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Long-range interaction of two metastable rare-gas atoms

A. Derevianko and A. Dalgarno
Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138
(Received 30 May 2000; published 27 October 2000

We present semiempirical calculations of long-range van der Waals interactions for two interacting meta-
stable rare-gas atoms Ne through Xe. Dispersion coeffici€gtare obtained for homonuclear molecular
potentials asymptotically connecting to thmes(3/2),+ns(3/2), atomic states. The estimated uncertainty
of the calculatedC4 dispersion coefficients is 4%.

PACS numbe(s): 32.10.Dk, 34.20-b, 32.70.Cs

Motivated by cold-collision studies of metastable rare-gasstates has four fine-structure statess’(1/2),,; and
atoms[1-4] and prospects of achieving Bose-Einstein con-ns(3/2), ,, and the loweshp manifold consists of ten states.
densation in these systerfiS], we present calculations of We investigate here the molecular potentials asymptotically
long-range dispersiofvan der Waals coefficients for two  connecting to thens(3/2), atomic states.
atoms interacting in thes(3/2), atomic statesr(=3 for Ne, We calculate the long-range molecular potentials in the
n=4 for Ar, n=5 for Kr, andn=6 for Xe). The metastable framework of Rayleigh-Schabnger perturbation theory. The
states have long lifetimes, 43 s for X8|, decaying to the basis functions are defined as products of atomic wave func-
ground 'S, state by a weak magnetic-quadrupole transitiontions
With such a long lifetime the metastable atom behaves as an
effective ground state in experiments. Compared to alkali- IM1M5;Q)=|Nns(3/2);M1)1|nS(3/2) ;M )5, (1)
metal systems, an attractive feature of the noble-gas atoms is
the availability of isotopes with zero nuclear spin. The lackwhere the index () describes the wave function located on
of hyperfine structure leads to a substantial simplification othe center (2) andQ=M;+M,, M, , being projections of
molecular potentials, though some complexity arises due tthe atomic total angular momentum on the internuclear axis.
the nonvanishing total electron angular momentdss ) of  Due to the axial symmetry of a dimef) is a conserved
the metastable state. The anisotropy leads to 15 distinct longruantum number. It takes values ranging from zero to four.
range molecular states connecting to thes(3/2), The two-atom basiél) is degenerate and the correct molecu-
+ns(3/2), asymptotic configuration. lar wave functions are obtained by diagonalizing the molecu-

Our theoretical treatment of long-range interactions islar Hamiltonian
similar to recent high-precision calculations of van der
Waals coefficients for alkali-metal ator§]. By using A=A,+H,+V(R). 2)
many-body methods and accurate experimental matrix ele-
ments for the principal transitions, leading dispersion coeffi-

. . In expression2) H, represent the Hamiltonians of the two
cientsCg were determined to an accuracy better than 1% for P (2) Hy rep

Na, K, and Rb, and of 1% for Cs and 1.5% for Fr. The nomnteracting at(_)ms, ar’fﬂ(R) is the interaction potential at
semiempiricavalues ofCy coefficients for metastable noble- &0 intemnuclear distand@ The energy of thes(3/2), meta-
gas atoms obtained here have an estimated uncertainty 8fable state is designated&s Then in the model spad@):
4%. The approach relies on the determination of dynamic L

polarizability functions. To construct the polarizabilities we (Hi+H) MM Q) =28 [M1M,; Q).

combine experimental lifetimg8—15] and energy data of the

excited states with accurate semiempirical dynamic polarizThe residual electrostatic potenti(R) is defined as the full
abilities of the ground states of noble-gas atdm8]. The  Coulomb interaction energy in the dimer excluding interac-
theoretical lifetimes and branching ratids/] are adjusted to  tions of the atomic electrons with their parent nuclei.

reproduce the measured static polarizabilifis], which are The multipole interactionsl(=1 for dipole-dipole, and
known with a 2% uncertainty. We estimated the additional_ =2 for quadrupole-quadrupole interactipreze given by

small contributions within the Dirac-Hartree-Fock frame-[19]

work. The resulting polarizabilities satisfy the Thomas-

Reiche-Kuhn(TRK) oscillator strength sum rule. 1 L (2L)!
The Racah notation for atomic levels is used. The V| (R)=—— > — |

particle-hole states are labeledrd¢K); or nl’(K);, where R p=L (L=t L+ p)!

