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Many-body calculations of the static atom-wall interaction potential for alkali-metal atoms
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We present third-order many-body perturbation theory calculations of the Lennard-JonesC3 coefficient for
the alkali-metal atoms lithium, sodium, potassium, rubidium, cesium, and francium. All-order singles-doubles
calculations ofC3 are also presented for lithium, sodium, and potassium. For lithium and sodium the present
values ofC3 are compared with other theoretical and semiempirical values.@S1050-2947~98!04404-7#

PACS number~s!: 34.50.Dy, 31.15.Md, 31.15.Dv
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I. INTRODUCTION

The long-range interaction between an atom and a per
conducting wall is dominated by a static image potent
first considered by Lennard-Jones@1# more than 60 years
ago. At distances from the wallZ, large compared to the
atomic size, the Lennard-Jones potential is given by
dipole-dipole interaction between the atom and its image

V~Z!52
e2C3

Z3
. ~1!

The coefficientC3 in Eq. ~1! is the expectation value of th
operator1

1

16 (
i , j

~xixj1yiyj12zizj !,

in the atomic ground state. Here,r i5(xi ,yi ,zi) is the coor-
dinate of thei th atomic electron with respect to the nucleu
For an atom with a spherically symmetric ground state, o
can replaceC3 by the equivalent expression

C35
1

12
^0uR2u0&,

where R5( ir i . It is worth noting that the Lennard-Jone
interaction constant is an integral part of models accoun
for the finite conductivity of the wall material by Bardeen@2#
and by Mavroyannis@3#. In addition, the wall-atom-wall in-
teraction constant for small wall separation distances is
proportional toC3, as discussed in Refs.@4,5#.

Precise values ofC3 for lithium were obtained by Yan
and Drake@6# from an elaborate configuration interactio
~CI! calculation and confirmed by an independent calculat
by Yan et al. @4#. The CI value ofC3 for lithium is in close
agreement with the value inferred from a variational cal
lation by King @7#. These accurate values ofC3 for lithium

1There is a factor of 2 error in the expression for this opera
given in Ref.@1#.
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are about 2% smaller than the corresponding value obta
from a Hartree-Fock~HF! calculation.

An accurate semiempirical value ofC3 for sodium was
also obtained by Kharchenkoet al. @5# from an analysis of
the S21 sum rule:

S215
2

3
^R2&5(

n

f n

E02En
,

where f n is the oscillator strength of the transition from th
ground state to an excited staten. The quantitiesE0 andEn
are energies of the ground state and excited state, res
tively. This value differs from the HF value ofC3 by about
10%. While more elaborate calculations@8# improve the
agreement between theoretical and semiempirical values
sodium somewhat, all calculations known to the authors d
agree with the semiempirical value by more than 2%.

In the paragraphs below, we carry out third-order man
body perturbation theory~MBPT! calculations ofC3 for all
alkali-metal atoms. For lithium, these calculations diff
from the CI value by about 0.2%, while for sodium, the
differ from the semiempirical value by 0.6%. Compariso
of third-order MBPT calculations of dipole transition amp
tudes with precise experimental values@9# lead us to believe
that the present MBPT calculations are accurate to be
than 5% for all alkali-metal atoms.

For lithium, sodium, and potassium, we also carry o
all-order many-body calculations using the relativis
singles-doubles~SD! approach@10#. The values ofC3 ob-
tained from these all-order calculations are in very clo
agreement with the CI value for lithium and the semiemp
ical value for sodium. The SD value ofC3 for potassium is
0.8% smaller than the MBPT value. The aim of this pape
twofold: first, to provide accurate third-order MBPT value
of C3 for all alkali-metal atoms; and second, to confirm t
semiempirical value ofC3 for sodium using an all-order SD
calculation.

II. MBPT

The present calculations ofC3 are based on the relativisti
no-pair Hamiltonian @11#, H5H01V, which in second
quantization is given by
r
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TABLE I. Contributions toS(1) and 2T(1).

