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Fourth-order many-body corrections to matrix elements for atoms with one valence electron are derived. The
obtained diagrams are classified using coupled-cluster-inspired separation into contributiomspiasticle
excitations from the lowest-order wave function. The complete set of fourth-order diagrams involves only
connected single, double, and triple excitations and disconnected quadruple excitations. Approximately half of
the fourth-order diagrams armt accounted for by the popular coupled-cluster method truncated at single and
double excitation§CCSD). Explicit formulas are tabulated for the entire set of fourth-order diagrams missed
by the CCSD method and its linearized version, i.e., contributions from connected triple and disconnected
quadruple excitations. A partial summation scheme of the derived fourth-order contributions to all orders of
perturbation theory is proposed.
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I. INTRODUCTION cluster expansiofi9—11] truncated at the single and double
level of excitationg CCSD), although all third-order contri-
Atomic tests of the low-energy electroweak sector of thebutions are recovered 2]. It has been showfl3] that one

standard model require both high-precision measurementsd the subsets of the fourth-order terms missed by the CCSD
and ab initio calculations of matching accuracy. The mostmethod does contribute as much as a few percent to Cs
precise measurement to date of parity violation in atoms halyperfine-structure constants. At the same time, the consid-
been carried by Wieman and co-workers usitidCs. The  ered subset leads to worse theory-experiment agreement for
accuracy of this experimerjtl] is about 0.4 %, while the electric-dipole amplitudeEL4]. We anticipate that a system-
relevant theoretical quantity is calculated with 0.4—1% un-atic accounting ofall omitted fourth-order contributions to
certainty, depending on the authors’s estimags8]. Akeen  matrix elements in the CCSD method may lead to more ac-
interest in reducing the uncertainties is stimulated by a posgyrateab initio results. Here we derive such complimentary
sible deviation of the resulting nuclear weak charge from thgq ,rth-order many-body contributions for matrix elements.
prediction of the standard model. This deviation was first The paper is organized as follows. Basic starting formulas

reported in Ref{[2] and Fhe”.scrgt'”'?e?;” Ref3]. Very and notation of MBPT are introduced in Sec. Il. The linked-
recent analysef] of parity violation in **Cs focused on diagram expansion specialized to atoms with a single va-

effects of the Breit interaction, vacuum polarization, andIence electron is discussed in Sec. lll. The derived wave-

neutron “skin,” each contributing at the level of 0.2—-0.6 %. . . . .
However, the effects of highegr]-order correlations beyonJunCtlonS through the third order of MBPT are discussed in

those considered in high-precision calculations by Dzub ec. v _and their re_lation to the t_runcated coupled-cluster
et al. [4] and Blundellet al. [5] remain to be understood. method in Sec. V. Finally, the derived fourth-order correc-

Here we discuss in detail a possible extension to the methoPnS t0 matrix elements are tabulated in the Appendix and
employed in Ref[5]. classmcgtlon of the diagrams is given in Sec. VI. Figure 5

The key to the 1 % accuracy achieved in Réds5] lies in ~ Summarizes the results of our work.
the application of all-order methods based on relativistic The fourth-order expressions presented here may be use-
many-body perturbation theoffIBPT). These techniques, ful for an analysis of completeness of all-order methods and
although summing certain classes of MBPT diagrams to alfor designs of a hierarchy of next-generation approximations
orders of perturbation theory, still do not account for an in-in atomic many-body calculations. As an example, we dis-
finite number of residual diagrams. It seems natural to augeuss all-order generalizations of the derived fourth-order
ment a given all-order technique with some of the omittedcontributions.
diagrams so that the formalism is complete through a certain
order of MBPT. To illustrate, the random-phase approxima- ||. PARTITIONING OF THE ATOMIC HAMILTONIAN
tion (RPA) [6] fully recovers second-order matrix elements
but does not subsume all third-order diagrams. Among the Here we briefly recap starting formulas of MBPT for at-
omitted third-order contributions so called Brueckner-orbitaloms with one valence electron. Our derivation in the fourth
diagrams are known to be numerically as important as therder of many-body perturbation theory may be considered
RPA sequencésee, e.g., discussions in Reffg,8]). as an extension of the work by Blundall al. [15]. They

