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Using the relativistic Hartree-Fock approximation, we calculate the rates of atomic ionization by

absorption of axions of the energies up to 100 keVand for an arbitrary value of the axion mass. We present

numerical results for atoms used in the low radioactive background searches of dark matter (e.g., Ar, Ge,

and Xe), as well as an analytical formula which fits numerical calculations for the absorption cross

sections and can be applied to other atoms, molecules, and condensed matter systems. Using the cross

sections for the axio-electric effect, we derive the counting rates induced by solar axions and set limits on

the axion coupling constants.
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I. INTRODUCTION

The idea of dynamical adjustment of the electroweak
vacuum that cancels the � angle of QCD [1] is perhaps
the most natural solution to the strong CP problem. This
mechanism inevitably leads to the conclusion about the
existence of a light pseudoscalar particle in the spectrum,
called the axion [2]. Breaking of axialUð1Þ symmetry by the
QCD anomaly gives a nonperturbative mass to axions with

m2
a / m�jh �qqij

f2a
: (1)

Here m� ¼ ðm�1
u þm�1

d Þ�1 is the combination of quark

masses, h �qqi is the quark condensate, and fa is the axion
coupling scale. While original models linked fa to the weak
scale, it was soon realized that it can be in fact arbitrarily
large [3], limited only by cosmological and astrophysical
considerations (see, e.g., [4]).

While the mass of the QCD axion is rigidly linked to its

coupling with the topological termGa
��

~Ga
�� via Eq. (1), any

axion model allows for additional derivative-type couplings
to axial currents of quarks and photons, JA�@�a=fa, that

obey the shift symmetry of the axion interactions. Over the
years, a lot of experimental activity has been devoted to
detecting axions by using interactions of this form. Some
methods employ finite cosmological number density of relic
axions, while others use the idea of detecting axions that are
produced in the solar interior. For a comprehensive review
of axion-related phenomenology, see, e.g., Refs. [5–7].

A dedicated search for solar axions, such as CAST [8],
uses conversion of keV-energy axions into x-ray photons in
the magnetic field. Although stringent constraints on the
axion coupling constant have been imposed by such
searches, only recently did they become competitive with
the broad range of astrophysical constraints.
An alternative way of detecting solar axions was pro-

posed in Ref. [9]. The coupling of axions to electrons can
lead to atomic ionization and therefore be searched for
with high radio-purity materials in the underground experi-
ments. The past decade has seen a proliferation of such
experiments that source their main scientific motivation in
searching for the nuclear recoil from scattering of weakly
interacting massive particles (WIMPs), a putative compo-
nent of galactic dark matter. Many of these experiments are
also able to detect ionization created by solar axions down
to a relevant energy scale of a few keV. Some constraints
on solar axions were already imposed by the CDMS
experiment [10]. This analysis was also extended to the
absorption of the superweakly interacting massive particles
(super-WIMPs) that may also plausibly be dark matter
candidates [11]. In the case of pseudoscalar particles, the
latter possibility departs, of course, from the mass-
coupling relation suggested by (1). To make the distinction
clear, we shall designate the solar axions as ‘‘massless’’ or
relativistic and refer to the massive keV-scale axions as
super-WIMPs. The constraints on super-WIMP axions
were improved recently in Ref. [12].
Up until this year, the theory of the axio-electric effect

was using very simplistic formulas relating the cross
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sections of axion absorption to the photoelectric one
[13,14] (notice that the original paper [13] contained a
factor of 2 error, corrected in Ref. [14]). Earlier this year,
three of us have updated these calculations for the case of
the massive axions by using the relativistic Hartree-Fock
calculations [15]. In this paper, we calculate the axio-
electric effect caused by axions of arbitrary mass, includ-
ing the relativistic case. Convoluted with the flux of the
axions emitted by the solar interior, these results would
enable searching/setting limits on the models of light ax-
ions that have direct couplings to electrons. Such calcula-
tions are especially timely in light of several dark matter
experiments reporting an excess of events over the
expected background in the keV region [12] (see also
Ref. [16], where the annual modulation of the keV-scale
energy deposition is claimed). These results can be gener-
alized to constraints on the emission of other light particles
that couple to spin, e.g., in models with additional gauge
bosons coupled to the spins of electrons [17].