Term Li Na K Rb Cs Fr

Sv
(1) 17.7393 20.7148 31.5133 35.4253 42.4514 40.54

Sc
(1) 0.8904 6.4050 19.4792 31.4361 51.2239 65.64

S(1) 18.6297 27.1198 50.9924 66.8614 93.6753 106.18
2Tv

(1) 0.0000 20.1046 20.3894 20.6746 21.0407 21.8341

2Tc
(1) 0.0000 22.4128 27.6073 213.2647 222.9727 230.0423

2T(1) 0.0000 22.5174 27.9967 213.9393 224.0134 231.8764

^R2& (1) 18.6297 24.6024 42.9957 52.9221 69.6618 74.30
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e iai
†ai , V5

1

2 (
i , j ,k,l

v i j lk ai
†aj

†akal2(
i , j

Ui j ai
†aj .

~2!

Here,e i is an eigenvalue of the one-electron Dirac equat
that defines the single-electron orbitals, andU designates the
central potential used to approximate the effect of the ato
cloud in the one-electron Dirac equation. For alkali-me
atoms, we chooseU5VHF; the ‘‘frozen-core’’ Hartree-Fock
potential of the (N21)-electron closed-shell ionic core.

The quantitiesai andai
† are electron destruction and cre

ation operators, respectively. In Eq.~2!, the summation indi-
ces i , j , k, and l are restricted to range over positive
energy states only. The quantityv i jkl in Eq. ~2! is the
Coulomb interaction:

v i jkl 5 K i j U 1

r 12
Ukl L .

Later, we use the notationṽ i jkl 5v i jkl 2v i j lk to designate
antisymmetrized Coulomb matrix elements.

A. Decomposition ofR2

The operatorR2 is decomposed into the sum of a singl
particle operatorS and a two-particle operatorT, R25S
12T, where

S5(
i , j

si j ai
†aj , ~3!

T5
1

2 (
i , j ,k,l

t i jkl ai
†aj

†alak . ~4!

Here,si j 5^ i ur 2u j & and t i jkl 5^ i uruk&•^ j uru l &.
In Eqs. ~3! and ~4!, and in subsequent equations, we u

the following conventions for the summation indices: t
subscript v designates the valence orbital; subscrip
a, b, c, at the beginning of the alphabet designate oc
pied core orbitals; subscriptsn, m, o, near the middle of
the alphabet designate virtual orbitals; and the subscr
i , j , k, andl designate arbitrary orbitals, either occupie
or virtual. We also use the notationt̃ i jkl 5t i jkl 2t i j lk for the
antisymmetrized matrix element.

It should be mentioned that the diamagnetic susceptibi
of an atom can be expressed in terms ofS by
n
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x52
e2

6mc2
^S&.

Indeed, in Ref.@1#, Lennard-Jones used this relation to o
tain approximate values ofC3 from measured susceptibili
ties. It is also interesting to note that the ground-state ato
form factor for elastic scattering of fast electronsF(q), in
the limit of small momentum transferq, is given in terms of
^S& by

F~q!512
q2

6Z
^S&,

whereZ is the nuclear charge of the atom. Since we det
mine the expectation values of the operatorsS and T sepa-
rately, the results below can also be applied to calculation
susceptibilities and elastic scattering form factors.

B. First-order MBPT

First-, second-, and third-order matrix elements of sing
particle operators such asS were worked out in@12# and later
applied to transition amplitudes in alkali-metal atoms in@9#.
The first-order matrix elements of the operatorsS andT can
be conveniently divided into valence and core contributio
S(1)5Sv

(1)1Sc
(1) andT(1)5Tv

(1)1Tc
(1) , with

Sv
~1!5svv , ~5!

Sc
~1!5(

b
sbb , ~6!

Tv
~1!5(

a
t̃ vava , ~7!

Tc
~1!5

1

2(ab
t̃ abab. ~8!

The first-order contributions toS are given for alkali-metal
atoms in the upper two rows of Table I. As might be e
pected, the core contribution toS is larger than the valence
contribution for cesium and francium. The matrix elemen
of T are given in the fourth, fifth, and sixth rows of the tab
and the first-order value of̂R2& is given in the last row.
Since we use HF orbitals as our basis, the first-order ma
element is just the HF matrix element. For lighter alka
metal atoms, the approximation suggested by Lennard-Jo
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TABLE II. Contributions toS(2) and 2T(2).