By the same virtue, certain diagrams starting from thepresented formulas from first-, second-, and third-order per-
fourth order of MBPT are missed in the popular coupled-turbation theory. For the convenience of the reader we keep

most of the original notation from Reff15].
The many-body Hamiltonian of an atomic system may be
*Electronic address: andrei@unr.edu represented as
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From a practical standpoint, derivation of MBPT expres-
H=Ho+V,= ( > hadri)+ 2 UHF(ri)) sions is greatly simplified by the introduction of normal form
' ' of the operator products[ - - -] and by a subsequent appli-
1 1 cation of the Wick theorerfiL1]. The notion of normal prod-
+ > ;} E_Z UHF(ri)>v 1) ucts arises from separation of one-particle states into two

general categories—occupied in the quasivacuum $aje

whereh,, includes the kinetic energy of an electron and its("e" core orb|tals. enumer'ate.d by letteasb, c,d) ‘.i.”d
interaction with the nucleud) ¢ is the Hartree-Fock poten- Complementary excned_sta_t(a_ed_lcesm,n,r,s). Unspecmed
tial, and the last term represents the residual Coulomb inte'Pitals are labeled by indices j, k, andl. In this scheme
action between electrons. The summations go over all eledN® One-particle valence statesandw are classified as ex-
trons in the system. In MBPT the first part of the Cited orbitals.
Hamiltonian is treated as the lowest-order Hamiltonkdg With the normal products
and the residual Coulomb interaction as a perturbatipn

For atoms with one valence electron outside a closed-shell Ho=E®+> & N[a'a] 7)
core the many-body wave function in the lowest ordsf*) i
is a Slater determinant constructed from core and valence
single-particle orbitalsi,, which satisfy and

[P 1)+ U 1)U (1) = 4. @ Vi=ED+ 5 S gNialafa] ®)
The solutions of the above one-particle equation form a basis
for application of the formalism of second quantization. InWhereEL) == e, andEY =~ 33,(Upg)aa; in the follow-
the second quantization the lowest-order Hamiltoni4g ing discussion we omit these nonessential offset contribu-
and the perturbing residual Coulomb interactMpnmay be  tions.
expressed as It is worth noting that there is no one-body part of the
perturbationV, present in Eq(8); this fact demonstrates the
utility of the frozen-core Hartree-Fock potential in MBPT. In
Ho=> siala;, (3)  Ref.[15], the case of a model potential differing froh
: was investigated explicitly and it was found that the number
of resulting diagrams is substantially larger than in the
1 ot t Hartree-Fock case. Due to the very large number of diagrams
Vi=5 % Yijk1i 8 a,ak—% (Unplijaia;, (4 in the fourth order, here we restrict our attention to the prac-
tically important frozen-core Hartree-Fock case.
wherea anda; are creation and annihilation operators for a
One_partide state I1l. LINKED-DIAGRAM EXPANSION

The Coulomb integragij is conventionally defined as We proceed to the derivation of many-body contributions

to wave functions using the formalism of the generalized
TN 3 13 Bloch equation[11]. The Bloch equation is formulated for
gijkl_f Ui (ru;(r )|r—r’| u(NDu(rdrd’. () the wave operatof2, which relates the exact wave function
|W,) to the lowest-order resultr(¥y=al|0,) as
The matrix elements of the Hartree-Fock potential may be
expressed in terms of the antisymmetrized Coulomb integral ¥,y =0, W), 9

aijkl =0ijki —Yijik as

It should be noted that as defined, this exact wave function is
not normalized, rather an intermediate normalization scheme