The main setup of our calculation is given in the next
section. Section III presents the results for the axio-electric
cross sections. Section IV contains calculations of the
expected signal from the solar axion absorption, and the
appendix provides additional details on atomic calculations.

II. THEORY

The Hamiltonian for the pseudoscalar axion a interact-
ing with electrons can be written in two equivalent ways
[14] (see also the appendix):

Ĥ a ¼ 2
me

fa
a �c i�5c ; (2)

Ĥ a ¼ �@�a

fa
�c���5c ; (3)

where energy scale parameter fa parameterizes the
strength of the interaction, me is the electron mass, a is
the axion field, and c is the electron Dirac field.

Following our previous work we present the cross sec-
tion of the atomic ionization by absorbing an axion in a
form which contains a dimensionless function of the axion
energy Kð�aÞ:

�að�aÞ ¼
�
�0
fa

�
2 c

v
Kð�aÞa20; (4)

where �0 is an energy scale (in our calculations �0 ¼
1 a:u: ¼ 27:21 eV, but it can also be any other energy
unit), c is the speed of light, v is the axion velocity in the
laboratory frame, a0 ¼ 0:529 18� 10�8 cm is the Bohr
radius, and �a is the axion energy. The function Kð�aÞ
has no unknown parameters, and it is to be found from
numerical calculations. It can be presented in the form

Kð�aÞ ¼ 4�

�2

1

�a�
2
0

X
L;c;	

ð2Lþ 1Þh	jjĤajjnc	ci2; (5)

where c is a state in the atomic core, nc and 	c are its
principal and angular quantum numbers, respectively, and
	 is an angular quantum number for a state in the contin-
uum. Summation over L saturates very rapidly; we cut it at
Lmax ¼ 3. We use the relativistic Hartree-Fock method to
calculate electron wave functions in the core and in the
continuum.
The form of the single-electron matrix element depends

on the form of the Hamiltonian for the axion-electron
interaction (see the appendix for details). The first form
[see Eqs. (A9)–(A11) in the appendix] is simple. However,
it often leads to unstable results. This is due to strong
cancellation between the PiQj andQiPj terms in the radial

integral. The cancellation is of the order of 1=ðZ�Þ2, which
means that the formula can be reliably used only for heavy
atoms (e.g., Xe).
The second form of the single-electron matrix element

[see Eqs. (A16)–(A18) in the appendix] is more compli-
cated. However, it is more convenient for the calculations
since it gives stable results. In spite of some numerical
problems, comparing calculations with two different ex-
pressions is a valuable test of the calculations. Two forms
of the Hamiltonian must give the same results when exact
electron wave functions are used. Sincewe use the Hartree-
Fock wave functions, we can have only approximate agree-
ment between results. Therefore, comparing the results is
not only a test for the computer code but also a test for the
quality of the wave functions used. In our experience the
results agree within 10% for the cases when the first form
gives stable answers. The term ‘‘stable’’ means that varia-
tion of the axion energy leads to a smooth change in the
absorption cross section.
Note that all formulas in the appendix are for a closed-

shell atom. However, this is inessential in our case. We
consider axion energies (�a � 1 keV) for which the effect
is strongly dominated by inner closed shells while the
contribution from open valence shells is small and can be
neglected. This means that the results can be used for any
atom or ion with closed inner shells. They can also be used
for molecules and condensed matter systems since inner
atomic states depend very little on the environment.
In our present calculations the axion absorption cross

section depends on its mass. The only expression which
depends on axion mass explicitly is the expression for the
axion wave vector:

ka ¼ 1

@c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2a � ðmac

2Þ2
q

: (6)

In an extreme case of a heavy axion (mac
2 ¼ �a), axion

wave vector ka ¼ 0 and only the term with L ¼ 0 contrib-
utes to the summation in (5). This case was considered in
our previous work [15].
In the present work we consider both these cases. The

first case gives us a test for the computer code. The results
are the same as in our previous calculations [15].
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The second case gives new results for axion absorption
cross section by atoms. According to Ref. [14] the ratio of
the absorption probabilities for these two extreme cases is
equal to 2=3 in the nonrelativistic limit

�aðma ¼ 0Þc
�aðmac

2 ¼ �aÞv
¼ 2

3
: (7)

Below, we will discuss relativistic corrections to this
formula.

