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Relativistic many-body calculation of low-energy dielectronic resonances in Be-like carbon
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We apply the relativistic configuration-interaction method coupled with the many-body perturbation theory
(CI+MBPT) to describe low-energy dielectronic recombination. We combine the CI+MBPT approach with the
complex rotation method (CRM) and compute the dielectronic recombination spectrum for Li-like carbon, which
recombines into Be-like carbon. We demonstrate the utility and evaluate the accuracy of this newly developed
CI+MBPT+CRM approach by comparing our results with the results of the previous high-precision study of
the CIII system [Mannervik et al., Phys. Rev. Lett. 81, 313 (1998)].
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I. INTRODUCTION

One of the important atomic processes, which governs
ionic-charge abundances in plasmas is dielectronic recombi-
nation (DR). The DR process is a two-stage reaction with
a formation of an intermediate doubly excited ion and a
subsequent relaxation via photon emission,

e− + Aq+ → [A(q−1)+]∗∗ → [A(q−1)+]∗ + photon. (1)

Due to the importance of DR in plasma processes, there has
been a large body of systematic experimental and theoretical
work on DR. The present status of the field is reviewed in
Ref. [1].

Excellent reviews of current theoretical methods for treating
DR may be found in Refs. [1,2]. DR calculations were carried
out by using configuration-interaction (CI), multiconfigura-
tion Hartree-Fock (MCHF), and techniques of many-body-
perturbation theory (MBPT) with the help of standard codes,
such as GRASP [3], CIV3 [4], MCHF code [5], AUTOSTRUCTURE

[6], and others. For electron temperatures Te � 100 eV, there
is good agreement between calculated and measured DR rates.
However, for Te � 10 eV, there are significant disagreements
between theory and experiment (see, e.g., Refs. [1,7,8]). These
discrepancies are usually attributed to theoretical inaccuracies
in the positions of low-energy resonances Er < 1 eV. Even
small shifts of such resonances to the lower energies lead to
the underestimation of the DR rate [8].

The DR process is a resonant process: cross-section
spikes at electron kinetic energies that are resonant with
internal transitions between bound ionic states. As a result,
the DR rate coefficients, which enter, for example, plasma
ionization stage calculations, are exponentially sensitive to
uncertainties in energies of resonances Er . Because of this
exponential sensitivity, there is an outstanding and prac-
tically relevant problem: a reliable description of the DR
at low temperatures. This problem has been highlighted,
for example, by Savin et al. [9]. These authors write,
“the single greatest challenge facing modern DR theory
is accurately calculating the resonance structure for the
low collision energies needed to calculate low-temperature
DR.” Compared to high energies (where a simplified Rydberg-
like description suffices), at low excitation energies, the

positions of involved atomic resonances become sensitive
to many-body correlations. To solve the correlation problem
accurately is a challenging task, and the existing approaches
have difficulties in reliably describing the low-temperature
DR.

The most accurate method to date in treating the low-
temperature DR is the relativistic many-body theory by the
Stockholm group (see, e.g., Refs. [10–13] and references
therein). Our present approach shares essential elements with
this highly successful method: Although our computational
toolbox is different, it is also based on the many-body theoret-
ical treatment, and it is ab initio relativistic. There is, however,
an important difference: All the enumerated calculations by the
Stockholm group have final ions A(q−1)+ with two electrons
outside a closed-shell core. Our methodology is more general
and allows one to investigate systems with a larger number of
valence electrons. The goal of the present paper is to evaluate
the utility and the accuracy of our approach by comparing our
results with the benchmark data of Ref. [11].

The paper is organized as follows. In Sec. II, we present a
discussion of basic formulas of DR (Sec. II A), the CI+MBPT
approach (Sec. II B), and the complex rotation method
(Sec. II C). Specifics of the calculations and numerical results
for Be-like carbon are presented in Sec. III.

II. METHOD

A. Dielectronic recombination

We start by formalizing the DR reaction Eq. (1) and by
recapitulating well-known results for the DR cross section
and rate coefficient. In an independent particle picture, the
incident electron of energy ε excites one of the bound
electrons of the Aq+ ion (na�a → nblb) and, at the same
time, the initially free electron is captured into one of the
excited orbitals n� of the target ion: This forms a doubly
excited ion [A(q−1)+]∗∗. This intermediate step is concluded
by a radiative decay to a final state below the ionization
threshold. The theoretical description requires two distinct
ingredients: capture (autoionizing) amplitudes due to electron-
electron interactions and transition amplitudes due to the
photon bath. In the isolated-resonance approximation (valid
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for the commonly encountered situation when there are no
overlapping resonances of the same symmetry), the DR cross
section, due to an individual resonance, may be parametrized
by the Lorentzian (see, e.g., Ref. [13]):

