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Application of B-splines in determining the
eigenspectrum of diatomic molecules: robust
numerical description of halo-state and
Feshbach molecules1

A. Derevianko, E. Luc-Koenig, and F. Masnou-Seeuws

Abstract: The B-spline basis-set method is applied to determining the rovibrational eigenspectrum of diatomic molecules.
Particular attention is paid to a challenging numerical task of an accurate and efficient description of the vibrational
levels near the dissociation limit (halo-state and Feshbach molecules). Advantages of using B-splines are highlighted
by comparing the performance of the method with that of the commonly used discrete-variable representation (DVR)
approach. Several model cases, including the Morse potential and realistic potentials with 1/R3 and 1/R6 long-range
dependence of the internuclear separation are studied. We find that the B-spline method is superior to the DVR approach
and it is robust enough to properly describe the Feshbach molecules. The developed numerical method is applied to
studying the universal relation of the energy of the last bound state to the scattering length. We illustrate numerically the
validity of the quantum-defect-theoretic formulation of such a relation for a 1/R6 potential.

PACS Nos.: 31.15.−p,34.50.Cx

Résumé : La méthode utilisant une base de fonctions B-spline est utilisée pour déterminer le spectre rovibrationnel
des molécules diatomiques. Une attention toute particulière est portée à la description numérique précise et efficace
des niveaux vibrationnels proches de la limite de dissociation (état halo et molécule de Feshbach). Nous soulignons
l’avantage présenté par l’utilisation de B-spline en comparant les performances de cette méthode à celles de la méthode de
représentation en variable discrète (DVR) communément utilisée. La méthode développée ici est utilisée pour étudier la
relation universelle entre l’énergie du dernier état lié et la longueur de diffusion. Nous illustrons numériquement la validité
de cette relation obtenue dans le cadre de la théorie du défaut quantique sur l’exemple d’un potentiel en 1/R6.

1. Introduction

The finite basis-set technique is an important numerical tool
in solving quantum mechanical problems, for example, in quan-
tum chemistry [1]. One of the popular recent developments is
the use of B-splines in such calculations. In atomic physics, the
applications of B-splines were stimulated by Walter R. John-
son’s work [2] and here, in this special issue dedicated to cele-
brating his contributions to atomic physics, we are delighted to
present yet another robust application of B-splines.

The B-splines work by Johnson and his co-workers was influ-
enced by the early works of Chris Bottcher. Some of the details
are reviewed in ref. 3. The reason for the popularity of the B-
splines in practical applications is due to the fact that they form
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a sufficiently complete basis set with a reasonably small number
of basis functions. Numerical accuracy of the calculations ap-
proaches that of the traditional finite-difference methods, such
as the Numerov method [4], with the advantage of a global
noniterative determination of eigenergies and eigenstates. (We
will highlight the advantages of the B-spline method over the
Numerov method further in this paper.)

Here we apply the B-spline method to study the rovibra-
tional eigenspectrum of diatomic molecules and compare the
performance of the method with that of the discrete variable rep-
resentation (DVR) approach. Previously, the B-spline method
was successfully applied to finding the vibrational spectrum of
the Morse potential in refs. 4 and 5. Here, we focus on the more
challenging problem of describing vibrational states near the
dissociation limit of realistic long-range potentials. One diffi-
culty lies in the variation of the local de Broglie wavelength by
several orders of magnitude from the short-range region to the
long-range region. Several authors [6, 7] have discussed how
the efficiency of the DVR methods could be improved via the
implementation of a mapping procedure, where the grid step
is adapted to the variation of the de Broglie wavelength. In the
present paper, we compare the mapped sine grid method of
ref. 7 to B-spline calculations also using a mapping procedure.
Molecular bound states near the dissociation limit play an im-
portant role in the formation of ultracold molecules [8, 9] and
in the determination of scattering properties in the low-energy
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regime, in particular scattering length [10] or more generally
the threshold energy-dependence of the phaseshifts. The vibra-
tional wave functions then extend to distances much larger than
the typical length of the chemical bond. Recently, several ex-
perimental groups succeeded in making loosely bound ultracold
molecules by sweeping B-fields through magnetically induced
Feshbach resonances (see the review, ref. [11]). Such Feshbach
molecules may be considered as halo-state systems, since the
vibrational wave functions extend well into the classically-for-
bidden region. While the halo-state systems, due to their univer-
sal behavior for a wide range of quantum-mechanical systems,
deserve a special attention on their own right [12], there are
emerging applications based on the Feshbach molecules: for
example, several schemes of transferring Feshbach molecules
to lower vibrational levels and down to v = 0 [13, 14] have
been proposed. In the prerequisite numerical time-dependent
studies, an expansion over a suitably-chosen quasi-spectrum is
required, and the initial state near dissociation limit has to be
well represented by this quasi-spectrum. The challenge there is
the accurate representation of the evanescent part of the wave
function in the nonclassical region. B-splines, with their supe-
rior numerical performance, demonstrated here, may prove use-
ful in such theoretical studies. We shall, therefore, evaluate this
performance by comparison with analytical results when avail-
able (bound levels of the Morse potential) or to well-established
numerical methods.