III. CALCULATIONS OF THE CROSS SECTIONS

Figures 1–3 show the results of the relativistic Hartree-
Fock calculations for Ar, Ge, and Xe of the dimensionless
function of the axion energy Kð�aÞ, which stands in the
expression for the cross section of atom ionization by axion
[see Eq. (4)]. Many-body and relativistic effects beyond
the relativistic Hartree-Fock approximation method are
ignored, and the final electron state in the continuum is
calculated in the same potential as the initial core state. The
accuracy of this approximation is a few percent due to the
dominating contribution from the innermost core states 1s,
2s, and 2p. For these states the many-body effects are
small due to a strong nuclear field.

The solid lines in Figs. 1–3 correspond to the case when
all axion energy is due to its mass (mac

2 ¼ �a). This is the
same case as was considered in our previous work [15].
The dotted line corresponds to the case of the massless
axion (ma ¼ 0). One can see that the ratio of the cross
sections is indeed close to 2=3 at low energies [see Eq. (7)].

However, the ratio becomes larger at high energies. For
sufficiently high axion energy, the absorption cross section
for a massless axion becomes larger than those for a
massive axion. This is due to the relativistic effects. We
found a formula for the ratio of the cross sections which fits
very well to the numerical calculations. The formula reads

RðZ;�aÞ� �aðma¼ 0Þ
�aðmac

2¼�aÞ
¼2

3
þ1:5�10�5Z2þ1:9�10�4�aþ�min

�0
: (8)

FIG. 1. Dimensionless factor K [see Eq. (5)] in the ionization
cross sections of Ar by axion. Solid line—massive axion
(mac

2 ¼ �a); dotted line—massless axion (ma ¼ 0).

FIG. 2. As in Fig. 1 but for Ge.

FIG. 3. As in Fig. 1 but for Xe.

AXIO-ELECTRIC EFFECT PHYSICAL REVIEW D 82, 065006 (2010)

065006-3



Here Z is the nuclear charge, �a is the axion energy, and
�min is the energy of the deepest electron state in the core
for which ionization is possible. Note that all states in the
core have negative energies; therefore, the ionization
threshold corresponds to the condition �a ¼ ��min.
Hartree-Fock energies of all core states for Na, Ar, Ge, I,
and Xe are presented in Table I. The �0 parameter in (8) is
the energy unit. The first term on the right-hand side of (8)
corresponds to the nonrelativistic limit; the second term is
the relativistic correction due to core electrons; the last
term is the relativistic correction due to the kinetic energy
of the escaping electron.

In our previous work [15] we presented an analytical
formula which is an accurate fit of the numerical calcula-
tions of the absorption cross section for the massive axion.
The formula can be used for a wide range of atoms and
axion energies. The formula reads

Kðmac
2 ¼ �aÞ ¼ K1s þ K2s þ K2p; (9)

K1s ¼ f1ðZ; �a þ �1sÞ 384��
4
1s

ð�0Z�aÞ2
e�4�1arccot�1

1� e�2��1
; (10)

K2s ¼ f2ðZ; �a þ �2sÞ 6144�e
3
2

�0�
2
a

�
1þ 3

e2
�a

�

� e�4�2arccotð�2=2Þ

1� e�2��2
; (11)

K2p ¼ f2ðZ; �a þ �2pÞ 12 288�e
4
3

�0�
3
a

�
3þ 8

e3
�a

�

� e�4�3arccotð�3=2Þ

1� e�2��3
; (12)

where � is the fine-structure constant, Z is the nuclear

charge, �a is the axion energy, e2 ¼ j�2sj, e3 ¼ j�2pj, �1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��1s=ð�1s þ �aÞ
p

, �2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2s=ð�2s þ �aÞ

p
, and �3 ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2p=ð�2p þ �aÞ

q
. Here �1s, �2s, and �2p are the

Hartree-Fock energies of the core states. Hartree-Fock
energies of the 1s, 2s, and 2p1=2 states of many-electron

atoms can be found by using extrapolation formulas:

�1s
�0

ðZÞ ¼ �Z2 � 7:49Zþ 43:39

2
; (13)

�2s
�0

ðZÞ ¼ �0:000 753Z3 � 0:028 306Z2 � 0:066 954Z

þ 2:359 052; (14)

