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High-Precision Calculations of Dispersion Coefficients, Static Dipole Polarizabilities,
and Atom-Wall Interaction Constants for Alkali-Metal Atoms
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The van der Waals coefficients for the alkali-metal atoms from Na to Fr interacting in their ground
states are calculated using relativisticab initio methods. The accuracy of the calculations is estimated
by also evaluating atomic static electric-dipole polarizabilities and coefficients for the interaction of the
atoms with a perfectly conducting wall. The results are in excellent agreement with the latest data from
studies of magnetic field induced Feshbach resonances in ultracold collisions of Na and of Rb atoms
For Cs we provide critically needed data for ultracold collision studies. [S0031-9007(99)09020-1]
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The van der Waals interaction plays an important ro
in characterizing ultracold collisions between two ground
state alkali-metal atoms. While the calculation of inte
action coefficients has been a subject of great interest
atomic, molecular, and chemical physics for a very lon
time, it is only very recently that novel cold collision ex-
periments, photoassociation spectroscopy, and analyse
magnetic field induced Feshbach resonances have yiel
strict constraints on magnitudes of the coefficients. Mor
over, due to the extreme sensitivity of elastic collision
to the long-range part of the potentials, knowledge of th
van der Waals coefficients influences predictions of sig
and magnitudes of scattering lengths determining stabil
of Bose-Einstein condensates. Although many theore
cal methods have been developed over the years to c
culate van der Waals coefficients, persistent discrepanc
remain.

In this paper, various relativisticab initio methods are
applied to determine the van der Waals coefficients for t
alkali-metal dimers of Na to Fr [1]. As a check on ou
calculations, we also evaluate the atom-wall interactio
constants and use them as a sensitive test of the qua
of our wave functions. Furthermore, we calculate atom
polarizabilities and compare them to experimental data.

The van der Waals interaction is the leading term
of the potential energy between two ground-state alka
metal atoms at long range. It arises from the interactio
between induced dipole moments and is represented
2C6yR6, whereR is the distance between atoms. Th
dispersion coefficientC6 can be conveniently expressed
as an integral over dynamic polarizability at imaginar
frequencyasivd (cf. [2]),

C6 ­
3
p

Z `

0
dv fasivdg2. (1)

The polarizabilityasivd for a valence statejyl can be
written as a sum over intermediate statesjkl,

asivd ­
2
3

X
k

Ek 2 Ey

sEk 2 Eyd2 1 v2 jkyjRjklj2, (2)
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where the sum includes an integration over continuu
states andR ­

PN
j­1 rj is the dipole operator for theN-

electron atomic system. We use atomic units througho
The coefficientC3 of the Lennard-Jones interaction be
tween an atom and a perfectly conducting wall is (cf. [3

C3 ­
1

4p

Z `

0
dv asivd , (3)

or, by explicit integration,

C3 ­
1

12 kyjR ? Rjyl . (4)

Using the latter relation, we have previously [4] dete
mined the values ofC3 coefficients for alkali-metal atoms
using many-body methods.

The dipole operatorR, being a one-particle operator
can have nonvanishing matrix elements for intermedia
states represented by two types of Slater determina
First, the valence electrony can be promoted to some
other valence statew. Second, one of the core orbitals
a can be excited to a virtual statem, leaving the
valence statey unchanged. In the language of secon
quantization, the first type of states is represented
ay

wj0cl and the second type byay
maaay

y j0cl, where j0cl
describes the core. Correspondingly, we break the to
polarizability a into three parts: the polarizability due
to valence statesay , the core polarizabilityac, and the
valence-core coupling termacy , with

a ­ ay 1 ac 1 acy .

The last two terms arise from the summation over co
excitations.

