, 2 . . . x)α, (1, . . . y)β ].

Then,

{H0|�〉}1e = (−1)x−1
∑
{α}

∑
{β}

εx+1Ax+1L[(x + 1, 2 . . . x)α,

(1, . . . y)β]
(
a
†
2 · · · a†

xa
†
x+1

)
α
CβV †|0c〉.

Further rename x + 1 → 1 and place the a
†
1 at the beginning

of the string:

{H0|�〉}1e =
∑
{α}

∑
{β}

ε1e
A1e

L[(1e, 2 . . . x)α,

(1, . . . y)β]
(
a
†
1e

· · · a†
x

)
α
CβV †|0c〉.

On expanding the partial anti-symmetrization, we encounter
terms∑
{α}

∑
{β}

−ε1e
L[(μ, 2, . . . 1e, ..x)α, (1, . . . y)β]

× (
a
†
1e

· · · a†
x

)
α
CβV †|0c〉.

Rename 1e ←→ μ and swap the operators∑
{α}

∑
{β}

+ εμL[(1e, 2, . . . μ, ..x)α, (1, . . . y)β ]

× (
a
†
1e

· · · a†
x

)
α
CβV †|0c〉.

Therefore,

{H0|�〉}1e

=
∑

{α},{β}
(	αεα)L[(1, 2 . . . x)α, (1, 2 . . . y)β]E†

αCβV †|0c〉.

Here, 	α is a sum over symbols. Similarly,

{H0|�〉}1c = −
∑

{α},{β}
(	βεβ)L[(1, 2 . . . x)α, (1, 2 . . . y)β]

×E†
αCβV †|0c〉,

and {H0 |�〉}1v = εv|�〉. All the remaining contractions
vanish because they involve matrix elements between core
and excited states. Finally, by adding the derived terms we
arrive at the well-known formula (14).

2.3. Contractions with a two-body operator

Now, we consider products of the two-body part of a two-
particle operator G with our generic piece of the many-body
wave function, equation (8). We will use

G2 = 1

4

∑
ijkl

g̃(i, j, k, l) : a
†
i a

†
j alak : .

The derivation is similar to the one-body case of the preceding
section. Here, however, the maximum number of possible
contractions is 4 and there are 15 distinct cases, enumerated
below.
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2.3.1. No contractions.

{G2|�〉}0 =
∑

{α},{β}
L0[(1, . . . x + 2)α, (1, . . . y + 2)β]

× (
E†a

†
x+1a

†
x+2

)
α
(Cay+1ay+2)βV †|0c〉,

L0[(1, . . . x + 2), (1, . . . y + 2)]

= 1

2
g(x + 1, x + 2, y + 2, y + 1)L[(1, . . . x), (1, . . . y)].

2.3.2. Single 1e.

{G2|�〉}1e =
∑

{α},{β}
L1e[(2, . . . x + 2)α, (1, . . . y + 1)β]

× (
a
†
2 . . . a

†
x+1a

†
x+2

)
α
(Cay+1)βV †|0c〉,

L1e[(2, . . . x + 2), (1, . . . y + 1)] = (−1)x+y−1 1

2

∑
1e

g̃

× (x + 1, x + 2, 1e, y + 1)A1e
L[(1e, . . . x), (1, . . . y)].

The partial anti-symmetrization operator A1e
is given by

equation (13).

2.3.3. Single 1c.

{G2|�〉}1c =
∑

{α},{β}
L1c[(1, . . . x + 2)α, (2, . . . y + 2)β]

× (
E†

αa
†
x+1

)
α
(a2 . . . ay+1ay+2)βV †|0c〉,

L1c[(1, . . . x + 2)α, (2, . . . y + 2)β] = 1

2

∑
1c

g̃

× (x + 1, 1c, y + 2, y + 1)A1c
L[(1, . . . x), (1c, . . . y)].

2.3.4. Single 1v.

{G2|�〉}1v =
∑

{α},{β}
L1v[(1, . . . x + 2)α, (1, . . . y + 1)β]

× (
E†

αa
†
x+1a

†
x+2

)
α
(Cay+1)β |0c〉,

L1v[(1, . . . x + 2)α, (1, . . . y + 1)β]

= 1

2
g̃(x + 1, x + 2, v, y + 1)L[(1, . . . x), (1, . . . y)].