�2p
�0

ðZÞ ¼ �0:000 739Z3 � 0:027 996Z2 þ 0:128 526Z

þ 1:435 129: (15)

The functions f1ðZÞ and f2ðZÞ in (10)–(12) are scaling
functions:

f1ðZ; �Þ ¼ ð5:368� 10�7Z� 1:17� 10�4Þ�=�0
� 0:012Zþ 1:598; (16)

f2ðZ; �Þ ¼ ð�1:33� 10�6Zþ 1:17� 10�4Þ�=�0
� 0:0156Zþ 1:15: (17)

To find a cross section for the massless axion one should
take Eq. (9) and multiply it by the factor RðZ; �aÞ given by
(8). Therefore, for the massless axion we also have the

TABLE I. Hartree-Fock energies of the core states of Na, Ar, Ge, I, and Xe (atomic units,
1 a:u: ¼ 27:21 eV).

Atom Na Ar Ge I Xe

Z 11 18 32 53 54

1s1=2 �40:54 �119:1 �411:0 �1225 �1277
2s1=2 �2:805 �12:41 �53:45 �193:0 �202:4
2p1=2 �1:522 �9:631 �47:33 �180:5 �189:6
2p3=2 �1:514 �9:547 �46:14 �169:5 �177:7
3s1=2 �0:1823 �1:286 �7:409 �40:52 �43:01
3p1=2 �0:5953 �5:324 �35:34 �37:66
3p3=2 �0:5878 �5:157 �33:21 �35:32
3d3=2 �1:616 �24:19 �26:02
3d5=2 �1:591 �23:75 �25:53
4s1=2 �0:5687 �7:759 �8:430
4p1=2 �0:2821 �5:868 �6:452
4p3=2 �0:2730 �5:450 �5:982
4d3=2 �2:341 �2:711
4d5=2 �2:274 �2:633
5s1=2 �0:8762 �1:010
5p1=2 �0:4341 �0:4925
5p3=2 �0:3903 �0:4398
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results which cover the same range of atoms and energies
as in Ref. [15].

IV. SOLAR AXION ABSORPTION SIGNAL

To calculate the rate of the axio-electric effect caused by
solar axions, we first address the issue of the total axion
flux. Both continuous and linelike emission are possible.
Here we take into account the emission of solar axions due
to their couplings to nucleons, to photons, and to electrons.
The easiest case to address is the nuclear case, as it leads to
a characteristic Ea ¼ 14:4 keV emission due to the nuclear
transition of the 57Fe nucleus [18]. The solar axion flux was
calculated in Ref. [19] (where CAST results were also used
to constrain it in combination with coupling of axions to
photons). On Earth this flux is given by

�a ¼ 4:5� 1023
�
1 GeV

faN

�
2 � cm�2 s�1; (18)

where faN is some effective coupling constant to nucleons
that can be related to the coupling of axions to quark spins.
The expected counting rates of argon, germanium, and
xenon experiments are given by

RAr ’ 4

�
106 GeV

ðfafaNÞ1=2
�
4
kg�1 day�1; (19)

RGe ’ 18

�
106 GeV

ðfafaNÞ1=2
�
4
kg�1 day�1; (20)

RXe ’ 11

�
106 GeV

ðfafaNÞ1=2
�
4
kg�1 day�1; (21)

respectively, where the following values for the K factors
are used:

KArð14:4 keVÞ ¼ 329; KGeð14:4 keVÞ ¼ 2746;

KXeð14:4 keVÞ ¼ 2930:

These rates should provide the sensitivity to ðfafaNÞ1=2 in
the window between 106 and 107 GeV. Similar strength
constraints were derived in the recent work [20], where a
�3% annual modulation of the axion signal was exploited
in conjunction with DAMA results. (Unlike the signal from
WIMP dark matter that is expected to have a maximum in
June, the solar axion signal is minimized in early July.) We
leave it to the experimental collaborations to determine the
exact upper limits on solar axions ensuing from their
results.

