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Long-range interaction of two metastable rare-gas atoms
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Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusett
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We present semiempirical calculations of long-range van der Waals interactions for two interacting meta-
stable rare-gas atoms Ne through Xe. Dispersion coefficientsC6 are obtained for homonuclear molecular
potentials asymptotically connecting to thens(3/2)21ns(3/2)2 atomic states. The estimated uncertainty
of the calculatedC6 dispersion coefficients is 4%.

PACS number~s!: 32.10.Dk, 34.20.2b, 32.70.Cs
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Motivated by cold-collision studies of metastable rare-g
atoms@1–4# and prospects of achieving Bose-Einstein co
densation in these systems@5#, we present calculations o
long-range dispersion~van der Waals! coefficients for two
atoms interacting in thens(3/2)2 atomic states (n53 for Ne,
n54 for Ar, n55 for Kr, andn56 for Xe!. The metastable
states have long lifetimes, 43 s for Xe@6#, decaying to the
ground 1S0 state by a weak magnetic-quadrupole transiti
With such a long lifetime the metastable atom behaves a
effective ground state in experiments. Compared to alk
metal systems, an attractive feature of the noble-gas atom
the availability of isotopes with zero nuclear spin. The la
of hyperfine structure leads to a substantial simplification
molecular potentials, though some complexity arises du
the nonvanishing total electron angular momentum (J52) of
the metastable state. The anisotropy leads to 15 distinct lo
range molecular states connecting to thens(3/2)2
1ns(3/2)2 asymptotic configuration.

Our theoretical treatment of long-range interactions
similar to recent high-precision calculations of van d
Waals coefficients for alkali-metal atoms@7#. By using
many-body methods and accurate experimental matrix
ments for the principal transitions, leading dispersion coe
cientsC6 were determined to an accuracy better than 1%
Na, K, and Rb, and of 1% for Cs and 1.5% for Fr. T
semiempiricalvalues ofC6 coefficients for metastable noble
gas atoms obtained here have an estimated uncertain
4%. The approach relies on the determination of dyna
polarizability functions. To construct the polarizabilities w
combine experimental lifetime@8–15# and energy data of the
excited states with accurate semiempirical dynamic pola
abilities of the ground states of noble-gas atoms@16#. The
theoretical lifetimes and branching ratios@17# are adjusted to
reproduce the measured static polarizabilities@18#, which are
known with a 2% uncertainty. We estimated the additio
small contributions within the Dirac-Hartree-Fock fram
work. The resulting polarizabilities satisfy the Thoma
Reiche-Kuhn~TRK! oscillator strength sum rule.

The Racah notation for atomic levels is used. T
particle-hole states are labeled asnl(K)J or nl8(K)J , where
n and l are the principal and the orbital angular momentu
quantum numbers of the valence electron andK5Jc1 l ,
whereJc is the angular momentum of the core. The prim
configurations converge to a Rydberg series limit with a h
in the (n21)p1/2 state, and the unprimed to a hole in th
(n21)p3/2 state. The manifold of the lowestns valence
1050-2947/2000/62~6!/062501~5!/$15.00 62 0625
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states has four fine-structure statesns8(1/2)0,1 and
ns(3/2)1,2, and the lowestnp manifold consists of ten states
We investigate here the molecular potentials asymptotic
connecting to thens(3/2)2 atomic states.

We calculate the long-range molecular potentials in
framework of Rayleigh-Schro¨dinger perturbation theory. The
basis functions are defined as products of atomic wave fu
tions

uM1M2 ;V&5uns~3/2!2M1&1uns~3/2!2M2&2 , ~1!

where the index 1~2! describes the wave function located o
the center 1~2! andV5M11M2 , M1,2 being projections of
the atomic total angular momentum on the internuclear a
Due to the axial symmetry of a dimer,V is a conserved
quantum number. It takes values ranging from zero to fo
The two-atom basis~1! is degenerate and the correct molec
lar wave functions are obtained by diagonalizing the mole
lar Hamiltonian

Ĥ5Ĥ11Ĥ21V̂~R!. ~2!