2.3.5. Double 2e.

{G2|�〉}2e =
∑

{α},{β}
L2e[· · ·](a†

3 . . . a
†
x+1a

†
x+2

)
α
CβV †|0c〉,

L2e[· · ·] = 1

2

∑
1e,2e

g̃(x + 1, x + 2, 1e, 2e)A1e2e
L

× [(1e, 2e . . . x), (1, . . . y)].

The partial anti-symmetrization operator is defined as

A1,2 f (1, 2..x) = f −
∑
η>2

f (1, 2, ..η, . . . x)η←→1

−
∑
η>2

f (1, 2, ..η, . . . x)η←→2

+
∑

η>ν>2

f (1, 2, ..ν, ..η, . . . x)ν←→1,η←→2 (15)

(this anti-symmetrization produces x(x − 1)/2 terms).

As an example, A1e2e
ρmn = ρmn and A1e2e

ρmnr =
ρmnr − ρrnm. Alternatively, this definition may be rewritten as

A1,2f (1, 2..x) = A1f + A2f − f + 2f (2, 1, . . . x)

+
∑

η>ν�3

f (1, 2, ..ν, ..η, . . . x)ν←→1,η←→2.

2.3.6. Double 2c.

{G2|�〉}2c =
∑

{α},{β}
L2c[· · ·](E†)α(a3 . . . ay+1ay+2)βV †|0c〉,

L2c[· · ·] = 1

2

∑
1c,2c

g̃(2c, 1c, y + 2, y + 1)A1c2c
L

× [(1, . . . x), (1c, 2c . . . y)],

where the partial anti-symmetrization operator A1c2c
is defined

similarly to A1e2e
.

2.3.7. Double 1e,1c.

{G2|�〉}1e,1c =
∑

{α},{β}
L1e,1c[· · ·]

× (
a
†
2 . . . a

†
x+1

)
α
(a2 . . . ay+1)βV †|0c〉,

L1e,1c[· · ·] = (−1)x+y+1
∑
1c,1e

g̃(x + 1, 1c, 1e, y + 1)A1c
A1e

L

× [(1e, . . . x), (1c, . . . y)].

Here, we deal with two successive applications of
the partial anti-symmetrization operators introduced in
section 2.1, equation (13).

2.3.8. Double 1c,1v.

{G2|�〉}1v,1c =
∑

{α},{β}
L1v,1c[· · ·](E†a

†
x+1

)
α
(a2 . . . ay+1)β |0c〉,

L1v,1c[· · ·] =
∑
1c,1e

g̃(x + 1, 1c, v, y + 1)A1c
L

× [(1, . . . x), (1c, . . . y)].

2.3.9. Double 1e,1v.

{G2|�〉}1e,1v =
∑

{α},{β}
L1e,1v[· · ·](a†

2 . . . a
†
x+1a

†
x+2

)
α
Cβ |0c〉,

L1e,1v[· · ·] = (−1)x+y
∑

1e

g(x + 1, x + 2, v, 1e)A1e
L

× [(1e, . . . x), (1, . . . y)].

2.3.10. Triple 2e,1c.

{G2|�〉}2e,1c =
∑

{α},{β}
L2e,1c[· · ·](a†

3 . . . a
†
x+1

)
α
(a2 . . . ay)βV †|0c〉,

L2e,1c[· · ·] =
∑

1c,1e,2e

g̃(x + 1, 1c, 1e, 2e)A1c
A1e,2e

L

× [(1, . . . x), (1c, . . . y)].
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2.3.11. Triple 1e,2c.

{G2|�〉}1e,2c =
∑

{α},{β}
L1e,2c[· · ·](a†

2 . . . a†
x

)
α
(a3 . . . ay+1)βV †|0c〉,

L1e,2c[· · ·] = (−1)x+y+1
∑

1e,1c,2c

g̃(2c, 1c, 1e, y + 1)A1e
A1c,2c

L

× [(1, . . . x), (1c, . . . y)].