If the coupling to photons is not zero, F��
~F��a=ð4fa�Þ,

then we can calculate the counting rate, by using the axion
flux provided in Ref. [8]:

d�a

d�a
¼ 6:02� 1030

�
1 GeV

fa�

�
2

� �2:481a e�ð�a=1:205Þ cm�2 s�1 keV�1: (22)

Here �a is the axion energy in keV.
The counting rate for the axio-electric effect is given by

the product of the calculated absorption cross section and

the flux (22). For ðfafa�Þ1=2 normalized on 108 GeV, we

get the counting rates plotted in Fig. 4. Integration over
axion energy leads to the following total counting rates:

RAr ’ 5:0

�
108 GeV

ðfafa�Þ1=2
�
4
kg�1 day�1; (23)

RGe ’ 5:2

�
108 GeV

ðfafa�Þ1=2
�
4
kg�1day�1; (24)

RXe ’ 8:2

�
108 GeV

ðfafa�Þ1=2
�
4
kg�1 day�1: (25)

Comparing this to the counting rate of the CDMS
experiment [10], one can see that the equivalent of

ðfafa�Þ1=2 � 108 GeV are being probed, as the counting

rates in the window from 1.5 to 4 keV reach
Oð1 kg�1 day�1 keV�1Þ. Similar sensitivity is achieved in
the CoGent experiment [12].
Finally, the axion flux can be created by the emission of

the axions due to the same interaction that leads to atomic
ionization. In this case, however, the production cross
section is down by an additional factor of E2

a=m
2
e [14],

FIG. 4. Counting rate for the axio-electric effect for Ar, Ge,
and Xe as a function of axion energy.
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and the sensitivity to fa in this case does not exceed
106 GeV.

V. CONCLUSIONS

QCD axions represent one of the most well-motivated
extensions of the standard model. Their light mass and
small couplings allow them to be produced in the solar
interior and escape, reaching the Earth. With the prolifera-
tion of the low-background searches of dark matter, one
should also conduct searches of solar axions. In this paper,
we have calculated the cross sections relevant for these
searches, improving upon the simple scaling relations that
tie the axio-electric and photoelectric effects.

The past two years have brought significant progress in
sensitivity to any ionizing effects in germanium in the
window from 1 to 10 keV [10,12]. Currently, the CoGent
experiment has very low backgrounds in the window from
2 to 4 keV, where the solar axion signal is expected to peak.
With acquiring more statistics, the sensitivity to the solar
axions in this experiment is poised to grow. We also remark
at this point that the excess of events recorded by CoGent
below 1 keV does not fit the expected shape of the spec-
trum from solar axions. Future progress in searching for
solar axions may also come from the large scale detectors
with self-shielding capabilities.
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APPENDIX A: DERIVATION OF CROSS SECTION
FOR THE AXIO-ELECTRIC EFFECT

There are two equivalent expressions for the Lagrangian
describing coupling of pseudoscalar axions of mass ma to
electrons:

Ha ¼ 2
me

fa
a �c i�5c ; (A1)

H0
a ¼ � 1

fa
ð@�aÞ �c���5c : (A2)

Here c is the electronic wave function, and fa is a cou-
pling constant. The axion field a may be represented as

a ¼ Neiðk�r�!tÞ ¼ Ne�ik
x


;

with the dispersion relation

@! ¼ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc2Þ2 þ ð@cjkjÞ2

q
;

and N being the normalization constant.

We will treat the axio-ionization in the independent-
particle approximation for an atom. In the independent-
particle approximation, the atomic many-body wave
function is represented by a single Slater determinant built
from single-particle atomic orbitals. Then, as a result of the
axio-ionization, an atomic electron in the initial single-
particle orbital will be ejected into a continuum state. The
standard prescription for evaluating cross sections due to
Ha and H0

a requires computing matrix elements of transi-
tion operators:

Ta ¼ �eik�ri�0�5; (A3)

T0
a ¼ 1

2e
ik�rðik�Þ�0�

��5: (A4)

In the last formula �0k��
��5 ¼ �5k0 � k � �. Formal

equivalence of matrix elements from pseudoscalar and
axial-vector forms of the interactions was demonstrated
in Ref. [14] with the use of the single-electron Dirac
equation with an arbitrary potential.
Since atoms are spherically symmetric, we employ the

standard machinery of the angular momentum algebra [21]
and use the partial wave expansion for evaluating cross
sections. In particular, at large values of the electronic
coordinate, the continuum orbital has to go over to a sum
of an incoming spherical and plane waves [22]. The scat-
tering wave function satisfying this boundary condition
may be decomposed in partial waves:

wp
 ¼ Np

X
	m

ð�y
	mðp̂Þ�
Þil�1e�i�	w	mðrÞ: (A5)