n and| are the principal and the orbital angular momentum 3

guantum numbers of the valence electron adteJ.+1, ) ) )

whereJ, is the angular momentum of the core. The primedWith the multipole spherical tensors

configurations converge to a Rydberg series limit with a hole

in the (h—1)p4, state, and the unprimed to a hole in the T(L):_|e|2 e F) (4)

(n—1)pg, state. The manifold of the lowests valence K oo

(T (1Y),
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where the summation is over atomic electronsis the po- | 2 1 1 I 1 2

sition vector of electroni, and C{?(r;) are normalized AW(MLMD:( M N e (D)
. . . . 1 MM m A Ml

spherical harmonicg20]. In the following we writed,,

=TV andQ,=T?. where m=3(M;+M;+\—u). The intermediate (un-

The lowest-order contribution to the term energies arisegoupled dispersion coefficients are

from the quadrupole quadrupole mteractkz)gmq which var- 3

ies as 1R®. However, the correspondin@s coefficients are clado— —fwd St (iw)Ss (i 8
only of the order 18— 107 a.u.[2], and the dominant contri- 6 o 0 (10)S,(1e) ®
bution appears in the second ordeM(R), arising from the

dipole-dipole interactioﬁ/dd. The second-order dipole inter-
action is proportional to R®, and the associated dispersion
coefficientCg is of the order of 16— 10° a.u. Applying the
formalism of degenerate perturbation theory in second ordeé (iw)

[21], we obtain an effective Hamiltonian within the two-

atom basis Eq(1): (& =& )(ns(3/2) 2||d||a,|><a|I||d||ns(3/2)2)

@) (Sk 5a|)2+w

The reduced dynamic dipole polarizabili§(i w) of purely
imaginary argument is defined as the sum over atomic states
|, 1M ) with total angular momenturhand energ)é’al:

(mIHEn)=2* G+ (m|Vgqn)

. . 9
(M[Vgg W){Wi[Vyq[n) , ,
2 . ) Here «; stands for all quantum numbers of the intermediate
Vi 28 —E state, except for the total angular momentyrand(i||d||j)
are the reduced electric-dipole matrix elements, defined by
The intermediate molecular stgt#;) with unperturbed en- the Wigner-Eckart theorem. Three sums with1,2,3 are
ergy E; runs over a&completeset of two-atom states, exclud- allowed by electric-dipole selection rules.
ing the model-space states Ed). The formalism of the We proceed now to construct the dipole polarizability
generalized Bloch equatid@2] would allow the inclusion in  functionsS,(i w), Eq. (9), evaluate the uncoupled dispersion
the model space of the other three atomic states imthe coefficients(8), and set and diagonalize the second-order ef-
manifold and would account for the mixing of the different fective Hamiltonian(5).
fine-structure levels; but such a large model space is not The functionsS, (i w) satisfy several sum rules. In particu-
necessary foR>10 a.u. The position of the avoided level lar, the static tensor dipole polarizabilitg, (M) of the
crossing can be estimated fronR, ;~2Cg/ (Ens(g,z)l ns(3/2), state may be expressed as
—&ns(312),) ~ 10 a.u. Thed =4 molecular term is unique and
. . . . . 2 1 1
being unaffected by avoided crossings, the region of appli- a,(M)=—2 E (_1)I(
cability is extended t&®~n a.u., before the electronic clouds I -M 0 M
start to overlap. The effect of the quadrupole-quadrupole in- (10
teraction on the term energy can be disregarded at values
R<C4/Cs~10° a.u. The quadrupole-quadrupole correction
is discussed by Doergt al.[3].
Using the Wigner-Eckart theorem, we can represent th
matrix element of the dipole-dipole term in the effective
second-order Hamiltonian as

2
X S,(0).

%e static tensor dipole polarizabilitiea,(M=1) and
a,{M=2) of metastable noble-gas atoms Ne through Xe
Have been measured by Molef al. [18] to within an error

of 2%. In the present calculations the valuesSpf0) are
adjusted to reproduce these experimental values. In addition,
as w—, the reduced polarizabilities satisfy the nonrelativ-

- . o istic TRK sum rule
D (MM QVyg Wi )(Fi|Vad MIM5; Q)

v 28 —E; 2 fk”_%Z I+lS|(i°°):Na (13)

n

=—— E CJ Jb( 1)%a ”b; N being the number of electrons in the atom. Our constructed
n’ polarizabilities satisfy the sum rule.
It is instructive to consider the action of a one-particle
XZ wiwiAii(Ml,Mi) operator on the reference particle-hole Slater determinant
A ns(3/2), in the independent electron approximation. Such an
operator can(i) annihilate the reference particle-hole pair;
(ii) promote a valence electron from ths,;, state to another
valence statenp, 3/», the state of ther(—1)pz/, hole being
The dipole weightsw; arew},;=w';=1, andwg=2. J,  unchangedjiii) de-excite the i—1)ps, hole into some
andJ, are the corresponding total angular momenta of interother hole state, the valence state remaining the same, and
mediate atomic states of atoms 1 and 2, and (iv) create another particle-hole pair in addition to the refer-