2.3.12. Triple 1v,2c.

{G2|�〉}1v,2c =
∑

{α},{β}
L1v,2c[· · ·](E†)α(a3 . . . ay+1)β |0c〉,

L1v,2c[· · ·] =
∑
1c,2c

g̃(2c, 1c, v, y + 1)A1c,2c
L

× [(1, . . . x), (1c, . . . y)].

2.3.13. Triple 1e,1v,1c.

{G2|�〉}1v,1c,1e =
∑

{α},{β}
L1v,1c,1e[· · ·]

× (
a
†
2 . . . a

†
x+1

)
α
(a2 . . . ay)β |0c〉,

L1v,1c,1e[· · ·] = (−1)x+y+1
∑
1c,1e

g̃(x + 1, 1c, 1e, v)A1c
A1e

L

× [(1, . . . x), (1c, . . . y)].

2.3.14. Quadruple 2e,2c.

{G2|�〉}2e,2c =
∑

{α},{β}
L2e,2c[· · ·]

× (
a
†
3 . . . a†

x

)
α
(a3 . . . ay)βV †|0c〉,

L2e,2c[· · ·] =
∑

1e,2e,1c,2c

g̃(2c, 1c, 1e, 2e)A1e,2e
A1c,2c

L

× [(1, . . . x), (1c, . . . y)].

2.3.15. Quadruple 1e,1v,2c.

{G2|�〉}1v,1e,2c =
∑

{α},{β}
L1v,1e,2c[· · ·]

× (
a
†
2 . . . a†

x

)
α
(a3 . . . ay)β |0c〉,

L2e,2c[· · ·] = (−1)x+y+1
∑

1e,1c,2c

g̃(2c, 1c, 1e, v)A1e
A1c,2c

L

× [(1, . . . x), (1c, . . . y)].

2.4. Additional remarks

Note that the introduced partial anti-symmetrization operators,
equations (13), (15), are subsumed into the following
general definition of a partial anti-symmetrization operator
A[{1, ξ}γ , {1, μ}δ] over a subset {1, ξ} of excited indices and
a subset {1, μ} of core indices

A[{1, ξ}γ , {1, μ}δ]L[(1, 2 . . . x)α, (1, 2 . . . y)β]

=
∑ ∑

{�[(1, 2 . . . x)α]�[(1, 2 . . . y)β]L

× [(1, 2 . . . x)α, (1, 2 . . . y)β]}(γi←→αj ,δi←→βj ).

Here, the summation is over all possible renaming of indices
in the groups. Individual phases of the terms are determined
by functions � which we use to denote the conventionally
defined signature of the resulting permutation of indices.

The derived rules may be presented in a more symmetric
form by noticing that no matter how simple or complicated
the dependence on the indices inside the object L is, by
systematically swapping the dummy summation indices the
generic piece of MBPT wavefunction, equation (10), may be
rewritten as

|�〉 = 1

x!y!

∑
{α},{β}

L̃[(1, 2 . . . x)α, (1, 2 . . . y)β ]E†
αCβV †|0c〉,

where the object L̃ was obtained by a complete anti-
symmetrization of L inside of the groups of excited and core
indices. In other words, in the derived theorems, one could
simply replace

L[· · ·] → 1

x!y!
L̃[· · ·]

and unfold the partial anti-symmetrization operators. While
the resulting expressions may be more aesthetically appealing,
we did not find any particular advantage in using them in
practical calculations.

3. Observables

The application of the derived rules allows us to find many-
body correction to atomic wavefunction in an arbitrary order
of MBPT via equation (8). Below we focus on an efficient
symbolic evaluation of expressions for MBPT correction to
energies and matrix elements.

3.1. Corrections to energy

The correlation correction to energy in the nth order of MBPT
may be found with the (n − 1)th-order correction to the
wavefunction

δE(n) = 〈�(0)|VI |�(n−1)〉, (16)

or in the frozen-core approximation for mono-valent atoms,

δE(n) = 〈0c|av

{
G2

∣∣�(n−1)
v

〉}
. (17)

Now, we focus on the object in the curly brackets, |φ〉 =
G2

∣∣�(n−1)
v

〉
. We may use the results of section 2.3 and derive

a multitude of the terms on the right-hand side. Ultimately
determination of the energy correction is simplified by noticing
that only a small number of terms would remain after
forming the required product 〈0c|av|φ〉. The non-vanishing
contributions arise from generic pieces