In expression~2! Ĥk represent the Hamiltonians of the tw
noninteracting atoms, andV̂(R) is the interaction potential a
an internuclear distanceR. The energy of thens(3/2)2 meta-
stable state is designated asE* . Then in the model space~1!:

~Ĥ11Ĥ2!uM1M2 ;V&52E* uM1M2 ;V&.

The residual electrostatic potentialV̂(R) is defined as the full
Coulomb interaction energy in the dimer excluding intera
tions of the atomic electrons with their parent nuclei.

The multipole interactions (L51 for dipole-dipole, and
L52 for quadrupole-quadrupole interactions! are given by
@19#

VLL~R!5
1

R2L11 (
m52L

L
~2L !!

~L2m!! ~L1m!!
~Tm

(L)!1~T2m
(L) !2 ,

~3!

with the multipole spherical tensors

Tm
(L)52ueu(

i
r i

LCm
(L)~ r̂ i !, ~4!
©2000 The American Physical Society01-1
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where the summation is over atomic electrons,r i is the po-
sition vector of electroni, and Cm

(L)( r̂ i) are normalized
spherical harmonics@20#. In the following we write dm

5Tm
(1) andQm5Tm

(2) .
The lowest-order contribution to the term energies ari

from the quadrupole-quadrupole interactionV̂qq , which var-
ies as 1/R5. However, the correspondingC5 coefficients are
only of the order 1012102 a.u.@2#, and the dominant contri
bution appears in the second order inV̂(R), arising from the
dipole-dipole interactionV̂dd . The second-order dipole inter
action is proportional to 1/R6, and the associated dispersio
coefficientC6 is of the order of 1042105 a.u. Applying the
formalism of degenerate perturbation theory in second o
@21#, we obtain an effective Hamiltonian within the two
atom basis Eq.~1!:

^muHeff
(2)un&52E* dmn1^muV̂qqun&

1(
C i

^muV̂dduC i&^C i uV̂ddun&

2E* 2Ei

. ~5!

The intermediate molecular stateuC i& with unperturbed en-
ergy Ei runs over acompleteset of two-atom states, exclud
ing the model-space states Eq.~1!. The formalism of the
generalized Bloch equation@22# would allow the inclusion in
the model space of the other three atomic states in thens
manifold and would account for the mixing of the differe
fine-structure levels; but such a large model space is
necessary forR.10 a.u. The position of the avoided lev
crossing can be estimated fromRl .c.'2C6 /(Ens(3/2)1
2Ens(3/2)2

);10 a.u. TheV54 molecular term is unique an
being unaffected by avoided crossings, the region of ap
cability is extended toR;n a.u., before the electronic cloud
start to overlap. The effect of the quadrupole-quadrupole
teraction on the term energy can be disregarded at value
R!C6 /C5;103 a.u. The quadrupole-quadrupole correcti
is discussed by Doeryet al. @3#.

Using the Wigner-Eckart theorem, we can represent
matrix element of the dipole-dipole term in the effecti
second-order Hamiltonian as

(
C i

^M1M2 ;VuV̂dduC i&^C i uV̂dduM18M28;V&

2E* 2Ei

52
1

R6 (
II 8

C6
JaJb~21!Ja1Jb

2

3

3(
lm

wl
1wm

1 A lm
Ja ~M1 ,M18!

3A
2l2m
Jb ~V2M1 ,V2M18!. ~6!

The dipole weightswm
1 are w11

1 5w21
1 51, andw0

152. Ja

andJb are the corresponding total angular momenta of in
mediate atomic states of atoms 1 and 2, and
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I ~M1 ,M18!5S 2 1 I

2M1 m mD S I 1 2

2m l M18
D , ~7!

where m5 1
2 (M11M181l2m). The intermediate ~un-

coupled! dispersion coefficients are

C6
JaJb5

3

pE0

`

dv SJa
~ iv!SJb

~ iv!. ~8!