~ (0) A . X )
(Unpij => Giaja - ©® (¥ _|\va>—1 is employed in the formalism. The exact cor
a relation energy of the one-valence-electron system is given
by
Here the summation is over core orbitals; this potential is the
so-called frozen-core Hartree-Fock potential, i.e., first the SE=(VO|v,Q, |w®), (10)
v v

core orbitals are calculated employing the self-consistent

Hartree-Fock procedure and then the rest of the one-particle The wave-operator satisfies the linked-diagram version of
states are obtained using E@) without varying the deter- the generalized Bloch equation,

mined core orbitals. Finally, in the language of second quan-

tization the lowest-order wave function corresponds to [Q, Hol={QV, Q,— (Q,— 1PV, Q Virked,» (1D
|wy=al’|0.), wherev labels the one-particle state of the

valence electron and the quasivacuum statg describes where the operatoP=|¥(?)(¥ )| projects on the lowest-
the closed-shell core. order wave function an@=1—P is a complementary pro-
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jection operator. The subscript “linked” in the above equa-for the valence part of the wave operaﬁl}ja'. Mnemoni-
tion prescribes that all thenlinked Brueckner-Goldstone cally, every occurrence of the Hartree-Fock energy of the
diagrams are to be discarded; a diagram is said to be uvalence electror, in the energy denominators has to be
linked if it contains a disconnected part with no free linesreplaced by the total removal energy+ sE'?, since ¢,
other than valence lines. Final[}, ,H] is the commutator —H ) 4w () simplifies to (~Hg)Q°90,). Keeping

Q,Ho—HoQ,. _ this rule in mind, we may combine the above equations,
The traditional Rayleigh-Schdinger perturbation theory

is recovered from the Bloch equati¢hl) by expanding the [&,+ (SE") —HolQ, | ¥ O ={QV,Q, inked ¥,

wave operator in powers of the residual interactign Q, ’ v ooy ’ " 19

=3,-0 Q™. The resulting recursive relation jig1]
where (SE'®) means that théE"® correction should be in-

n-1 cluded for the valence diagrams 9f, and discarded other-
[QM Hol={QV, Q"D o=mpy, o1 . wise.
m=1 linked We expand the wave operator in powers of the residual

(12 electron-electron interactio¥, ,QU=En:OQ,(J”) and obtain

Here the iterations start Witﬁg")z 1. A corresponding per- [e,+(SEV3) — Ho]Q(n+l)|‘I’(o)>={QV|Q(n)}nnked|‘I’(o)>
turbative expansion of correlation energy reads ’ ! v ! ! ’
with Q{9=1. This equation may be interpreted as a linked-
diagram version of the Brillouin-Wigner perturbation theory
- (n)— (0) (n=1)[4p (0) - .
5Ev—n21 JE, —n; (W,7IViQ, 77, (19 for atoms with one valence electron outside a closed core.
Introducing the resolvent operator

The last term on the right-hand sithhs) of Eq.(12) gives vahn—1
rise to the so-called “folded” or “backward” diagramig.1]. R,={Ho—[e,+(E")]} 7, (15
Instead of calculating the explicit contributions of folded dia- Lo M\ — ()1, (0)
grams we use an all-order approach that incorporates thel¥® obtain(with [W;”)=Q,"| ;7))
effect in modified energy denominators. Such a reformula- ") (n-1)
tion allows for a direct link to the coupled-cluster method [,y = =RAQVI V" ) biinked
outlined in Sec. V. The exact wave operatbr may be sepa- _(_ayn _ A1, (0)
rated into valence and core pars, =¥+ Q% the Q" (=D {RQV: Hinked)"[¥27)-

part promoting a valence electron from thi{”) determi-  From this recursion relation we may generate corrections to
nant into an excited stat€)'¢ describing excitations of wave functions at any given order of perturbation theory. In
core electrons, does not depend on any particular valengsractice, the derivation is rather tedious and error prone. We
state. Similarly, the correlation contribution to the total en-employed the symbolic algebra system Mathemdtid] to
ergy of the systendE, may be broken into corrections to the derive the expressions presented in this work.

energies of valence and core electrof&, = SE/*'+ SE®

Suppose that the valence removal eneegy- SE;* is v, WAVE FUNCTIONS THROUGH THE THIRD ORDER

known at the desired order of perturbation the@ryg., from OF MBPT

coupled-cluster calculationsr from experiment. Projecting o ]

the original Bloch equatiorill) onto |\If§°)) and using the F(_)r the der_|vat_|0n of fourth-order_ matrix elements one
definition of the projection operat? together with Eq(10) ~ '€duires contributions to ave fu(rrl])cno(r:)? through the third
for the correlation energy, one may show that order. Expressions forlw,”)=0Q,”|¥;”) through the

second-order may be found in R¢L5]. Although we fully
derived| ¥ ), to keep the manuscript to a manageable size,
we present below only a qualitative discussion of the third-