Term Li Na K Rb Cs Fr

S(2) 0.0019 0.0386 0.1344 0.2197 0.3382 0.54
2Tc

(2) 20.0319 20.3484 22.4737 24.2103 28.5791 211.7083

2Ts
(2) 0.0000 20.0006 0.0010 0.0123 0.0203 0.110

2Td
(2) 20.0868 20.4363 22.1891 23.3702 25.4432 26.6505

2Te
(2) 0.0000 20.0052 20.0128 20.0135 20.0152 0.0063

2T(2) 20.1188 20.7905 24.6746 27.5817 214.0172 218.2419

^R2& (2) 20.1168 20.7519 24.5402 27.3620 213.6789 217.6969
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of neglecting contributions fromT is seen to be well justi-
fied; however, for the heavier alkali-metal atoms these c
tributions are seen to be substantial. The present relativ
HF values are smaller than previously published nonrela
istic HF values@13#, presumably because of the relativist
contraction of inner orbitals. As mentioned in the Introdu
tion, the HF value of̂ R2& differs from the accurate sem
empirical value for sodium by 10%. This difference, which
from second- and higher-order corrections, grows rapi
along the alkali-metal sequence from lithium to francium

C. Second-order MBPT

There is a single second-order contribution toS, which is
the leading term in a perturbation expansion of the rando
phase approximation~RPA!:

S~2!5(
n,b

sbnṽ vnvb

eb2en
1(

n,b

ṽ vbvnsnb

eb2en
. ~9!

The more complicated second-order matrix element ofT is
the sum of four terms,T(2)5Tc

(2)1Ts
(2)1Td

(2)1Te
(2) , where

Tc
~2!5 (

a,b,m,n

t̃ abmnvmnab

eab2emn
,

Ts
~2!5 (

a,b,m

t̃ abvmvmvab

eab2emv
1 (

a,b,m

t̃ vmabvabmv

eab2emv
,

Td
~2!5 (

m,n,b

t̃ vbmnvmnvb

evb2emn
1 (

m,n,b

t̃ mnvbvvbmn

evb2emn
,

Te
~2!5(

n,b

t̃ bnṽ vnvb

eb2en
1(

n,b

ṽ vbvn t̃ nb

eb2en
. ~10!
-
tic
-

-

y

-

In the above equations, we have introducedt̃ i j 5(b t̃ ib jb
and used the notationexy5ex1ey .

The sums over intermediate states in the above exp
sions are carried out usingB-spline basis functions, as dis
cussed in Ref@14#. The contribution ofS(2) is given in the
top row of Table II, and a breakdown of contributions toT(2)

together with the entire second-order value of^R2& is given
in the following rows.

D. Third-order MBPT

The third-order correctionS(3) consists of five parts:
SRPA

(3) , the second term in an expansion of RPA;SBO
(3) , the

Brueckner-orbital contribution;SSR
(3) , the structural radiation

correction;Sno
(3) , the wave-function normalization correction

andSdiag
(3) , a diagonal third-order contribution that contribut

only for scalar operators such asS. These terms are written
out in detail in Refs.@9,12# and will not be repeated here. W
do not evaluate third-order corrections toT for reasons ex-
plained below in our discussion of the SD approximation.
detailed breakdown ofS(3) is given in Table III. These cor-
rections are dominated by the Brueckner-orbital contributi
which accounts for the contraction of the valence elect
wave function caused by the interaction of the valence e
tron with the dipole moment that it induces in the atom
core. In Table III, as in Ref.@9#, we include third-order and
all higher-order RPA corrections in the termSRPA

(3) .
Finally, a summary of the first-, second-, and third-ord

corrections tô R2& is given in Table IV. It is far from clear,
examining this table, that the fourth- and higher-order co
tributions to the matrix element are negligible. To assess
role of these higher-order terms, we now turn to all-ord
MBPT techniques.