The reduced dynamic dipole polarizabilitySI( iv) of purely
imaginary argument is defined as the sum over atomic st
ua I IM I& with total angular momentumI and energyEa I

:

SI~ iv!

5(
a I

~E* 2Ea I
!^ns~3/2!2uuduua I I &^a I I uuduuns~3/2!2&

~E* 2Ea I
!21v2

.

~9!

Herea I stands for all quantum numbers of the intermedi
state, except for the total angular momentumI, and^ i uuduu j &
are the reduced electric-dipole matrix elements, defined
the Wigner-Eckart theorem. Three sums withI 51,2,3 are
allowed by electric-dipole selection rules.

We proceed now to construct the dipole polarizabil
functionsSI( iv), Eq. ~9!, evaluate the uncoupled dispersio
coefficients~8!, and set and diagonalize the second-order
fective Hamiltonian~5!.

The functionsSI( iv) satisfy several sum rules. In particu
lar, the static tensor dipole polarizabilityazz(M ) of the
ns(3/2)2 state may be expressed as

azz~M !522 (
I

~21! I S 2 1 I

2M 0 M D 2

3 SI~0!.

~10!

The static tensor dipole polarizabilitiesazz(M51) and
azz(M52) of metastable noble-gas atoms Ne through
have been measured by Molofet al. @18# to within an error
of 2%. In the present calculations the values ofSI(0) are
adjusted to reproduce these experimental values. In addi
asv→`, the reduced polarizabilities satisfy the nonrelat
istic TRK sum rule

(
n

f kn5 2
15(

I
~21! I 11SI~ i`!5N, ~11!

N being the number of electrons in the atom. Our construc
polarizabilities satisfy the sum rule.

It is instructive to consider the action of a one-partic
operator on the reference particle-hole Slater determin
ns(3/2)2 in the independent electron approximation. Such
operator can~i! annihilate the reference particle-hole pa
~ii ! promote a valence electron from thens1/2 state to another
valence statemp1/2,3/2, the state of the (n21)p3/2 hole being
unchanged;~iii ! de-excite the (n21)p3/2 hole into some
other hole state, the valence state remaining the same,
~iv! create another particle-hole pair in addition to the ref
1-2
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LONG-RANGE INTERACTION OF TWO METASTABLE . . . PHYSICAL REVIEW A 62 062501
ence pair. According to such a classification it is conveni
to break the polarizability function, Eq.~9!, into three con-
tributions SI

k corresponding to a numberk of particle-hole
pairs in the intermediate stateua I I &:

SI5SI
01SI

11SI
2 .

Since an electric-dipole transition fromns(3/2)2 to the
closed-core state1S0 is prohibited by the angular selectio
rules,SI

0[0.
The sumSI

1 is separated into contributions from the inte
mediate states in the lowestnp fine-structure multiplet
(SI

1)np , and the rest of the sum (SI
1)8:

SI
15~SI

1!np1~SI
1!8.

The first term is the dominant contribution. We calcula
(SI

1)np using experimental values of transition energies a
decay rates, and adjusted branching ratios. The rest of
sum over valence states~including bound and continuum
states! (SI

1)8 is estimated in the Dirac-Hartree-Fock~DHF!
approximation. The metastable stateuvh;J& in lowest order
is represented as a combination of theuv&5ns1/2 particle
state and the hole stateuh&5(n21)p3/2, coupled to the total
angular momentumJ52, $@(n21)p3/2#

21ns1/2%2. The
lowest-order energy of such a state isE* 5«v2«h , « i being
the energy of the DHF orbitalu i &. The intermediate state i
represented asuma;I &, a particle statem coupled with hole
statea to the total momentumI. Explicitly,