. . order correction to the wave function.
Notice that the last term is represented by a product of two Lo
The contributions to the wave operatfr, are conven-

valence contributions, since all other terms produce un”nl.(e(tilonally classified by the number of excitations from a refer-
diagrams. Expanding the commutator and explicitly breaklngence determinantw ) =a'|0,). The first-order result
v vl¥Cc/ ’

the term{QV,Q }; into valence and core contributions . o N
we arrive{gt BB QM contains only double excitations drawn in Fig. 1. We

may distinguish between valence and core excitations. The
former promote the valence electron to an excited state
(Q"¥ and the latter do not modify the state of valence elec-
tron (2°°"9. With such a classification the diagram Figa)l
(8,—Ho) QWO =({QV,Q, }inked 9 ¥ ). represents core doublés, and Fig. 1b) valence doubles
D, .
Accounting for the folded diagrams in this way leads to  The second-order operatf?) contains excitations up to
an additional shift)E'? in energy denominators of diagrams quadruples. Examples of contributionsmf) are drawn in

[Qy,Hol| P ={QV, 0} ined ¥ (7)) — SEV Q22w (),

(8,4 SEL—Hp) QW) = ({QV,Q, Hinked | T (P,
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FIG. 3. A sum of the the quadruple contribution, Figg)2 and
(a) Dc (b) Dv a similar diagram with the order of two interactions reversed,
factorizes into a normal product of double excitations. On the rhs
FIG. 1. Brueckner-Goldstone diagrams for the first-order wavet® energy denominators are to be evaluated separately.
operatorQ,()l). Horizontal dashed lines represent residual Coulomb
interaction between electrons, and vertical lines are particle/holéourth-order contributions to matrix elements not included in
lines. The valence line is marked by a double arrow. the truncated singles-doubles coupled-cluster method, and

) ) here we review the relevant features of this all-order ap-
Fig. 2. Figures @) and 2b) represent some of the second- proach.

order core singles and doubles. Valence singles and doubles The key point of the coupled-cluster method is the intro-

are drawn in Figs. @) and 2d), respectively. Figures(8  duction of an exponential ansatz for the wave opergta}
and Zf) represent core and valence triple excitations, and

Fig. 2(g)—disconnected quadruple excitations. A sum of the

the quadruple contribution Fig.(@ and a similar diagram 1

with the order of the two interactions reversed is known to Q=N[exp(S)]=1+S+ EN[SZH e (16)

factorize into a normal product of double excitatigri4]; '

this is demonstrated in Fig. 3. We classify the disconnected

quadruple contribution, Fig.(d), as a nonlinear contribution The cluster operatd®= ()., is expressed in terms @bon-

of double excitations to wave functions. necteddiagrams of the wave operatfyr, an example of dis-
Several contributions to the third-order wave operatorconnected diagram being Fig(g®. The operatolS is natu-

Q® are shown in Fig. 4. Single and double excitationsrally broken into cluster operatorsS, combining n

shown in Figs. #a—8 contain intermediate triple excitations. simultaneous excitations from the reference stat§”) in

Figure 4f) is due to intermediate second-order quadrupleall orders of perturbation theory.

excitation. For the sake of comparison with the coupled- Let us specialize the general formalism of Réfl] to the

cluster method we classify Fig.(@ as the effect of core case of atoms with one valence electron. A set of coupled

triples on core singles3[T.]), (b) as madification of core equations for the cluster operators may be found by consid-

doubles by core triplesd [ T.]), (c) as the effect of core ering connected diagrams on both sides of the modified

triples on valence double([T.]), and(d) and(e) as the  Bloch equation(14)

effect of valence triples on valence singles and doubles

(S,[T,] andD,[T,]). Finally, Fig. 4f) may be classified as val

an effect of nonlinear doubles, Fig(d, on valence doubles [e,+(6E,") —HolSi={QVi Q,}connn s (17

(D,[Dn]). Itis worth noting that the third-order wave func-

tion contains connected quadruple excitations and some a

ditional disconnected excitations; these corrections do n

contribute to the fourth-order matrix elements.