Various states contribute at drastically different levels
the dynamic polarizability. For example, 96% of the stat
polarizability of Cs is determined by the two intermediat
valence states6P1y2 and6P3y2; other valence states con
tribute less than 1%. The core polarizability accounts f
approximately 4% of the total value and the contribution
the core-valence coupling term is about20.1%. The dy-
namic polarizabilityasivd, given in Eq. (2), behaves as

asivd ,
X

k

fykyv2 ­ Nyv2, (5)
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at large value ofv, where we used the nonrelativistic
oscillator strength sum ruleSs0d ­

P
fyk ­ N . Because

the ratioacyay nonrelativistically is close toN 2 1 we
expect the core polarizability to give the major contributio
at largev and become increasingly important for heavie
atoms.

Based on the above argument, we use several ma
body techniques of varying accuracy to calculate the diffe
ent contributions to the total polarizability. In particular
we employed the relativistic single-double (SD) all-orde
method to obtain the leading contribution from valenc
states [5]. The core polarizability is obtained from the rel
tivistic random-phase approximation (RRPA) [6]. Th
core-valence coupling term and the nonleading contrib
tion from valence states is estimated in the Dirac-Hartre
Fock approximation.

The relativistic SD all-order method has been prev
ously used to obtain high-precision atomic properties f
alkali-atom systems [5]. The results of theoretical S
matrix elements and comparison with experimental da
are presented elsewhere [7]. Generally, the electric-dip
matrix elements for principal transitions agree with pre
cise experimental data to better than 0.5% for all alka
metal atoms; the calculations being more accurate
lighter elements. In the present work, for Na, K, Rb, an
Cs, we used SD matrix elements for the first six lowe
P1y2 and P3y2 levels. For Fr, we used SD matrix ele
ments for a principal transition and matrix elements calc
lated with the third-order many-body perturbation theo
(MBPT), described in [8], for the four other lowestP1y2
andP3y2 states. Unless noted otherwise, we used expe
mental values of energy levels from Ref. [9] and from th
compilation of Dzubaet al. [10] for Fr.

The RRPA was used previously to obtain static co
polarizabilities for all alkali-metal atoms except Fr in
Ref. [6]. In the present calculations we reformulate
the original differential equation method used in [6] i
a manner similar to [11]. We reproduce the results
Ref. [6] and, in addition, obtain a value of 20.41 a.u. fo
the static dipole polarizability of the Fr1 ion. Zhou and
Norcross [12] findacs0d ­ 15.644s5d for the polarizability
of Cs1, by fitting Rydberg states energies to a mod
potential for Cs, while the present RRPA calculations yie
the valueacs0d ­ 15.81. Based on this comparison, we
expect the RRPA method to give at least a few per ce
accuracy in the calculation ofacsiwd.

To demonstrate the sensitivity of our results to erro
in the core polarizability, we present the ratios of value
calculated omittingac to the total values ofas0d, C3,
and C6 in Table I. We see that whileas0d is affected
at the level of a few per cent, the core contribution
C6 becomes increasingly important for heavier system
acsiwd contributes 2% toC6 for Na and 23% for Fr. The
constantC3, obtained with Eq. (3), is the most sensitiv
to the core contribution. Indeed, whileac contributes
16% of C3 for Na, it accounts for half of the total value
for Fr.
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TABLE I. Demonstration of the relative importance of th
core contribution with increasing number of electronsN, where
ay , Cy

3 , and Cy
6 represent values calculated disregarding co

excitations.

Na K Rb Cs Fr

ays0dyas0d 0.99 0.98 0.97 0.96 0.94
Cy

3 yC3 0.84 0.73 0.65 0.59 0.50
Cy

6 yC6 0.98 0.93 0.89 0.85 0.77

The tabulation of our results is presented in Tables
IV. In method I we use high-precision experiment
values, compiled in [7], for dipole matrix elements of th
principal transition. In method II we use the theoretic
SD matrix elements for the principal transition. W
recommend using the values obtained with method I
as0d and C6, since the accuracy of experimental da
for the principal transitions is better than that of S
predictions.