~SI
1!8~ iv!5~21!J1I@ I #@J#

3(
ma

8 S dha

~«v2«m! ^vuuduum&2

~«v2«m!21v2

3H J 1 I

j m j h j v
J 2

1dmv
~«a2«h! ^huuduua&2

~«a2«h!21v2

3H J 1 I

j a j v j h
J 2D ,

where @K#[2K11, the summation is performed over th
core orbitalsa and excited statesm, excluding states of the
lowest np multiplet, andJ52. The first sum is associate
with excitation of the valence electron@case~ii !# while the
second sum with de-excitation of the hole state@case~iii !#.
To arrive at this result we disregarded the coupling betw
levels within the same fine-structure multiplet. For examp
for Ne the @(2p3/2)

214p1/2#2 , @(2p3/2)
214p3/2#2, and

@(2p1/2)
214p3/2#2 states are summed over independen

even though the correct lowest-order wave function is a
ear combination of them. This approximation correspond
a disregard of the small difference between the energie
the coupled and uncoupled states. Since the contribu
(SI

1)8 is relatively small, such an estimate suffices at
present level of accuracy. Numerical evaluation of (SI

1)8 has
been performed using aB-spline basis set in theVN21 DHF
potential, with the hole in the (n21)p3/2 core orbital@23#.
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The calculated term (SI
1)8(v50) typically contributes at the

1% level to the reduced sumsSI(0) for all the systems we
consider.

We separate the sumSI
2 over the core excited states int

two contributions:

SI
25~SI

2!core1~SI
2!cntr.

The first term is associated with the dynamic polarizabil
ag( iv) of the closed-shell ground state1S0 and the second
term is a corrective counter term.

~SI
2!core~ iv!5~21! I 1J11

@ I #

2
ag~ iv!. ~12!

We use the semiempirical dynamic polarizabilities for t
ground states of noble-gas atoms of Kumar and Meath@16#.
The estimated uncertainty of these core polarizabilities
less than 1%. The primary role of the core polarizability is
provide the correct limit@Eq. ~11!# at v→`. The relative
importance of the core-excitation contribution increases
heavier systems; for example, in a similar calculation for
@7#, core excitations contribute 23% of theC6 dispersion
coefficient. The high-frequency limit, Eq.~11!, is accurately
reproduced by the presenttotal reduced dynamic polarizabil
ities SI( iv). We obtain for Ne 9.98, for Ar 17.95, for Kr
35.95, and for Xe 53.96 compared to the nonrelativistica
exact values 10, 18, 36, and 54, respectively.

In the ns(3/2)25$@(n21)p3/2#
21ns1/2%2 state core exci-

tations to the occupied magnetic substates of thens1/2 par-
ticle state are not allowed by the Pauli exclusion princip
and neither are the core excitations from the empty magn
substate of the hole (n21)p3/2. To remove these transition
from the core polarizability contribution (SI

2)core, we intro-
duce a counter term (SI

2)cntr. Explicitly in the independent-
electron model

~SI
2!cntr~ iv!5@ I #@J#~21! I 1J

3S (
a

~«v2«a!^auuduuv&2

~«v2«a!21v2 H 1 J I

j h j a j v
J 2

1(
m

~«m2«h!^huuduum&2

~«m2«h!21v2 H 1 J I

j v j m j h
J 2D .

We estimate the counterterm using the Dirac-Hartree-F
approximation. This term typically contributes less than 1
to the totalSI( iv).

The largest contribution to the sumsSI arises from the
intermediate states in the lowestnp fine-structure multiplet.
The determination of electric-dipole matrix elements
volved in the sum (SI

1)np requires a knowledge of both deca
rates and branching ratios in the manifold. The relevant l
times have been measured to within an error less than 1%
Ne @8,9#, Ar @10#, and Kr @11#, and less than 3% for Xe
@12–14#. However, the branching ratiosB are not established
to the same precision. The most accurate measurementsB
in Ne @8,9#, have an error bar of approximately 4%–5%
which would introduce an uncertainty of 4%–5% in th
1-3
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A. DEREVIANKO AND A. DALGARNO PHYSICAL REVIEW A 62 062501
static polarizabilities, and 8%–10% inaccuracy in the valu
of C6. To reduce the consequent errors, the experime
values of the static polarizability, accurate to 2%, were c
sen as the reference data.