QJhereaEv is determined by Eq10) and wave operatd,

Qby Eq.(16). Term (6E‘U’a') accounts for folded diagrams; it is
to be omitted for core and included for valence clusters. Suc-
cessive iterations of such all-order equations explicitly re-
cover order-by-order MBPT contributions to the wave opera-

The coupled-clustefCC) formalism[9,10] is widely em-  tor discussed in the previous sections.

ployed in atomic and nuclear physics, and quantum chemis- In most applications the full operat@® is truncated at

try [17]. The main goal of the present work is to identify Single and double excitatiof€CSD methodl For univalent

atoms the CCSD parametrization may be represented as
@8  ®D \/\/ N O

V. COUPLED-CLUSTER METHOD

c) Su @ D, (a) Se[T] (b) D[] () DT (@) ST
LAVAVAAVA R | Vo] Yo
(e) T, 0 T, (8) Du (¢) DT () Do[Dn] 5]

FIG. 2. Sample contributions to the second-order wave operator FIG. 4. Representative diagrams for the third-order wave opera-
I tor Q3.
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. ‘ 1 ot derived using the intermediate normalization scheme, we in-
SP=5,+5,=> Pmadmat s Ebpmnabamanabaa troduced normalization factors
ma mna
N,=(¥@0f0,|¥®
+r’r§ pmva;au+r%a pmnvaaTma;aaava (18 Y < v | Y v| Y >
v

in the definition of matrix element.
where the first two terms represent single and double excita- Blundell et al. [12] have demonstrated that disconnected
tions of core electrons and the remaining contributions areiagrams in the perturbative expansion of the numerator and
valence singles and doubles. the denominator of Eq20) cancel. Their final expression for
It is worth emphasizing that the CCSD method is an all-the exact matrix element reads
order method. For example, first-, second-, and third-order

diagrams Fig. (b), Fig. 2d), and Fig. 4g) are encapsulated (Z\v/val)conn

in the valence doubles term mnommwaamdndad, . Simi- My, = (2% connt —— — o
larly, the CCSD method accounts for all single and double {12+ (N, connl[ 2+ (N connl
excitations(both core and valengeshown in Figs. 1 and 2. (21

At the same time connected triple and higher-rank excita-
tions are not accounted for by the CCSD method, example‘é’
being Figs. 2e), 2(f) and Figs. 4a—e. Although diagrams
Fig. 4a—e are nominally single or double excitations, they Z%"=(0,| 0,2, [0y = (0| (29 T2 0,)
contain connected triples as intermediate excitations and are
not included in the sequence of CCSD diagrams. and the  remaining  contributions  of Z,,

A linearizedversion of the CCSD method.CCSD) is a  =(0clan,,29,a}|0;) are grouped into the valence part
further simplification of a hierarchy of all-order methods zm‘_ The diagrams ozﬁ' explicitly depend on valence in-

. . . v
based on the coupled-cluster formalism. In this approximagicesw andv. The valence part of the normalization factor
tion Q-C%SP=1+ 355D, For alkali-metal atoms the LCCSD

) N'? is defined in a similar fashion. The core contribution
method was employed in Re{s.2-14,18. Compared to the Z%"®vanishes for nonscal&and pseudoscalpoperators and

full CCSD approximation the linearized version misses g, disregard“®"in the following discussion. Notice that all

sut_Jrset (')tf d|?grams Shf{)\’\ént'n lFlg(.g?_flr:_d Fig. ‘g)a. i the diagrams in Eq(21) must be rigorously connected as
o reiterate, connected triple excitations and disconnecte mphasized by subscripts “conn.”