σr (ε) = Sr

1

π

�r/2

(�Er − ε)2 + (�r/2)2 . (2)

Here, r labels the specific resonant state, �Er is the energy of
the resonance with respect to the initial state |i〉 of the Aq+ ion,
and �r is the width of the resonant metastable state. For a given
range of incident electron energies, the total cross section is
obtained by summing over the resonances, which fall within
that range. The strength Sr is given by

Sr = π2h̄3

2me�Er

gr

gi

Aa
i→rA

rad
r

Aa
r + Arad

r

. (3)

Here, gr and gi are the multiplicities of the resonant and the
initial ionic states. The radiative decay rate from the resonant
doubly excited state Arad

r is the conventional Einstein A

coefficient for spontaneous emission summed over all possible
final recombined states. Usually, to limit the radiative decay
channels to the electric dipole transitions is sufficient. Finally,
Aa

i→r is the capture (inverse of the Auger process) rate to the
resonant doubly excited state, and Aa

r is the total autoionization
rate. The autoionizing and radiative rates account for the total
width of the resonance �r = Arad

r + Aa
r .

The preceding formulation is an approximation: It omits
radiative recombination (RR), possible effects of interference
between the RR and DR amplitudes, interference between
nearby resonances, modification of the Lorentzian profile in
the vicinity of the threshold, etc. While being approximate,
this treatment, however, is known to be of a sufficient quality
for practical calculations [2].

B. CI+MBPT method

Our calculations are performed by using a method that
combines the CI technique with the MBPT. MBPT provides
a systematic prescription for solving the atomic many-
body problem [14]. Basically, the residual [i.e., beyond the
mean-field, Dirac-Hartree-Fock (DHF), potential] Coulomb
interaction between the electrons is treated as a perturbation,
and one applies machinery similar to the textbook stationary
perturbation theory. The MBPT, when accompanied by a
technique of summing up important chains of higher-order
diagrams to all orders, produces excellent results for atoms
and ions that have only one electron outside closed shells (see,
e.g., Refs. [15,16]). Even for an atom as heavy as neutral Cs
(55 electrons), the modern ab initio many-body relativistic
techniques demonstrate an accuracy of ∼0.1% for removal
energies, hyperfine structure constants, and lifetimes [17].

For atoms with two or more valence electrons, the MBPT
has significant difficulties. The dense spectrum of many-
valence-electron atoms leads to small energy denominators,
and the perturbative treatment of the valence-valence correla-
tions breaks down. An adequate technique in this case is the
CI method. Supplementing it with the MBPT allows one to
treat both valence-valence and core-valence correlations with
high accuracy.

The CI+MBPT technique has been described in detail
in our previous works [18–22]. In the following, we briefly
reiterate its main features. For simplicity, let us consider
a system with two valence electrons outside a closed-shell
core (e.g., a Be-like C3+ ion). The calculations start from the
V N−2 approximation [21], which means that the initial DHF
procedure is carried out for the closed-shell ion, with the two
valence electrons removed. The effective CI Hamiltonian for
the divalent ion is the sum of two single-electron Hamiltonians
plus an operator, which represents interaction between valence
electrons:

Ĥ eff = ĥ1(1) + ĥ1(2) + ĥ2(1,2). (4)

The single-electron Hamiltonian for a valence electron has
the form

ĥ1 = ĥ0 + �̂1, (5)

where ĥ0 is the relativistic DHF Hamiltonian:

ĥ0 = cα · p + (β − 1)mc2 − Ze2

r
+ V N−2, (6)

and �̂1 is the correlation potential operator that describes the
correlation interaction of the valence electron with the core
[18].

Interaction between valence electrons is the sum of the
Coulomb interaction and the two-particle correlation correc-
tion operator �̂2:

ĥ2 = e2

|r1 − r2| + �̂2(1,2). (7)

Qualitatively, �̂2 represents the screening of the Coulomb
interaction between the valence electrons by the core electrons
[18].

A two-electron wave function 
 for the valence elec-
trons has a form of expansion over single-determinant wave
functions,


 =
∑

i

ci�i(1,2), (8)

where �i are the Slater determinants constructed from single-
electron valence basis states calculated in the V N−2 potential.
The coefficients ci as well as the two-electron energies are
found by solving the matrix eigenvalue problem,

(Ĥ eff − E)X = 0, (9)

where H eff
ij = 〈�i |Ĥ eff|�j 〉 and X = {c1,c2, . . . ,cn}.