The branching ratios of transitions to thens(3/2)2 state
have been adjusted as follows. The sumS3(0) includes only
one intermediate state in thenp manifold, np(5/2)3, and
very small ab initio corrections. Thenp(5/2)3 state has a
single decay channel, so that the sumS3(0) is known with
the experimental precision of the decay rate. The sumsS2(0)
and S1(0) can be deduced from the experimental values
the static tensor polarizability as

S1~0!52 9
14 S3~0!15azz~1!2 5

4 azz~2!,

S2~0!5 5
14 S3~0!2 15

4 azz~2!.

Removing smallab initio and semiempirical core-excitatio
contributions from these sums, the sums (S1

1)np(0) and
(S2

1)np(0) are obtained. The branching ratiosB for four
states involved in theJ51 sum and three states in theJ
52 sum were multiplied by a uniform scaling facto
Branching ratios for Ne@8# for the J51 levels were multi-
plied by 1.0035, and for theJ52 level by 0.905 in order to
reproduce the experimental values of the static tensor po
izabilities. We modified the recommended values ofB for Ar
@15# by multiplying the branching ratios of theJ51 states by
0.973 and of theJ52 states by 0.965; the values used in t
calculations are listed in Table I. For Kr the velocity-gau
branching ratios, tabulated in Ref.@2# from calculations by
Aymar and Coulombe@17#, were multiplied by 1.127 for the
J51 states and by 1.0016 for theJ52 states. For Xe,
velocity-gauge values ofB calculated in Ref.@17# were mul-
tiplied by 0.927 for theJ51 states and by 0.929 for theJ
52 states. The adjusted data for Ar and Xe are listed
Table I. Doeryet al. @2# have compiled the input data for N
and Kr, which have to be similarly modified.

TABLE I. Input data for Ar and Xe calculations. Lifetimest for
Ar are from Volz and Schmoranzer, Ref.@10#, and for Xe from
Inoue et al., Ref. @12#, except where noted. Branching ratiosB to
the ns(3/2)2 level are adjusted to reproduce experimental ten
dipole polarizabilities, as discussed in the text.

Ar, n54 Xe, n56
State t, ns B(%) t, ns B(%)

np8(1/2)1 27.85~7! 17.66 43.5~1.5!b 5.15
np8(3/2)2 29.01~7! 10.59 38.1~1.3!c 2.30
np8(3/2)1 29.83~8! 1.84 49~2! 1.16
np(3/2)2 28.52~7! 68.55 31~1! 65.42
np(3/2)1 29.62~7! 14.97 37~1! 7.45
np(5/2)2 31.17~7! 27.76 39~1! 33.29
np(5/2)3 29.00~7! 100.00 31~1! 100.00
np(1/2)1 39.2~2.2!c 72.11 38~1! 87.60

aAllen et al., Ref. @14#.
bHusson and Margerie, Ref.@13#.
cWieseet al., Ref. @15#.
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We employ the constructed reduced polarizabilit
SI( iv) to calculate the intermediate uncoupled dispers
coefficientsC6

JaJb by quadrature using Eq.~8!. The coeffi-
cients are listed in Table II. They are to be used if the en
molecular Hamiltonian, including quadrupole-quadrupo
and higher multipoles or perturbation-theory orders is to
diagonalized. Finally, the molecular terms are obtained
the diagonalization ofHeff

(2) , given by Eq.~5!. Neglect of the
small corrections due to the quadrupole-quadrupole inte
tion results in parameterization of term energies in the fo

U~R!52E* 2C6 /R6.

The calculated dispersion coefficientsC6 for various mo-
lecular symmetries are listed in Table III. Since the regi
close tov50 contributes the most to the values of the in
gral in Eq.~8!, the uncertainty in the values ofC6 is approxi-
mately 4%, reflecting the 2% experimental error in the sta
dipole tensor polarizabilities@18#. The values of theC6 co-
efficients grow monotonically from Ne to Xe, due to th
reduction in the energy separations between the metas
states and thenp manifold. For heavier systems the aniso
ropy in C6, arising from relativistic effects, becomes increa
ingly marked, from 6.5% in Ne to 16% in Xe.