?uuni?irgr?;e ?;(Cgfggpstélrsstyzfeﬁ:{iclgllt;eei?ecr?gdt_r?édecr vasa[\)/e TheT formulas for contributions to matrix glements through
method dne has to investigate the contributions of connectethe third-order of MBPT were_presented in REL5). The :
triple excitations and the role of nonlinear contributions forElCCSD fully recovers _the matrix elements throqgh the third
the linearized CCSD approximation order [12]. He_re we investigate the contributions at the
: fourth order missed by the LCCSD method.
To derive the fourth-order correction to a matrix element,

here

VL. MATRIX ELEMENTS we expand the matrix element and normalization factors into

We investigate the fourth-order corrections to matrix ele-POWers (k)Of the resm(ikl;al Coulomb  interactiorz,,
ment of a one particle operatdr=S,z(r;). In second quan- = >k=1Zw,» Ny=2y=oN,”. Further, we employ the all-
tization order result, Eq(21), and expand the normalization denomi-

nator into series. The result is
= afg = . Tq.
2=2 zja/a=2 zat 2 ZiN@lal (19 MO=(wOZIv®)+ (VO Z[vE)+ (v Pzl v D)
+<\If\(/\?)|z|q,£0)>}val,conn+ Z\(Ajlv),norm’ (22

whereN[ - - - ] denotes normal form of operator products. We
are mainly interested in matrix elements of nonscalar opera- o
. . " . where only connected valence contributions are to be kept.
tors, like electromagnetic transition amplitudes or pseudos, o N
) . ; The normalization correction is given by
scalar operators, like the electroweak interaction. For such
operators the contribution from the zero-body tebiyz,.
. . oo . . . 4 _ 2 2 2
vanishes and we disregard it in the following discussion. ZG) nom= — 3 (NS NE) vt connl Z5) vai,conn
The exact matrix element between two valence states
- %(Nl(;s)+ N\(I\?))VaLCOanWU ) (23)

andv is given by

where we used that{’=0 andz{)=z,, , the matrix ele-
— (20) ment in the Hartree-Fock approximation.
M INGN,, VNN, ’ As we proceed to the derivation of the fourth-order dia-
grams we notice that the third and fourth terms of E2f)
where(),, and(), correspond to wave operators for valenceare the Hermitian conjugate of the first and second terms
statesw andv, respectively. Since the wave operators werewith a swap of valence indexeg andv. This observation

Zy,  (0da,0}z0Q,all0c)

U
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o0 oy fo MY

T h
v
Zaxo (T) , 44 Zy1x2 (T2) , 20 Zox3 (So[To]), 8 . . o
FIG. 6. Separation of triple excitations based on the nature of an

orbital line connecting upper and lower interactiof§. diagram
_g R --- involves particle line and’ﬂ a hole line. Similar separation may be
O_ Q O O_ O carried out for core triples.

Zoxs (Dol To]), 36 Zows (Do[TH]), 12 Zoxs (SelT]), 8 evaluation of expressiod¥()|z|Ww(?)) and its Hermitian
conjugate with a swap of valence lab&lsandv. Similarly
B Zoxs(- - ) terms are generated frot¥(?|Z| W)+ c.c. Fi-
GO O "OO nally Z..m(:--) are due to normalization correction, Eq.
T\ A i—@) O O (23). Further, we classify the diagrams by the presence of
- core triples T.) or valence triples T,). For Zgxs(---)
terms triple excitations occur as an intermediate contribution
(see Fig. 4 and we distinguish the effect of triples on lower-
FIG. 5. Sample fourth-order diagrams involving triple excita- rank excitations, e.gD [ T.] is the effect of core triples on
tions and nonlinear coupled-cluster contributions. The one-particiézalence doubles. Finally, the diagrams markgg are due to
matrix element is denoted by a wavy horizontal line. See the explathe effect of disconnected quadruple excitations. These dia-
nation in the text for diagram classification. The number of contri-grams may be simplified to a direct product of double exci-
butions for each class of diagrams is also shown; direct, all possiblgations, as demonstrated in Fig. 3.
exchange, and the conjugated graphs of a given diagram were The introduced classes of diagrams are illustrated in Fig.
counted as a single contribution. 5. The numbers of contributions in each class are also given
in that figure. Let us make some observations. First of all,
none of the diagrams contain computationally intensive Cou-
merical evaluation the conjugated terms do not require addiy|sg notice the absence of tey[T.], i.e., the effects of