To calculate the correlation correction operators �̂1 and �̂2,
we use the second-order MBPT.

Technically, one needs a complete set of single-electron
states to calculate �̂ and to construct two-electron basis states
for the CI calculations. To this end, we generate a finite-basis
set by using B splines and the dual-kinetic-balance method [23]
for the V N−2 DHF potential.

By diagonalizing the effective Hamiltonian, we find the
wave functions; they are further used for computing atomic
properties such as electric dipole transition amplitudes. To
compute matrix elements, we apply the technique of effective
all-order (dressed) operators. In particular, we employ the
random-phase approximation (RPA). The RPA sequence of
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diagrams describes a shielding of the externally applied field
by the core electrons.

The CI+MBPT calculations, for a system with n valence
electrons, follow the very same scheme, with an expansion
over Slater determinants for n electrons. Again, the strong
interaction between the valence electrons is treated within CI,
while the core-valence interactions are taken into account in
the MBPT framework (intermediate states in the operator �

include core excitations).
In principle, the effective Hamiltonian Ĥ eff for systems with

n > 2 valence electrons includes the three-particle operator
�̂3, whose computation is very costly. In Refs. [18,20], this
operator was calculated for neutral thallium, and the respective
contribution was found to be negligible. One can expect that
this conclusion should hold for all systems with three to four
valence electrons. For combinatorial reasons, the relative role
of the three-particle interaction �̂3 rapidly grows with n, and
one may need to include it for systems with n > 4.

C. Complex-rotation method

By using the described CI+MBPT method, we can
find spectra of multivalent ions. This section connects the
CI+MBPT method to the DR problem. A straightforward
computation within the CI+MBPT has certain problems, dis-
cussed below. These problems, however, are elegantly solved
by using the complex-rotation method (CRM): A relatively
minor modification of the CI+MBPT method allows us to
compute positions and widths of the dielectronic resonances.

What are the difficulties?
(i) The CI+MBPT method starts from a finite set of

single-particle states (orbitals) computed in a spherical cavity
of radius R. The entire continuum, in practice, is approximated
by 20–30 orbitals per partial wave; their individual energies
depend on R. The DR doubly excited resonance states are
embedded into the continuum. In some cases, which depend
on R, the resonance state may become degenerate with the qua-
sicontinuum states. This leads to a requirement that the model
CI space includes both the bound and the quasicontinuum
many-particle states (otherwise, the perturbative treatment
may break down due to small energy denominators). How
would we separate the doubly excited resonance states of
interest from the background quasicontinuum?

(ii) Straightforward computation of the capture (Auger)
rates, which start from the Fermi golden rule, requires
continuum-wave functions. Because we start with the box
quantization, we cannot easily generate the continuum orbitals
of a prescribed energy (in principle, this is possible by tuning
the radius of the cavity, but this is not a very practical solution).
How do we determine the autoionizing rates without knowing
the scattering states?

Both difficulties are elegantly solved within the CRM
framework.

The CRM is well established and has been employed in
atomic physics and quantum chemistry for several decades
(see, e.g., a review in Ref. [24] and references therein).
Previously, the CRM was successfully applied to the DR
problem by Lindroth and collaborators [10–13]. In the CRM,
the radial coordinate is scaled by a complex factor eiθ ,

r → reiθ , (10)

TABLE I. DHF energies for the C3+ ion in the CMR. Rotation
angle θ = 10◦. The finite-basis set (dual-kinetic-balance B-spline
basis set) for the s1/2 symmetry consists of 40 orbitals. Cavity radius
is R = 45 bohr. The εnκ < −mec

2 part of the spectrum is not shown.

n Re(εnκ ) Im(εnκ )

1 −14.423 198 72 −7.09 × 10−6

2 −2.365 899 978 6.48 × 10−8

3 −0.989 172 8632 2.61 × 10−6

4 −0.541 049 5311 8.00 × 10−7

5 −0.340 723 1660 −2.21 × 10−4

6 −0.233 932 0652 −9.78 × 10−4

– – –
21 519.738 5848 −197.5
22 1033.037 284 −380.7
23 2013.838 233 −715.3
24 3833.246 780 −1296.1
– – –
40 13 970 526.56 −2466750.25

where θ is an adjustable parameter. For example, the radial
Dirac equation becomes

[V (eiθ r) + c2]Pnκ (r)

+ ce−iθ

(
d

dr
− κ

r

)
Qnκ (r) = εnκPnκ (r) ,

− ce−iθ

(
d

dr
+ κ

r

)
Pnκ (r)

+ [V (eiθ r) − c2]Qnκ (r) = εnκQnκ (r) .