III. SD APPROXIMATION

To go beyond the third-order MBPT calculations for a
oms with one valence electron, we make use of the sing
5

64
TABLE III. Contributions toS(3).

Term Li Na K Rb Cs Fr

SRPA
(3) 0.0002 20.0028 0.0024 0.0094 0.0210 0.041

SBO
(3) 20.2533 21.1042 24.1836 25.8553 28.8675 29.4181

SSR
(3) 0.0033 0.0251 0.1484 0.2414 0.4101 0.52

Sno
(3) 20.0079 20.0404 20.2305 20.3447 20.5636 20.6761

Sdiag
(3) 0.0008 0.0655 20.1421 20.2422 20.6281 20.6514

^R2& (3) 20.2570 21.0568 24.4054 26.1914 29.6281 210.1776
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TABLE IV. Summary of perturbation theory for̂R2&.

Term Li Na K Rb Cs Fr

^R2& (1) 18.6297 24.6024 42.9957 52.9221 69.6618 74.30

^R2& (2) 20.1168 20.7519 24.5402 27.3620 213.6789 217.6969

^R2& (3) 20.2570 21.0568 24.4054 26.1914 29.6281 210.1776
^R2&pert 18.2559 22.7936 34.0501 39.3687 46.3548 46.43
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doubles approach described and developed in Ref.@10#. In
this approach, the wave functionCv of the atomic system is
represented as

uCv&5S 11(
m,a

rmaam
† aa1

1

2 (
m,n,a,b

rmnabam
† an

†aaab

1 (
mÞv

rmvam
† av1 (

m,n,a
rmnvaam

† an
†aaavD uFv&,

~11!

whereFv is the unperturbed wave function. The SD wa
function accounts for single and double excitation from
core, single excitations of the valence electron, and simu
neous excitations of the valence electron and a single
electron. Later we will use the antisymmetrized combin
tions of the doubles coefficients:r̃ mnab5rmnab2rnmab, and
r̃ mnva5rmnva2rnmva .

Substituting the wave function from Eq.~11! into the no-
pair Hamiltonian, one obtains a set of coupled algebr
equations given in Ref.@10# for the singles and doubles ex
citation coefficients. Iteration of these equations correspo
to the order-by-order hierarchy of MBPT, with a major set
diagrams iterated to all orders. After ther coefficients are
determined, one is in a position to calculate matrix eleme
of operators corresponding to physical observables. The
agonal matrix element of a one-particle operatorZ
5( i , j zi j ai

†aj is represented as

Zvv5Zcore1
Zval

11dNv
. ~12!

Here,dNv is the valence electron contribution to normaliz
tion of uCv&. Zval is represented as a sum of 21 terms giv
in Ref. @10#. The expression forZcore was not given in@10#,
since it vanishes for nonscalar operators. However,S is a
scalar operator, so we must include these additional te
They are given byZcore5Z(0)1Z(1)1•••1Z(6), with

Z~0!5(
a

zaa , Z~1!52(
a,m

rmazam ,

Z~2!52 (
a,b,m

rmarmbzab , Z~3!5 (
a,m,n

rmarnazmn ,

Z~4!52 (
a,b,m,n

rnbr̃ mnabzam ,

Z~5!5 (
a,b,m,n,r

rmnabr̃ mrabznr ,
e
a-
re
-

ic

ds
f

ts
i-

n

s.

Z~6!52 (
a,b,c,m,n

r̃ mncarmncbzab .

We now turn to a discussion of the diagonal matrix e
ment of T. It is convenient to separate this operator into
sum of zero-bodyT0, one-bodyT1, and two-bodyT2 parts:

T052
1

2(a,b
t̃ abab, ~13!

T15(
i , j

t̃ i j ai
†aj , ~14!

T25
1

2 (
i , j ,k,l

t i jkl :ai
†aj

†alak :. ~15!

Here :: denotes the normal form of operator products. T
effective one-body matrix elementt̃ i j was defined previ-
ously. Matrix elements of the one-body operatorT1 can be
calculated in precisely the same way as the matrix elem
of the operatorS, discussed earlier.