Long-range dispersion coefficients for two interacti
metastable Ne atoms were evaluated recently by Doeryet al.
@3# The C6 coefficients were calculated from the diagona

r

TABLE II. Intermediate dispersion coefficientsC6
JaJb, a.u., mul-

tiplied by a factor 1023.

C6
11 C6

21 C6
22 C6

31 C6
32 C6

33

Ne 4.945 27.333 10.89 10.92 216.21 24.14
Ar 12.48 217.42 24.39 27.12 237.88 59.02
Kr 15.12 220.18 27.01 31.80 242.44 66.96
Xe 23.24 229.22 36.91 47.74 260.06 98.31

TABLE III. Dispersion coefficientsC6 in a.u. for the interaction
of two metastablens(3/2)2 noble-gas atoms.

Term Ne Ar Kr Xe

4g 1877 4417 4994 7138
3g 1919 4565 5195 7490
3u 1922 4583 5224 7557
2g 1967 4751 5459 7991
2g 1935 4629 5286 7664
2u 1934 4623 5276 7641
1u 1983 4811 5543 8148
1g 1982 4810 5541 8145
1g 1920 4574 5210 7524
1u 1920 4574 5210 7526
0g

1 1999 4872 5629 8311
0g

1 1968 4756 5467 8010
0u

2 1966 4747 5452 7975
0u

2 1877 4418 4996 7140
0g

1 1877 4418 4996 7140
1-4
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LONG-RANGE INTERACTION OF TWO METASTABLE . . . PHYSICAL REVIEW A 62 062501
ization of the molecular dipole-dipole Hamiltonian in th
model space containing the lowestnp manifold, so limiting
the intermediate states to the lowestnp-manifold states in
the present formulation. Experimental values of decay ra
and branching ratios were used to deduce the electric-di
matrix elements. The precision of the calculated values ofC6
is about 8%–10% due to the large uncertainty in the bran
ing ratios. The values ofC6 from Ref. @3# for different mo-
lecular symmetries vary between 1951 and 1956 a.u., ex
iting much less anisotropy than the present results that ra
between 1877 and 1999 a.u. The difference can be trace
the anisotropy in the static dipole polarizabilities. Indee
utilizing input data from Ref.@3# we obtain azz(M51)
5192 andazz(M52)5189 a.u. if we include only thenp
manifold as in Ref.@3#. While azz(M51) agrees with the
experimental value@18# 192~4!, the azz(M52) is overesti-
mated by three standard deviations compared to the ex
mental value 180~3! a.u.

The accuracy of the dispersion coefficients could be
proved by applying relativistic all-order many-body metho
@23,24# to calculate transition amplitudes betweenns2np
manifolds. Suchab initio calculations are intrinsically more
challenging than for alkali-metal atoms; the accurate exp
mental lifetimes would provide an excellent gauge of ac
racy.

Our values ofC6 coefficients will be useful in studies o
cold collisions of metastable rare-gas atoms@1–4#. In the
ol
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-
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limit of high temperatures, we can estimate the rate coe
cient for Penning ionization by ignoring spin polarizatio
and assuming that every trajectory that surmounts the an
lar momentum barrier leads to ionization@1,25#. The corre-
sponding rate coefficient is given by@25#

k56.3531029
C6

1/3T1/6

m1/2
cm3 s-1,

wherem is the reduced mass measured in units of the e
tron mass andT is the temperature. At ultralow temperature
the s-wave scattering becomes dominant and the Penn
ionization rate becomes independent of the temperature@1#.

Combined with short-range potentials@3,26# a number of
other properties could be determined. For example, sca
ing lengths of elastic collisions could be found, providin
input for mean-field equations describing dilute quantu
gases.
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