Here, P and Q are the conventional large and small radial
components of the Dirac bispinors. For a pointlike nucleus,
V (eiθ r) = −e−iθZ/r . For the DHF potential, the dependence
is more complicated, as it involves θ -dependent core orbitals
and requires a self-consistent solution.

We have implemented the CRM method for the DHF
equation by using the finite-basis set technique. Technically,
we employed an expansion over B splines and the dual-kinetic-
balance method [23] to avoid the so-called spurious states.
Representative numerical results for the s1/2 symmetry are
shown in Table I. The generated finite basis is suitable for
feeding into the CI+MBPT code. Analytically, the scaling
Eq. (10) does not affect energies of the bound states, but the
eigenvalues of the continuum are rotated in the complex plane
by −2θ . Our numerical data somewhat deviate from this trend;
this is related to incompleteness of the spectrum for finite-basis
sets, a result known in the literature.

So far, we discussed the one-body problem. It is the many-
body part of the problem where the CRM method becomes
invaluable. When the scaling of the many-body Hamiltonian
H eff is carried out, new complex discrete eigenvalues of
H eff(θ ) appear in the lower half of the complex energy plane.
These are the complex values that one associates with the
resonances:

Er = Eres − i�a/2. (11)

Here, Eres and �a are the position and the autoionizing width
of the resonance we are after. For a complete set, these
complex eigenvalues remain unaffected as θ is varied, while
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the continuum moves. For a finite basis, the Er (θ ) trajectory
in the complex plane pauses or kinks at the physical position
of resonances.

To reiterate, by diagonalizing the complex-symmetric
CRM-scaled Hamiltonian, we find the θ trajectories of the
eigenvalues in the complex energy plane and deduce the
positions and widths of the DR resonances. Notice that no
effort is needed for computing the true scattering states.
To efficiently diagonalize the complex-symmetric matrices
characteristic of the CRM method, we adopted a specialized
Davidson-type eigensolver JDQZ [25].

III. NUMERICAL EXAMPLE: BERYLLIUMLIKE CARBON

As an illustration of our CI+MBPT+CRM toolbox, we
consider DR of the Li-like carbon. The DR pathway is

e− + C3+(1s22s) → [C2+(1s22pjb
nlj )]∗∗

→ C2+(· · ·) + photon.

Low-energy DR for C3+ was the focus of a combined theory-
experiment paper [11]; we compare our results with the results
of that work as follows.

The calculations were carried out by using the relativistic
basis set with 40 orbitals per partial wave. Representative
numerical results for the s1/2 symmetry are shown in Table I.
The correlation operator � was computed with partial waves
up to lmax = 5. The CI model space was spanned by the 25
lowest-energy virtual orbitals for each partial wave up to lmax =
4. For example, for the J = 1 odd symmetry, we include all
possible 11 angular channels. The most important channel
is represented by the npjn

′s1/2 and ndjn
′pj ′ configurations.

The ndjn
′pj ′ configurations give rise to leading contributions

to the low-energy 2p4d DR resonances. These resonances are
embedded into the 2s1/2εpj continuum. Inclusion of both types
of configurations allows us to incorporate the interaction of
the DR resonances with the continuum to all orders of MBPT
and to avoid accidental degeneracies. While the theoretical
formulation of Ref. [11] is similar to ours, their model space
excludes the 2snp continuum, and its effect is taken into
account in all-order MBPT.

Calculations of the CRM trajectories of energy levels were
carried out for angles 0◦ − 30◦ with a step of 1◦. An example
of a trajectory for the 2p4d1S0 odd-parity resonance is shown
in Fig. 1.

Our numerical results are compiled in Table II. We tabulate
energies, widths, and strengths of DR resonances that fall
within a 0.6-eV range above the 1s22s threshold. In this table,
we also compare our values with the previous theoretical
results of Ref. [11]. The energies are also compared with
the National Institute of Standards and Technology (NIST)
recommended values [26]. We find that the overall agreement
for energy positions is excellent and does not deviate by
more than 2 to 3 meV. Detailed consideration reveals that the
NIST recommended values for the position of the 2p4d3PJ

resonance differ both from our and Ref. [11] predictions by as
much as 13 meV. Even more strikingly, both our and Ref. [11]
predictions disagree with the NIST recommended value by a
very large value of 147 meV for the position of the 2p4d1F3

resonance.