X AT (Q-M,Q-M)). (6)
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ence pair. According to such a classification it is convenienThe calculated term&")’ (w=0) typically contributes at the
to break the polarizability function, Eq9), into three con- 1% level to the reduced sun®(0) for all the systems we
tributions S',‘ corresponding to a numbée of particle-hole  consider.
pairs in the intermediate state,!): We separate the su@ﬁ over the core excited states into
two contributions:
S=S"+S+57.
S|2: (Slz)core+ (Slz)cmr-
Since an electric-dipole transition froms(3/2), to the
closed-core statéS, is prohibited by the angular selection The first term is associated with the dynamic polarizability

ru|es,s?Eo. ay(iw) of the closed-shell ground statkS, and the second
The sumS' is separated into contributions from the inter- €M IS & corrective counter term.

mediate states in the lowestp fine-structure multiplet 0

(S} np, and the rest of the sunsf)': (Sf)coréiw)=(—1)'+‘]+17ag(iw)- (12)

S=(SHnpt(Sh'.

The first term is the dominant contribution. We calculat Th - q : t th larizabilities i
(S,l)np using experimental values of transition energies an e estimated uncertainty of these core polarizabilities s

decay rates, and adjusted branching ratios. The rest of t gSS 'than 1%. The pri'mgry role of the core polarizability is to
sum over valence statgécluding bound and continuum _prowde the correct I'm't[Eq.' (1.1)] at w—ce. Th_e relative
stated (Sll)' is estimated in the Dirac-Hartree-Fo@®HF) importance of the core-excitation contribution increases for

approximation. The metastable stat;J) in lowest order heavier systems; for example, in a similar calculation for Fr
app : Co ’ . [7], core excitations contribute 23% of tH&,; dispersion
is represented as a combination of the=ns,,, particle

o coefficient. The high-frequency limit, E§11), is accurately
state and the hole stajfe) =(n— 1)pg;, coupled to the total reproduced by the presetatal reduced dynamic polarizabil-

_ _ -1
angular momentumJ=2, {[(n—1)Pg] NSz, The ities S;(iw). We obtain for Ne 9.98, for Ar 17.95, for Kr

lowest-order energy of such a statefs=¢, —en, & DeINg 35 o5 "4 for Xe 53.96 compared to the nonrelativistically
the energy of the DHF orbitdi). The intermediate state is exact values 10, 18, 36, and 54, respectively

represented asnal), a particle sta_te_n coupled with hole In the ns(3/2),={[(n— 1)pss] NSy}, State core exci-
statea to the total momentunh. Explicitly, tations to the occupied magnetic substates ofrthg, par-
(SH (iw)=(—1)**'[1][J] ticle state are not allowed by the Pauli exclusion principle,
! and neither are the core excitations from the empty magnetic

We use the semiempirical dynamic polarizabilities for the
eground states of noble-gas atoms of Kumar and M EBbh

(e,—&m) (v]|d]|m)?2 substate of the holen(=1)p5,. To remove these transitions
x> (5ha e from the core polarizability contributionSf) e, We intro-
ma (6,7 em) "+ o duce a counter term&)..,. Explicitly in the independent-
><| J 1 1 ]2+5 (84— &) (h]|d]|a)? electron model
jm dn o ™ (4= &)+ w? (SHenuliw)=[17[I](—1)' "
J 1 1)? (e,—ex)(al|d|[v)?2(1 I 1)?
NE ] | s a<2||||2> o
Ja Jv In a  (g,~gy)tw In Ja o
where[K]=2K+1, the summation is performed over the n (em—ep)(hl|d[m)2[1 I 1)2
core orbitalsa and excited states), excluding states of the V24,2 i i '
m (Sm 8h) +w Jo Jm n

lowest np multiplet, andJ=2. The first sum is associated

with excitation of the valence electrduase(ii)] while the  We estimate the counterterm using the Dirac-Hartree-Fock
second sum with de-excitation of the hole statase(iii)].  approximation. This term typically contributes less than 1%
To arrive at this result we disregarded the coupling betweenp the totalS, (i ).