{G2|�(n−1)〉}v = Lc[()()]a†
v|0c〉,

where Lc does not depend on the valence orbital, and

{G2|�(n−1)〉}e =
∑

1e

Lv[(1e)()]a
†
1e

|0c〉,

where Lv necessarily depends on the valence index.
Accordingly, the corrections to the energy may be separated
into the core and valence parts,

δE(n) = δE(n)
c + δE(n)

v ,

with δE(n)
c = Lc and δE(n)

v = Lv[(v)()]. This solves the
problem of finding the energy correction.
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3.2. Matrix elements of a one-body operator Z

Suppose we derived the MBPT corrections to wavefunctions
of two valence states w and v. We would like to compute the
matrix element of some one-particle operator Z. To this end,
we need to use the formula (9) and compute terms〈

�(n−k−1)
w

∣∣Z1

∣∣�(k)
v

〉
.

We start by introducing an intermediate state

|ψv〉 = Z1

∣∣�(k)
v

〉
.

Then, our task will be accomplished by forming the product〈
�(n−k−1)

w

∣∣ψv

〉
.

|ψv〉 may be computed using rules of section 2.1.
It will contain a linear combination of various ‘generic
contributions’; we focus on a scalar product of generic
contributions to |ψv〉

|�v〉 =
∑

{α},{β}
L[(1, 2 . . . x)α, (1, 2 . . . y)β]E†

αCβV †|0c〉

and to
〈
�(n−k−1)

w

∣∣
〈�w| =

∑
{α′},{β ′}

K[(1, 2 . . . x ′)α′ , (1, 2 . . . y ′)β ′]〈0c|WC
†
β ′Eα′ .

We adopt a convention that in the groups of operators C
†
β ′ and

Eα′ the enumeration of operator indices goes from right to left,
i.e. C

†
β ′ = a

†
y ′ · · · a†

2′a
†
1′ and Eα′ = ax ′ · · · a2′a1′ .

To obtain a nonzero value for the scalar product 〈�w|�v〉,
we have to perform a maximum number of contractions.
Moreover, the numbers of operators must be related as
x + δv = x ′ + δw and y = y ′.

We contract the core orbitals first. Bringing the two groups
of operators together introduces a phase factor of (−1)(x−x ′) y

and we obtain

〈�w|�v〉 = (−1)(x−x ′)y
∑

{α′},{α}

∑
{β}

〈0c|WEα′E†
αV †|0c〉

L[(1, 2 . . . x)α, (1, 2 . . . y)β]A{β}K

× [(1, 2 . . . x ′)α′ , (1, 2 . . . y)β ].

Here, A{β} denotes a complete anti-symmetrization over
all indices in the symbolic set {β}. The result may be proven
by noticing that the complete contraction between the products
C

†
β ′Cβ may be expressed as

C
†
β ′Cβ = det

∣∣∣∣∣∣∣∣∣
δ11′ δ12′ · · · δ1x ′

δ21′ δ22′ · · · δ2x ′

...
...

. . .
...

δx1′ δx2′ · · · δxx ′

∣∣∣∣∣∣∣∣∣ .
The result of computing the remaining product

〈0c| W Eα′E†
α V † |0c〉 depends on whether we have the valence

operators present inside the w and V † groups; we treat three
separate cases below.

3.2.1. Both valence operators are absent. In this case, both
objects, L and K, necessarily depend on their respective valence
indices and we emphasize these dependences by superscripts
Lv and kw. Also x = x ′ and (similar to full contraction for
core orbitals)

〈�w|�v〉val =
∑
{α}

∑
{β}

Lv[(1, 2 . . . x)α, (1, 2 . . . y)β]A{α}A{β}Kw

× [(1, 2 . . . x)α, (1, 2 . . . y)β ].

Such a combination produces x!y! diagrams.