FIG. 1. (Color online) Illustration of the CI+MBPT+CRM
method for locating the 2p4d1S0 resonance. The upper (central) panel
shows dependence of the real (imaginary) part of the energy on the
CRM rotation angle θ . The bottom panel shows the corresponding
trajectory in the complex plane. The kink in the trajectory marks the
position of the resonance.

Among 21 tabulated resonance positions, there is only
one large disagreement between our work and the theory of
Ref. [11]: This happens for the 2p4d1S0 resonance where
the two calculations differ by 34 meV. By considering an
excellent agreement for other 20 resonances between the two
calculations, such a disagreement may indicate a typographical
mistake in Ref. [11]. Reference [11] reports the following
experimental positions for the resonances: 0.182 eV for
2p4d3D, 0.244 eV for the unresolved 2p4f 1,3F , 0.438 eV
for 2p4f 3D, and 0.578 eV for 2p4d1P with an experimental
uncertainty of 5 meV. All of these values are in agreement with
our theoretical predictions.

A comparison of resulting autoionizing widths between
our and Ref. [11] calculations indicates a good agree-
ment for broad resonances. The agreement for narrow
(width < 0.5 meV) is less satisfying. Experimentally, the
width of such resonances is determined by the experimental
convolution function, and no definitive conclusions can be
drawn on the basis of theory-experiment comparison. Notice
that the 2p4d3D and 2p4f 1,3F resonances were resolved
in the experiment [11]. The calculated rate in Ref. [11]
was larger than the experimental one by 50%. It was not
clear whether the source of the disagreement was theory
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TABLE II. Ab initio values of the energies (relative to the 1s22s 2S1/2 threshold), the widths, and the strengths of resonances within 0.6 eV
above the ionization limit of CIII. The computed values are compared with the theoretical results of Mannervik et al. (see Table I in Ref. [11])
and NIST recommended energies [26].

Energy (eV) Width (meV)
Strength

(10−20 eV cm2)

Term J Present NIST [26] Ref. [11] Present Ref. [11] Present Ref. [11]

2p4d 3Do 1 0.179 0.181 0.176 0.1 0.09 10.3 11.2
2 0.183 0.181 0.177 0.005 0.18 17.2 18.5
3 0.183 0.181 0.180 0.005 0.08 22.5 25.4

2p4f 1F 3 0.238 0.236 0.45 0.10 5.7 6.0
3F 2 0.242 0.239 0.240 0.05 0.001 3.8 3.9

3 0.243 0.241 0.242 0.6 0.25 5.3 5.5
4 0.245 0.245 0.243 0.4 0.33 6.8 7.1

2p4d 3P o 0 0.291 0.279 0.292 50 52 1.1 1.3
1 0.289 0.279 0.289 50 52 3.2 3.7
2 0.284 0.279 0.285 50 52 4.7 5.8

2p4f 3G 3 0.353 0.351 117 115 3.1 3.3
4 0.356 0.353 117 115 3.9 4.2
5 0.365 0.360 117 115 4.7 5.1

1G 4 0.379 0.375 118 115 3.1 3.2
3D 1 0.435 0.433 0.433 1.1 1.01 1.2 1.2

2 0.431 0.432 0.430 1.1 1.01 2.0 2.0
3 0.427 0.425 0.426 1.2 1.01 2.8 2.8

1D 2 0.451 0.452 0.6 0.22 1.8 1.8
2p4d 1F o 3 0.461 0.314 0.460 232 236 7.4 8.5
2p4p 1S 0 0.451 0.485 202 221 0.2 0.2
2p4d 1P o 1 0.583 0.586 44 46 1.9 2.0

or experiment. Perhaps, our disagreement for the width of
narrow resonances with theory [11] may indicate an enhanced
sensitivity to the details of theoretical treatment. While there
are discrepancies for the autoionizing widths of the narrow
resonances, our CI+MBPT+CRM strengths of the resonances
compare well with the calculations of Ref. [11] (see Table II).

IV. CONCLUSION

To summarize, we report on developing a method for
computing properties of low-energy resonances in dielectronic
recombination. A high-precision description of low-energy
resonances is particularly challenging, as it is sensitive to
correlations. At the same time, uncertainties in the positions
of the resonances drastically affect practically important re-
combination rates in low-temperature plasmas. Our theoretical
approach is based on combining CI+MBPT+CRM. The

method is ab initio relativistic. To gauge the accuracy of the
developed CI+MBPT+CRM approach, we computed low-
energy resonances in Be-like carbon. We find good agreement
with the earlier high-precision study by Mannervik et al.
[11]. Here, while we studied a divalent ion, our developed
methodology and computational toolbox is well suited for
exploring resonances in systems with several valence electrons
outside a closed-shell core.
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