Here �	m is a spherical spinor, �� is a two-component
spinor describing spin polarization of the photo-
electron, the relativistic angular quantum number 	 ¼ ðl�
jÞð2jþ 1Þ is expressed in terms of the total j and orbital l
angular momenta, and �	 is a scattering phase shift. For
box-normalized solutions (V is the volume of the box, p
and E are the momentum and the energy of the electron,
respectively, and �fs is the fine-structure constant),

Np ¼
� ð2�Þ3
�fsEpV

�
1=2

:

The wave function w	mðrÞ may be expressed in terms of
the large (S	) and small (T	) components satisfying the
radial Dirac equations:

w	mðrÞ ¼ 1

r

iS	ðrÞ�	mðr̂Þ
T	ðrÞ��	mðr̂Þ

� �
: (A6)

For bound-state orbitals, the parameterization reads

jnb	bmbi ¼ 1

r

Pn	ðrÞ�	mðr̂Þ
Qn	ðrÞ��	mðr̂Þ

� �
: (A7)

Axio-ionization cross sections are proportional to the
square of transition amplitudes. Averaging it over all pos-
sible spin polarizations 
 and magnetic quantum numbers
mb and m and integrating over the directions of the ejected
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electron momentum, we find
P


	mmb	b

R jhwp
jTaj�
nb	bmbij2d�p ¼ N2

p

P
	mmb

jhw	mjTajnb	bmbij2. The

same result holds for the averaged square of T0
a operator.

The involved matrix element hw	mjTajnb	bmbi is be-
tween the electronic states of definite angular momenta and
parity. For simplifying summations over magnetic quan-
tum numbers, we expand the transition operators into
irreducible tensor operators and then apply the Wigner-
Eckart theorem.

We start with the simpler case of operator (A3). We
employ the conventional expansion

eik�r ¼ X
LM

½L�iLjLðkrÞC�
LMðk̂ÞCLMðr̂Þ;

where CLM are the normalized spherical harmonics [21]
and ½L� ¼ 2Lþ 1. Then we reexpress the transition
operator as

Ta ¼ �eik�ri�0�5 ¼
X
LM

iL½L�C�
LMðk̂ÞLMðrÞ: (A8)

Here the operators

LMðrÞ ¼ �i�0�5jLðkrÞCLMðr̂Þ
are irreducible tensor operators of rank L. A matrix
element evaluated between two atomic orbitals reads

ðLMÞij ¼ �h	imijCLMj � 	jmji
�Z 1

0
jLðkrÞ

� ½Pni	i
ðrÞQnj	j

ðrÞ þQni	i
ðrÞPnj	j

ðrÞ�dr
�
:

The selection rules for matrix elements of the C tensor
require that jji � jjj 	 L 	 ji þ jj and Lþ li þ lj ¼
odd. For example, for L ¼ 0 the multipolar operator is
pseudoscalar: The 00 operator drives s1=2 ! p1=2 transi-

tions. Reduced matrix element

hni	ijjLjjnj	ji ¼ �h	ijjCLjj � 	ji
�Z 1

0
jLðkrÞ

� ½Pni	i
ðrÞQnj	j

ðrÞ

þQni	i
ðrÞPnj	j

ðrÞ�dr
�
: (A9)

To evaluate the cross section we fix the coordinate
system in such a way that the axion propagates along the
z axis. Then in Eq. (A8),

C�
LMðk̂Þ ¼ �M0 and Ta ¼

X
L

iL½L�LM¼0ðrÞ: (A10)

Furthermore,X

	m

X
nb	bmb

Z
jhwp
jTajnb	bmbij2d�p

¼ N2
p

X
nb	b	L

ð2Lþ 1Þðh	jjLjjnb	biÞ2:

Finally,

� ¼ c

v

4�

�2
fs

1

f2a

1

"a
� X

nb	b	L

ð2Lþ 1Þðh	jjLjjnb	biÞ2:

(A11)

Derivation of the axio-ionization cross section for the
alternative form of the coupling H0

a is more complicated.
We start from the multipole expansion of the T0

a operator:

T0
a ¼ 1

2
ið�5k0 � k � �Þeik�r ¼ X

LM

iL½L�C�
LMðk̂Þ0LMðrÞ:

(A12)

Because the angular dependence of this expansion is the
same as in Eq. (A8), the expression for the cross section
remains the same as in the Ha case [Eq. (A11)], with the
substitution L ! 0L.
The multipolar tensors 0LM may be derived by inverting

the expansion (A12):

0LMðrÞ ¼
i�L

4�

Z
d�kCLMðk̂Þ 12 ið�5k0 � k � �Þeik�r

¼ X
L0M0

iL
0�L½L0�jL0 ðkrÞCL0M0 ðr̂Þ 1

4�

Z
d�kCLMðk̂Þ

� 1

2
ið�5k0 � k � �ÞC�

L0M0 ðk̂Þ:

The two contributions to the integral are

1

4�

Z
d�kCLMðk̂ÞC�

L0M0 ðk̂Þ 1
2
ið�5k0Þ

¼ 1

½L�
1

2
ið�5k0Þ�LL0�MM0 (A13)

and

1

4�

Z
d�kCLMðk̂ÞC�

L0M0 ðk̂Þ 1
2
ið�k � �Þ

¼ � 1

2
jkjið� � aL0M0;LMÞ; (A14)

where the components of a vector object aL0M0;LM

ðaL0M0;LMÞ
 ¼ 1

4�

Z
d�kC

�
L0M0 ðk̂Þk̂
CLMðk̂Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½L�½L0�p hL0M0jC1
jLMi: (A15)

The resulting expression reads
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0LMðrÞ ¼ t0LMðrÞ þ s0LMðrÞ
¼ jLðkrÞCLM0 ðr̂Þ 1

2
ið�5k0Þ

� 1

2
jkjX

L0M0
iL

0�Lþ1½L0�jL0 ðkrÞ

� CL0M0 ðr̂Þð� � aL0M0;LMÞ;
where we split the operator into the time- and spacelike
contributions. Below, we tabulate reduced matrix elements
of the 0LM irreducible tensor operator:

hni	ijj0Ljjnj	ji ¼ hni	ijjt0Ljjnj	ji þ hni	ijjs0Ljjnj	ji;
(A16)

hni	ijjt0Ljjnj	ji ¼ 1

2
k0h	ijjCLjj � 	ji

�Z 1

0
jLðkrÞ

� ½Pni	i
ðrÞQnj	j

ðrÞ �Qni	i
ðrÞ

� Pnj	j
ðrÞ�dr

�
; (A17)

hni	ijjs0Ljjnj	ji ¼ � 1

2
jkj X

L0¼L�1;Lþ1;L0�0

iL
0�Lþ1

� h	ijjAL0 jj	ji½L0�
�Z 1

0
jL0 ðkrÞ

� ½Pni	i
ðrÞPnj	j

ðrÞ þQni	i
ðrÞ

�Qnj	j
ðrÞ�dr

�
; (A18)

with

h	0jjAL0 jj	i ¼ h	0jjX
M0
CL0M0 ðr̂Þð� � aL0M0;LMÞjj	i

¼ ½j; j0; l; l0�1=2
½L; L0�1=2

ffiffiffi
6

p ð�1Þj0þjð�1ÞL0þl

� l0 L0 l

0 0 0

 !
L0 1 L

0 0 0

 !

�
8><
>:

1 L0 L

1=2 l0 j0

1=2 l j

9>=
>;:

Here the notation ½J1; . . . ; Jn� ¼ ð2J1 þ 1Þ . . . ð2Jn þ 1Þ.
The two-row quantities are the 3j symbols, and the 3� 3
matrix in the curly braces is the 9j symbol. Notice that the

phase iL
0�Lþ1 entering Eq. (A18) is either þ1 or �1; i.e.,

the entire expression is real. Selection rules for both time-
and spacelike contributions are the same as in the case of
the LM multipoles: jji � jjj 	 L 	 ji þ jj and Lþ li þ
lj ¼ odd.

In summary, the cross section for axio-ionization is
given by Eq. (A11), with reduced matrix elements given
by Eqs. (A9) and (A16). Notice that the derived expres-
sions remain valid for arbitrary large values of parameter
kr, i.e., even when the usual dipole approximation
(eikr 
 1) breaks down.
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