3.2.2. Only one valence operator is present. Consider first
the case when only the operator a†

v is present, then the object
K depends on the index w; we denote this dependence as kw.
Also x ′ = x + 1. By appending a†

v at the end of the E†
α string,

we reduce the treatment of contractions to the preceding case:

〈�w|�v〉 = (−1)y
∑

{α′},{α}

∑
{β}

〈0c|Eα′E†
αa†

v|0c〉L

× [(1, 2 . . . x)α, (1 . . . y)β]A{β}Kw

× [(1′, 2′ . . . x ′)α′ , (1 . . . y)β ],

〈�w|�v〉v = (−1)y
∑
{α}

∑
{β}

L[(1, 2 . . . x)α,

(1 . . . y)β]A{α}A{β}Kw[(1, 2 . . . x, v)α, (1 . . . y)β ].

If only aw is present, then

〈�w|�v〉w = (−1)y
∑
{α′}

∑
{β}

K[(1′, 2′ . . . x ′)α,

(1 . . . y)β]A{α}A{β}Lv[(1′, 2′ . . . x ′, w)α, (1 . . . y)β ].

3.2.3. Both valence operators are present. If both valence
operators are present, i.e. W = aw and V † = a†

v , then x = x ′.
The product 〈0c| awEα′E†

α a†
v |0c〉 may be broken into two

contributions.
(i) Contraction between aw and a†

v leads to a core
contribution

〈�w|�v〉x=x ′
c = δwv

∑
{α}

∑
{β}

L[(1, . . . x)α,

(1, . . . y)β]A{α} A{β}K[(1, . . . x)α, (1, . . . y)β]. (18)

Note that this contribution vanishes for w �= v and, moreover,
it does not vanish only in a very special case of true scalar
operator Z.

(ii) Simultaneous contractions between aw and an operator
in E†

α , a†
v with an operator in Eα′ and residual contractions lead

to (y! x!) x contributions

〈�w|�v〉val = −
∑
{α}

∑
{β}

S
ξ∈{α}

L[(1, . . . x)α,

(1, . . . y)β]ξ→wA{α}A{β}K[(1, 2 . . . x)α, (1, . . . y)β]ξ→v

Here, Sξ∈{α} represents a summation over all possible
simultaneous replacement of index ξ by w in L and by v

in K.
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Table 1. Complexity of MBPT for mono-valent systems in the
frozen-core approximation. We list numbers of diagrams in the nth
order of MBPT for wavefunctions and matrix elements of a
one-particle operator. There are two counts for Z(n)

wv in the format
n1/n2. n1 is a number of terms in a maximally simplified expression
(where the Coulomb integrals gijkl were combined into the
anti-symmetric combinations g̃ijkl). n2 is the full number of the
conventional Brueckner–Goldstone diagrams including exchange
diagrams.

Order n |�(n)
v 〉 Z(n)

wv

0 1 –
1 2 1/1
2 20 2/4
3 561 30/84
4 26 700 552/3072

4. Counting diagrams and summary

The present paper provides symbolic prescriptions to aid in
deriving many-body diagrams for mono-valent systems in an
arbitrary order of MBPT. Based on the derived rules, the
author has developed a Mathematica package, which is made
available through the author’s website [17]. The rules have
been tested by recovering known results for matrix elements
and energies through the third order [10]. Note that the
package and the theorems have been already used in deriving
matrix elements through the fourth order of MBPT [15, 16].

The derived rules are certainly not as mnemonically
elegant as the original Wick’s theorem; this is a reflection
of the fact that the Wick theorem is formulated in terms of the
pairwise contractions between the operators, while our rules
provide an explicit (yet general) answer that avoids a multitude
of elemental pairwise contractions. In this sense, the derived
theorems may be called ‘post-Wick’ theorems.

As an illustration, we derive the MBPT diagrams for
matrix elements of a one-body operator between two distinct
states w and v of a mono-valent atom. We run the package
and obtain analytical expressions for the diagrams. The
expressions are too lengthy to be presented here (see, however,
a partial list of fourth-order diagrams in [15]); instead we count
the number of resulting diagrams. The results are compiled in
table 1. The counts do not include the normalization term of
equation (9) and the core contribution (18).

As discussed, due to our short-cutting the expensive
elemental pairwise contractions, the advantage of the present
formulation becomes most pronounced in high orders of
perturbation theory, as both the number of resulting terms

rapidly grows (see table 1) and the length of operator strings
entering |�(n)〉 increases with n. In addition, from a practical
standpoint, in symbolic algebra implementations, the next step
involves combining similar terms by pattern matching. This
is a computationally expensive search operation. By contrast
to the directly applied Wick’s expansion method, our derived
theorems already yield simplified results, further speeding up
the symbolic evaluations.