Zoxs (Drt), 7 Z1x2 (D), 7 Znorm(T;), 8

tional programing efforts. core triples on core double excitations. The core triples also
do not contribute to the normalization correction. All these
VIl. DISCUSSION OF FOURTH-ORDER DIAGRAMS simplifications may lead to a design of an efficient numerical

evaluation scheme.
The dominant number of diagrams is due to valence triple
Sexcitations, the sef,.,(T,) accounting for 44 and the set

X N ; . Zgx3(D,[T,]) for 36 contributions. We further distinguish
[16]. Excluding the normalization correction and folded dia- second-order tripled by the nature of the orbital line con-

T e oo oo e o Becig Upperand oir teracos- 7T, T san
forms 'Of a aiven diagram as a sinale coﬂtribution We e)?_mg for a particle line and™ for a hole line as illustrated in
giv 9 9 - Fig. 6. Such a separation is motivated by considerations of
cluded Hermitian conjugated terms from the counting proce- . o hoo . :
. computational complexity: th@" diagram, involving sum-
dure. The LCCSD recovers approximately half of the fourth-""_ .

S o . . mation over a small number of core states, may be calculated
order contributions. The remaining diagrams are due to mpl?nuch faster than a similaf® contribution. We write
excitations(128 term$ and nonlinear contribution of double '
excitations(14 terms$. Explicit expressions for these comple-
mentary contributions are given in the Appendix. Z1o(Ty) = Zyo(TO)+ Z3 (D),

We break all fourth-order contributions complementary to
the LCCSD subset of diagrams into nine classes,

We fully derived the fourth-order correction to matrix el-
ements using Wick theorem. A set of simplification rules wa
implemented with the symbolic algebra systbtathematica

Zox3(Dy[ T, 1) =Zoxa(Du[ TP + Zoxa(D,[Ty]).

(4) —
(MwoJnon-Leeso=Zuxa(To) + ZaxalTe) + Zoxa( ST ) The formulas in the Appendix are grouped according to this
+Zox3(Dy[ T, 1) +Zoxa(Sel Tel) scheme. )

The effect of triples orsingleexcitations in(},*’, such as
T Zox3(Dy[Te]) + Z1x2(Dni) Figs. 4a) and 4d), has been treated previously in Refs.
+Zox3(Dn) + Znom{ To).- (24) [13,14. Corresponding  contributions  to M{},

Zox3(S,[T,]) andZy«3(S[T.]) are shown in Fig. 5. It was
The representative diagrams for each class of contributionfound that this effect contributes as much as 5% to

are shown in Fig. 5. Here the diagra®s, (- - -) arise from  hyperfine-structure constants in Cs, and bringsahenitio
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calculations into 0.5% agreement with experiment. At the (iv) The linearized coupled-cluster expansions should in-
same time the experiment-theory agreement becomes wors&ide terms nonlinear in double excitations to recover the
for electric-dipole matrix elements when ti$gT] effect is  diagramsZ,, 3(Dy,) in all-order fashion.

included. To fully understand the role of triple excitations it

is important to investigate all the enumerated effects on triple

excitations, i.e., effect of triples on valence doubles, direct VIil. CONCLUSION

contribution of triple excitations to matrix elements entering An improvement of the accuracy @b initio Coulomb-

Z1x,, and also the normalization correction due to valencyrrelated calculations is necessitated by the latest experi-
triple excitations. » _ . mental and theoretical progress in studies of parity violation
The LCCSD[12-14,1§ additionally disregards nonlinear i alkali-metal atoms. Such improvement may possibly be
terms in the coupled-cluster expansion. Therefore contribuschieved by augmenting powerful all-order techniques by
tions t0 Q¥ similar to one shown in Fig. # are omitted.  contributions missed in a given order of many-body pertur-
These nonlinear terms lead to additional correctionshation theory. We derived and analyzed the entire set of
Zox3(Dpy). A similar effect omitted in the LCCSD approach fourth-order many-body diagrams for a one-particle operator.
is a direct contribution of disconnected double excitations to We highlighted the fourth-order contributions omitted in
matrix elements represented by the diagram& pf,(D,) the popular CCSD method. To recover the full set of fourth-
class. It is worth noting that consideration of the nonlinearorder diagrams one should additionally consider the effect of
contributions is key for accounting for the full set of random- triple _excitations. In addition, the linearized version of
phase-approximation diagrams with the CCSD method. ~ CCSD should be augmented by nonlinear contributions of
We further notice that in the framework of traditional double excitations. We presented explicit formulas for such
Rayleigh-Schidinger perturbation theory there are also con-COmplementary contributions in the Appendix. The represen-
tributions from so-called folded diagrams, as discussed jfatve diagrams may be found_ in Fig. 5. We also proposgd a
Sec. Ill. These folded diagrams originate from the secondRossible extension of the derived fourth-order contributions