At this point, we derive matrix elements of the two-bod
partT2. The resulting expression consists of 36 terms, wh
will not be written out in detail. Fortunately, there is a si
nificant reduction in the number of terms for the lithiu
ground state due to angular selection rules. We obtain o
14 nonvanishing terms for the case of lithium. Below w
separate these terms into groups corresponding to the e
tive MBPT order of contribution. Such a separation is bas
on the fact that the all-order doubles coefficientsrmnab and
rmnva appear initially in the first-order MBPT wave function
while the singles coefficientsrma and rmv appear starting
from the second order. We find effective second order:

T2
~a!5 (

a,b,m,n
tmnabr̃ mnab, T2

~b!52 (
a,m,n

tmnva r̃ mnva ,

effective third order

T2
~c!5

1

2 (
a,m,n,r ,s

tmnrsr̃ mnva r̃ rsva ,

T2
~d!5 (

a,b,m,n,r
t̃ bnarr̃ nmva r̃ mrvb ,

T2
~e!5 (

a,b,m,n,r
t̃ bmnrr̃ mvva r̃ nrab ,

T2
~ f !5 (

a,b,m,n,r
t̃ bnrv r̃ mnva r̃ rmab ,
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T2
~g!5 (

a,b,c,m,n,r
t̃ ncbrr̃ mnabr̃ mrac ,

T2
~h!5

1

4 (
a,b,m,n,r ,s

tmnrsr̃ mnabr̃ rsab ,

T2
~ i !5

1

2 (
a,b,m,n,r

t̃ nvrv r̃ mrabr̃ mnab,

T2
~ j !522 (

a,b,m,n,r
tmnrv r̃ rvabr̃ mnab,

effective fourth order

T2
~k!52 (

a,m,n,r
tarnmr rv r̃ mnva ,

T2
~ l !52 (

a,b,m,n,r
tmnrbr ra r̃ mnab,

T2
~m!52 (

a,b,m,n
tbvmnrva r̃ mnab,

T2
~n!52 (

a,m,n,r
tmnrvr ra r̃ nmva .

The normalized matrix element of the two-body operator
given by an expression similar to Eq.~12!:

~T2!vv5~T2!core1
~T2!val

11dNv
, ~16!

where (T2)core includes all terms of̂ CvuT2uCv& that are
independent ofv, such asT2

(a) andT2
(g) , and (T2)val includes

TABLE V. Effective order-by-order contributions to 2T2 for
lithium in the SD approach.

MBPT order 2T2

(2T2)(2) 20.140772
(2T2)(3) 0.003022
(2T2)(4) 20.000232
(2T2)norm 0.000056
2T2 20.137926

TABLE VI. Contributions to^R2& in the SD approach.

Term Li Na K

SHF 18.6287 27.1198 50.9924
Scorr 20.2778 21.0896 23.7853
Stot 18.3519 26.0302 47.2071
(2T)HF 0.0000 22.5174 27.9967
(2T)corr 20.1389 20.8836 24.8868
(2T) tot 20.1389 23.4010 212.8835
^R2& tot 18.2130 22.6293 34.3236
s

all other terms. The derivation of such a size-consistent n
malization expression can be found in Ref.@10#.

The present SD calculations for lithium include all no
vanishing terms in the expression forT2. An order-by-order
analysis of the contributions to the matrix element ofT2 for
lithium, which is presented in Table V , shows that there is a
strong suppression of contributions toT2 with increasing ef-
fective order of MBPT.

Calculations ofT2 for sodium and other more comple
atoms ideally require the evaluation of all 36 terms. Since
leading contribution tôR2& arises mainly from the operato
S, and the contributions toT2 become smaller with increas
ing effective order, we approximate the matrix element ofT2
for sodium by the effective second-order terms only. Ther
an additional effective second-order term, that vanishes
lithium, but remains finite for the other alkali-metal atoms

~T2!~o!52 (
a,b,m

tmvabr̃ vmab. ~17!

In general, we expect the all-order SD results to be m
reliable than the corresponding MBPT calculations. For
ample, in a particular case of one-particle operator, the
approximation reproduces third-order MBPT contributio
and, in addition, includes higher-order corrections.

Numerical results

We solve the SD equations numerically using aB-spline
basis@14#. The basis set for lithium consists of partial wav
with maximum angular momentuml max54. We use 25 out
of 30 splines for each value ofl . A breakdown of the con-
tributions to the value of̂R2& for lithium is given in Table
VI.