In Table II we compare our calculations with exper
mental data for static polarizabilities. We find perfe
agreement with a high-precision value for Na obtained
recent atom-interferometry experiments [13]. The expe
mental data for static polarizabilities of K, Rb, and Cs a
known with the accuracy of about 2% [14,15]. While w
agree with those experimental values, we believe that
theoretical approach gives more accurate results, ma
due to the overwhelming contribution of the princip
transition to the sum over intermediate states. The th
retical error is estimated from the experimental accura
of matrix elements from an estimated 5% error for t
core polarizabilities, and 10% error for the remaining co
tributions toas0d.

A sensitive test of the quality of the present dynam
polarizability functions is obtained by calculatingC3
coefficients in two different ways: (i) by direct integratio
of asivd using Eq. (3) and (ii) by calculating the diagona
expectation value ofR2 in Eq. (4). In the present work
we extend calculations of the expectation value ofR2 [4]
in the SD formalism to obtainC3 values for Rb, Cs, and
Fr. In Table III, we compare the SD values forC3 with
those obtained in [4] using MBPT. The difference of 7
for Cs and 10% for Fr between SD and MBPT values
not surprising, since the MBPT [8] underestimates the li
strength of principal transitions by a few per cent for C
and Fr. To make a consistent comparison between theC3
values obtained by integratingasivd and by calculating
the expectation value, we have used SD energies
matrix elements in method II calculations in Table II
TheseC3 values agree to about 0.6% for Na, 1% for
and Rb, 2.5% for Cs, and 3.4% for Fr. We assume t
most of the error is due to the RRPA method used
calculate the core polarizability.

The error estimates inC6 are based on the accuracy o
experimental matrix elements for the principal transitio
and by scaling the error of the core contribution fromC3
to C6, using Table I. The comparison ofC6 coefficients
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TABLE II. Comparison of static dipole polarizabilitiesas0d for alkali-metal atoms in atomic
units. The entries in column 1 indicate either method I, utilizing high-accuracy experimen
data for electric-dipole matrix elements for the principal transition, or method II, utilizing al
order SD values instead.

Na K Rb Cs Fr

I a 162.6(3) 290.2(8) 318.6(6) 399.9(1.9) 317.8(2.4)
II 163.0 289.1 316.4 401.5 315.1
Expt. 162.7(8)b 293.6(6.1)c 319.9(6.1)c 403.6(8.1)c

aValues recommended from the present work.
bRef. [13].
cWeighted average of experimental data from Refs. [14,15].
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with other calculations is presented in Table IV. The int
gration overasivd as in Eq. (1) has been used recent
by Kharchenkoet al. [16], by Marinescu, Sadeghpour
and Dalgarno [17], and by Patil and Tang [18]. Refe
ence [16] utilized a combination of experimental and the
retical data constrained by oscillator strength sum rul
yielding a functionasivd satisfying Eq. (5). The present
results are in good agreement with this calculation ofC6
for Na. In contrast to the presentab initio calculations,
Refs. [17] and [18] employed model potentials. In add
tion, Ref. [17] used corrections to multipole operators
account for core polarization effects with parameters ch
sen to reproduce the experimental values of static polar
abilities, which for K, Rb, and Cs atoms are known wit
an accuracy of approximately 2%. The major contrib
tion in the integration of Eq. (1) arises from the region o
v ­ 0 and the integrand is quadratic inasivd. There-
fore, the predictions [17] ofC6 for K, Rb, and Cs have
an inherent (experimental) accuracy of about 4%. The
retical uncertainty of the method used in Ref. [17] is d
termined, among other factors, by the omitted contributio
from core polarizability as discussed in Refs. [2,17]. Pa
and Tang [18] used model-potential calculations with an
lytical representations of wave functions and with expe
mental energies. They used a direct summation meth
in Eq. (2). The contribution from the core excitations wa
not included as can be seen from Eq. (3.4) of Ref. [18].
fact, this formulation does not result in a dynamic pola
izability satisyingasivd ! Nyv2, Eq. (5) in the limit of
largev. Therefore, the model-potential calculations ge
erally underestimate theC6 coefficients. Indeed, from the
tric-
e of
TABLE III. Comparison of atom-wall interaction constantsC3 for alkali-metal atoms in
atomic units. Method I designates the use of high-accuracy experimental data for elec
dipole matrix elements and energies for principal transition. Method II designates the us
all-order SD values instead.