order valence energy correctigtihe first-order correction is o ?_Ikl]grg:rrii:(j girtrug:;gﬁg tmhgor%/.e useful for an analvsis of
zero in the frozen-core Hartree-Fock basiSince both the P y y

the completeness of all-order methods in the fourth order of

CCSdee(;hod and_ |§2I|near|zed ver5|ohn fu"ﬁ/ recover tgeperturbation theory and for designs of next-generation ap-
second-order energies2], in our approach we have omitte proximations in atomic many-body calculations.
contributions of the folded diagrams.

Finally, we would like to comment on a possible all-order
extension of the derived fourth-order contributions. Ideally, ACKNOWLEDGMENTS
the entire fourth-order set of diagrams would be recovered
by fully treating the triple and nonlinear double excitations \We would like to thank Sergey Porsev for comments on
within the traditional coupled-cluster approach. However, athe manuscript. This work was supported in part by the Na-
the present state of computer technology such a full treational Science Foundation.
ment hardly seems feasible in relativistic calculations. At the
same time the CCSD method presents an attractive starting
point. The triple excitations may be treated semiperturba-  APPENDIX: FOURTH-ORDER CORRECTIONS
tively, i.e., the triple excitations are replaced by a combina- TO MATRIX ELEMENTS
tion of “bare” Coulomb interaction and an all-order CCSD  Here we tabulate fourth-order corrections to matrix ele-
double excitatior{ 13]. ments of one-particle operator involving triple excitations
The following modifications of the CCSD method should and nonlinear contribution from double excitations. The clas-
be made to partially sum the derived diagrams to all ordersification of the diagrams and notation were introduced in the
of perturbation theory. main text of the paper. Briefly, the matrix elemegs, of
(i) Four classes of the derived diagrafi@s)«3(S,[T,1), the Coulomb interaction are defined by Ef). The quanti-
Zox3(Dy[ T, 1), Zox3(Sc[ Tcl): Zoxs(D,[ Tel)) may be ac- ties g, are antisymmetric combinationsdji = Gijik
counted for by amending the traditional CCSD equations- g;,, . Matrix elements of a nonscalar one-particle operator
with a semiperturbative contribution of triple excitations. 7 are denoted ag; . Core orbitals are enumerated by letters
Two of the desired modification§,[T,] andS[T.], were  a,b,c,d, complementary excited states are labeled by
considered previously in Reff13,14]. m,n,r,s, and valence orbitals are denoted dyandw. The
(i) In the diagramsZ,»(T,), Z1x2(T), andZ,on(T,) notation e,,..., stands fore,+ey+---e,. The terms de-
the bottom and the uppeiclosing Coulomb interactions noted c.c. are to be calculated by taking the Hermitian con-
should be replaced by all-order double excitation amplitudegugate of all preceding contributions and swapping lahkels
This generalization follows from considering the relevantandw.
contributions in the coupled-cluster method. For convenience of drawing the graphs, the sequence of
(ii) In the Z;»(D,,) diagrams all the Coulomb interac- interactions in numerators is sorted so that the interaction to
tions should be replaced by all-order double excitation amthe right of another interaction appears lower in the corre-
plitudes. sponding Brueckner-Goldstone diagram,
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Finally, the normalization correction due to valence triple excitations is defined as
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1
Zoomd To) = = 5 [NFU(T) +NGI(T,) 2,

The correction to normalization may be representedilzs terms denoted c.c. are to be calculated by taking the Hermitian
conjugate of all preceding contributions
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