Acknowledgment

This work was supported in part by the US National Science
Foundation.

References

[1] Fetter A L and Walecka J D 1971 Quantum Theory of
Many-particle Systems (New York: McGraw-Hill)

[2] Szabo A and Ostlund N S 1982 Modern Quantum Chemistry
(New York: Macmillan)

[3] Porsev S G, Beloy K and Derevianko A 2009 Phys. Rev. Lett.
102 81601 (4 pp) http://link.aps.org/abstract/
PRL/v102/e181601

[4] Beloy K, Safronova U I and Derevianko A 2006 Phys. Rev.
Lett. 97 040801

[5] Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys.
Rev. Lett. 97 040802 (4 pp) http://link.aps.org/
abstract/PRL/v97/e040802

[6] Derevianko A, Johnson W R, Safronova M S and Babb J F
1999 Phys. Rev. Lett. 82 3589

[7] Veltman M and Williams D N 1993 Schoonschip ’91
arXiv:hep-ph/9306228

[8] Janssen C L and Schaefer H F III 1991 Theor. Chim. Acta 79 1
[9] Hirata S 2003 J. Phys. Chem. A 107 9887

[10] Blundell S A, Guo D S, Johnson W R and Sapirstein J 1987 At.
Data Nucl. Data Tables 37 103

[11] Perger W F, Xia M, Flurchick K and Bhatti M I 2001 Comput.
Sci. Eng. 3 38

[12] Dzuba V 2009 Comput. Phys. Commun. 180 392
[13] Fritzsche S, Mani B K and Angom D Advances in Quantum

Chemistry, vol 53: Current Trends in Atomic Physics (Adv.
Quant. Chem. vol 53) ed J R Sabin and E Brandas (San
Diego, CA: Elsevier Academic) pp 177–215

[14] Lindgren I and Morrison J 1986 Atomic Many–Body Theory
2nd edn (Berlin: Springer)

[15] Derevianko A and Emmons E D 2002 Phys. Rev. A
66 012503

[16] Cannon C C and Derevianko A 2004 Phys. Rev. A 69 030502
[17] Homepage of theoretical atomic physics group at the

University of Nevada, Reno, http://wolfweb.unr.edu/
homepage/andrei/tap.html

[18] Kelly H P 1969 Adv. Chem. Phys. 14 129

9

http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://link.aps.org/abstract/PRL/v102/e181601
http://link.aps.org/abstract/PRL/v102/e181601
http://dx.doi.org/10.1103/PhysRevLett.97.040801
http://dx.doi.org/10.1103/PhysRevLett.97.040802
http://link.aps.org/abstract/PRL/v97/e040802
http://link.aps.org/abstract/PRL/v97/e040802
http://dx.doi.org/10.1103/PhysRevLett.82.3589
http://www.arxiv.org/abs/hep-ph/9306228
http://dx.doi.org/10.1007/BF01113327
http://dx.doi.org/10.1021/jp034596z
http://dx.doi.org/10.1016/0092-640X(87)90006-4
http://dx.doi.org/10.1109/5992.895186
http://dx.doi.org/10.1016/j.cpc.2008.10.015
http://dx.doi.org/10.1103/PhysRevA.66.012503
http://dx.doi.org/10.1103/PhysRevA.69.030502
http://wolfweb.unr.edu/homepage/andrei/tap.html
http://wolfweb.unr.edu/homepage/andrei/tap.html
http://dx.doi.org/10.1002/9780470143599.ch4

	1. Background and notation
	1.1. Second quantization, normal forms and Wick's theorems
	1.2. MBPT for mono-valent atoms
	1.3. Generic contribution to wavefunction

	2. Simplification theorems
	2.1. Product with a one-body operator
	2.2. Example: zeroth-order Hamiltonian
	2.3. Contractions with a two-body operator
	2.4. Additional remarks

	3. Observables
	3.1. Corrections to energy
	3.2. Matrix elements of a one-body operator  Z  

	4. Counting diagrams and summary
	Acknowledgment
	References