levels within the same fine-structure multiplet. For example, The largest contribution to the sun arises from the

for Ne the [(2ps) '4pipls. [(2Ps) '4panls, and  intermediate states in the lowesp fine-structure multiplet.
[(2p12) ~*4pspl, states are summed over independently,The determination of electric-dipole matrix elements in-
even though the correct lowest-order wave function is a linyolved in the sum $|l)np requires a knowledge of both decay
ear combination of them. This approximation corresponds t@ates and branching ratios in the manifold. The relevant life-
a disregard of the small difference between the energies Gfmes have been measured to within an error less than 1% for
the coupled and uncoupled states. Since the contributiofe [8,9], Ar [10], and Kr[11], and less than 3% for Xe
(Sh' is relatively small, such an estimate suffices at thg12_14. However, the branching rati@are not established
present level of accuracy. Numerical evaluation §f)( has  to the same precision. The most accurate measuremeBts of
been performed using B-spline basis set in théy_; DHF  in Ne [8,9], have an error bar of approximately 4%-—5%,
potential, with the hole in then(—1)p5, core orbital[23].  which would introduce an uncertainty of 4%—-5% in the
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TABLE I. Input data for Ar and Xe calculations. Lifetimesfor

Inoue et al, Ref.[12], except where noted. Branching ratiBsto
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TABLE II. Intermediate dispersion coefficient%ajb, a.u., mul-
Ar are from Volz and Schmoranzer, R¢fL0], and for Xe from tiplied by a factor 10°.

the ns(3/2), level are adjusted to reproduce experimental tensor

21
CB

22
C6

31 32
CG CG

33
CB

dipole polarizabilities, as discussed in the text.

Ne 4945 —7.333 10.89 1092 -—-16.21 24.14

Ar, n=4 Xe,n=6 Ar 12.48 —17.42 2439 27.12 —37.88 59.02
State 7, NS B(%) 7, Ns B(%)  Kr —-20.18 2701 31.80 —42.44 66.96
Xe —29.22 36.91 47.74 —60.06 98.31
np'(1/2), 27.857) 17.66 4351.5° 515
np’(3/2), 29.047)  10.59 38.11.3° 2.30
np’(3/2), 29.838) 1.84 492) 1.16 We employ the constructed reduced polarizabilities
np(3/2), 28.527)  68.55 311) 65.42 S(iw) to calculate the intermediate uncoupled dispersion
np(3/2), 29.627)  14.97 37 7.45 coefficientscéa“'lb by quadrature using Ed8). The coeffi-
np(5/2), 31.147)  27.76 391) 33.29  cients are listed in Table Il. They are to be used if the entire
np(5/2)3 29.0Q7)  100.00 31) 100.00  molecular Hamiltonian, including quadrupole-quadrupole
np(1/2), 39.22.29° 7211 381) 87.60  and higher multipoles or perturbation-theory orders is to be
ot e dagorlend, Frah, o mler e ar o iy
PHusson and Margerie, RefL3]. 9 eff » 9 Yy £0.{5). N€g

‘Wieseet al, Ref.[15].

static polarizabilities, and 8%—-10% inaccuracy in the values

small corrections due to the quadrupole-quadrupole interac-
tion results in parameterization of term energies in the form

U(R)=2&* —C4/RE.

of Cg. To reduce the consequent errors, the experimental
values of the static polarizability, accurate to 2%, were cho-The calculated dispersion coefficien® for various mo-
sen as the reference data.

The branching ratios of transitions to times(3/2), state
have been adjusted as follows. The s8§(0) includes only

one intermediate state in thep manifold, np(5/2);, and

very smallab initio corrections. Thenp(5/2); state has a
single decay channel, so that the s@s{0) is known with

the experimental precision of the decay rate. The s85(8)
and S;(0) can be deduced from the experimental values oftates and thep manifold. For heavier systems the anisot-
the static tensor polarizability as

$1(0)=—13S5(0) +5a,41) — § ;42),

$,(0)=13S5(0

15
)~ T,

A2).

lecular symmetries are listed in Table Ill. Since the region
close tow=0 contributes the most to the values of the inte-
gral in Eq.(8), the uncertainty in the values &f; is approxi-
mately 4%, reflecting the 2% experimental error in the static
dipole tensor polarizabilitieg18]. The values of the&Cg co-
efficients grow monotonically from Ne to Xe, due to the
reduction in the energy separations between the metastable

ropy in Cg, arising from relativistic effects, becomes increas-
ingly marked, from 6.5% in Ne to 16% in Xe.