Na K Rb Cs Fr

Method I, Eq. (3) 1.871 2.896 3.426 4.269 4.437
Method II, Eq. (3) 1.875 2.877 3.410 4.247 4.427
1
12 kR2l, SDa,b, Eq. (4) 1.8858 2.860 3.362 4.143 4.281
1
12 kR2l, MBPT [4], Eq. (4) 1.8895 2.838 3.281 3.863 3.870

aValues recommended from the present work.
bNa and K values are from Ref. [4]; those for Rb, Cs, and Fr are the present calculations.
e-
ly
,
r-
o-
es

i-
to
o-
iz-
h
u-
f

o-
e-
n

til
a-
ri-
od
s
In
r-

n-

comparison in Table IV, one can see that theC6 values
from Refs. [17] and [18] are systematically lower than ou
values.

Maeder and Kutzellnigg [19] used a method alternativ
to the integral Eq. (1) to calculate dispersion coefficient
by minimizing a Hylleraas functional providing a lower
bound. However, their prediction depended on the qualit
of the solution of the Schrödinger equation for the groun
state. For alkali-metal atoms, model potentials were use
to account for correlations. The predicted static polar
izabilities are several per cent higher than experiment
values and are not within the experimental error limits
However, forC6 coefficients we generally find good agree-
ment with the values of Maeder and Kutzellnigg [19].

Recently Marinescuet al. [20] presented calculations
of dispersion coefficients for Fr, using a model-potentia
method similar to Ref. [17]. As shown in Table IV our
result for Fr is significantly larger than the result of
Ref. [20]. We believe this may be because the metho
of Ref. [20] does not completely take into account the
contribution of the core polarizability, which accounts for
23% ofC6 for Fr.

Elastic scattering experiments and photoassociatio
spectroscopy have sensitively constrained the possib
values ofC6 for Na and Rb. van Abeelen and Verhaar
[21] reviewed spectroscopic and cold collision data fo
Na, including data from recent observations of magnet
field induced Feshbach resonances [22]. Our result f
Na 1556(4) is in good agreement with their conclusion
that 1539 , C6 , 1583. Photoassociation experiments
[23] for Rb limit the C6 coefficient to a range of
3591
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TABLE IV. Tabulation and comparison ofC6 dispersion coefficients for alkali-metal atoms
in atomic units. Method I designates the use of high-accuracy experimental data for electr
dipole matrix elements for principal transition. Method II designates the use of all-order S
values instead.

Na K Rb Cs Fr

Method Ia 1556(4) 3897(15) 4691(23) 6851(74) 5256(89)
Method II 1564 3867 4628 6899 5174
Ref. [16]b 1561
Ref. [19] 1540 3945 4768 6855
Ref. [17] 1539c 3813 4426 6331
Ref. [18] 1500 3796 4531 6652
Ref. [20] 3934d

Expt. [23] 4400–4900
Expt. [24] 4700(50)

aValues recommended from the present work.
bUtilizing a combination of experimental and theoretical data constrained by oscillator streng
sum rules.
cFor Na the value from Ref. [17] is 1472, obtained using the data from Ref. [14]. Using th
same method, but with data from Ref. [13], the resulting value is 1539.
dValue for 31u molecular symmetry.
.

g-

.

A

s.

s.
4400–4900 a.u. and even more recently [24] a stu
of a Feshbach resonance in elastic collisions of85Rb
concludedC6 ­ 4700s50d. Our valueC6 ­ 4691s23d is
in excellent agreement with this experiment. For C
knowledge of the value ofC6 is critical for predictions
of the sign of the elastic scattering length [25], thoug
it has been demonstrated the resulting cross sections
not particularly sensitive to the value ofC6 [26]. For
Fr, the paucity of other dimer data constrains quantitati
theoretical collisional studies for the near future.
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