The resulting value of̂R2& for lithium, 18.213, is in close
agreement with the value 18.216 from the calculations
Yan and Drake@6# and King@7#. The difference between th
present value and the earlier ones is affected by two fact
First, the present calculations omitted triple excitations fro
the wave function. Including triple excitations would chan

TABLE VII. Comparison of many-body calculations fo
lithium.

S 2T ^R2& C3

Yan and Drake@6# 18.354614 20.138610 18.216004 1.51800
King @7# 18.35474 20.13861 18.21613 1.51801
SD 18.3519 20.1389 18.2130 1.5178
CC 18.3460
Third-order MBPT 18.3746 20.1188 18.2558 1.5213

TABLE VIII. Comparison of values ofC3.

Term Li Na K Rb Cs Fr

Third-order MBPT 1.5213 1.8895 2.838 3.281 3.863 3.8
SD 1.5178 1.8858 2.860
CI @6,7# 1.5180
Ref. @4# 1.518~2!

Ref. @5# 1.888
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2634 57A. DEREVIANKO, W. R. JOHNSON, AND STEPHAN FRITZSCHE
the SD approach into an exact CI calculation. Second,
present calculations start from a Dirac-Hartree-Fock ba
thus relativistic effects are included in anab initio fashion.
We estimate relativistic corrections to be of order (aZ)2,
which could explain a major part of the difference.

The singles-doubles calculations for sodium were p
formed using a basis set consisting of 27 out of 30 spli
with l max56, while the results for potassium were obtain
with a basis of 27 out of 30 splines withl max55. A break-
down of the contributions tôR2& for Na and K is also given
in Table VI. In this table we explicitly separated contrib
tions arising from the Hartree-Fock approximation~first-
order matrix elements discussed in the MBPT section! and
the correlation contributions beyond the Hartree-Fock
proximation. The correlation effects tend to decrease the
of the atom, consistent with the MBPT results.

For heavier systems, in contrast to the case of lithium,
performed the calculations of the two-body part of tw
particle operatorT in effective second order only, as dis
cussed earlier. The resulting value of^R2& for sodium, 22.63,
is in good agreement with the semiempirical value
Kharchenkoet al. @5#, 22.65.

In addition to the SD approximation, we also perform
relativistic coupled-cluster~CC! calculations, including one
and two-particle cluster operators. Only matrix elements
the one-particle operatorS were calculated in this approach
A discussion of the CC method can be found in Ref.@15#. To
solve the CC equations in intermediate normalization,
used the relativistic pair program by Salomonson and O¨ ster
@16#. To calculate the expectation value of the operatorS, we
adapted the program described in Ref.@17#.

The CC calculations for lithium gave the value ofS
518.3460 which is close to the value 18.3519 calculated
SD approximation. For the case of sodium, the CC valuS
525.8812 agrees within 0.6% with the SD value. T
. A

e

cl

in
e
s,

r-
s

-
ze

e

f

f

e

n

coupled-cluster method treats triple excitations from the c
partially, to the extent of including terms nonlinear in singl
and doubles coefficients. On the other hand, the SD appr
mation omits such terms completely. Thus, numerical iss
aside, the difference between these two approaches give
indication of the importance of a full treatment of triple e
citations.

IV. SUMMARY

In Table VII, we compare the present MBPT and all-ord
calculations of̂ R2& for lithium with the precise variationa
values from Refs.@6,7#. We see that the more elaborate ca
culations agree to better than 0.1%, and that MBPT ove
timatesC3 by 0.2%.

For sodium, the comparisons of the all-order calculatio
of C3 with the MBPT and with the precise values obtained
Refs. @4# and @5# are given in Table VIII. All of the values
are in close agreement. In particular, the 3% difference
tween the theoretical and semiempirical values ofC3 noted
in Ref. @5# has been reduced by an order of magnitude.
potassium, the MBPT and SD values agree to within 0.8
Also in Table VIII, we present our MBPT predictions ofC3
for the heavier alkali-metal ions. As mentioned in the Intr
duction, we expect the MBPT calculations to be accurate
better than 5%.
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