Long-range dispersion coefficients for two interacting
metastable Ne atoms were evaluated recently by Deeay.
[3] The Cg4 coefficients were calculated from the diagonal-

TABLE Ill. Dispersion coefficient£q in a.u. for the interaction

Removing smallb initio and semiempirical core-excitation qf tyo metastables(3/2), noble-gas atoms.

contributions from these sums, the sum%%)(m(O) and

(S%)np(O) are obtained. The branching rati@&s for four

states involved in thed=1 sum and three states in tide
=2 sum were multiplied by a uniform scaling factor.
Branching ratios for Ng¢8] for the J=1 levels were multi-
plied by 1.0035, and for thé=2 level by 0.905 in order to
reproduce the experimental values of the static tensor polar-
izabilities. We modified the recommended value8dbr Ar

[15] by multiplying the branching ratios of the=1 states by
0.973 and of thd=2 states by 0.965; the values used in the
calculations are listed in Table I. For Kr the velocity-gauge
branching ratios, tabulated in R¢®] from calculations by
Aymar and Coulombgl7], were multiplied by 1.127 for the
J=1 states and by 1.0016 for th&=2 states. For Xe,
velocity-gauge values d calculated in Ref[17] were mul-
tiplied by 0.927 for thel=1 states and by 0.929 for the

=2 states. The adjusted data for Ar and Xe are listed in
Table I. Doeryet al.[2] have compiled the input data for Ne

Term Ne Ar Kr Xe

4, 1877 4417 4994 7138
34 1919 4565 5195 7490
3, 1922 4583 5224 7557
24 1967 4751 5459 7991
24 1935 4629 5286 7664
2, 1934 4623 5276 7641
1, 1983 4811 5543 8148
14 1982 4810 5541 8145
14 1920 4574 5210 7524
1, 1920 4574 5210 7526
0y 1999 4872 5629 8311
0y 1968 4756 5467 8010
0, 1966 4747 5452 7975
0, 1877 4418 4996 7140
o} 1877 4418 4996 7140

and Kr, which have to be similarly modified.
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ization of the molecular dipole-dipole Hamiltonian in the limit of high temperatures, we can estimate the rate coeffi-
model space containing the loweasp manifold, so limiting  cient for Penning ionization by ignoring spin polarization
the intermediate states to the lowegt-manifold states in and assuming that every trajectory that surmounts the angu-
the present formulation. Experimental values of decay ratelr momentum barrier leads to ionizati¢h,25]. The corre-

and branching ratios were used to deduce the electric-dipolgponding rate coefficient is given Bhg5]

matrix elements. The precision of the calculated valugSgf

is about 8%—-10% due to the large uncertainty in the branch-

ing ratios. The values ofg from Ref.[3] for different mo- ,CelTe .
lecular symmetries vary between 1951 and 1956 a.u., exhib- k=6.35<10 12 cm’® s
iting much less anisotropy than the present results that range K

between 1877 and 1999 a.u. The difference can be traced to
the anisotropy in the static dipole polarizabilities. Indeed
utilizing input data from Ref[3] we obtain a,(M=1)
=192 anda,(M=2)=189 a.u. if we include only thep

'where w is the reduced mass measured in units of the elec-
tron mass and is the temperature. At ultralow temperatures,

b : ) : the swave scattering becomes dominant and the Penning
manifold as in Ref[3]. While a,{M=1) agrees with the jgnization rate becomes independent of the temperdtire
experimental valu¢18] 1924), the a, (M =2) is overesti-  combined with short-range potentid®,26] a number of
mated by three standard deviations compared to the expefiher properties could be determined. For example, scatter-

mental value 18@) a.u. _ - _ing lengths of elastic collisions could be found, providing
The accuracy of the dispersion coefficients could be iminnyt for mean-field equations describing dilute quantum
proved by applying relativistic all-order many-body methodsgasesl

[23,24] to calculate transition amplitudes betwees—np

manifolds. Suchab initio calculations are intrinsically more This work was supported by the U.S. Department of En-

challenging than for alkali-metal atoms; the accurate experiergy, Division of Chemical Sciences, Office of Energy Re-

mental lifetimes would provide an excellent gauge of accusearch. Thanks are due to M. R. Doery, S. Kotochigova, and

racy. J. F. Babb for useful discussions. The authors are grateful to
Our values ofCq coefficients will be useful in studies of W. R. Johnson for providing th&-spline routine for the

cold collisions of metastable rare-gas atopis-4]. In the V| _; Dirac-Hartree-Fock potential.
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