Motivated by the spectacular developments in low-energy
collision physics of ultracold atoms, the universal laws govern-
ing near-threshold physics have generated considerable interest
over the last decade. In particular, here, with the developed nu-
merical method, we investigate a relation of the energy of the
last bound state, E−1, to the scattering length a. For potentials
without a long-range tail, such a relation is a well-known pre-
diction of the effective-range theory (see for example, ref. 15).
For the van der Waals’ potentials, the applicability domain of
the effective-range model may be extended by accounting for
their asymptotic behavior and Gao [16] has recently derived
a more accurate law relating E−1 and a in the framework of
the quantum defect theory (QDT). Here, using the developed
B-spline code, we verify numerically the validity of this new
formulation. We find that compared to the effective-range re-
sult, the QDT expression remains accurate over a much wider
range of parameters than expected.

The paper is organized as follows. First, in Sect. 2, we set-up
the numerical method using the Galerkin technique and expan-
sion of the molecular wave functions over the B-spline basis.
We also describe an efficient molecular grid used in the calcu-
lations and recapitulate main features of the DVR method. In
Sect. 3, we apply the method to finding rovibrational spectra
of various potentials and compare the results with those from
the DVR method. We start with the Morse potential, where an-
alytical results are available, and proceed to realistic potentials,
varying with the internuclear separations, R, as 1/R3 and 1/R6

at large R. With the developed method, in Sect. 4, we analyze
the relation between the scattering length and the position of
the last bound state and compare our numerical results with the
predictions of the QDT and the effective-range theories. Finally,
the conclusions are drawn in Sect. 5.

2. Problem setup

We are interested in solving the radial time-independent
Schrödinger equation for vibrational motion of nuclei of a di-
atomic molecule

− 1

2µ
u′′

J (R) +
(

V (R) + J (J + 1)

2µR2

)
uJ (R) = E uJ (R) (1)

where µ is the reduced molecular mass, J is the rotational quan-
tum number, and V (R) is the electronic Born–Oppenheimer
potential. Due to our focus on ultracold physics, we deal with
the J = 0 case in our numerical examples; we find that the
B-spline method also works well for less-challenging J �= 0
rovibrational states. Unless specified otherwise, atomic units,
� = |e| = me ≡ 1, are used throughout.

2.1. B-spline approach
General mathematical introduction to B-splines and a col-

lection of codes to manipulate these basis functions may be
found in ref. 17. Here, we briefly recapitulate properties of the
B-splines relevant to our discussion. We deal with a set of n

functions defined on a support grid {ti}. A B-spline, B
(k)
i (R),

number i of order k is a piecewise polynomial of degree k − 1
inside an interval of the support grid ti ≤ R < ti+k . It van-
ishes outside this support interval. The B-splines are positive
functions on their support interval. In applications, the common
choice (also used here) is to make the end-points of the support
grid k-fold degenerate,

t1 = t2 = · · · = tk = Rmin

tn+1 = · · · = tn+k = Rmax

where n is the total number of B-splines in the set. With such a
choice of the grid, the first B-spline, B(k)

i=1(R) is the only spline
that does not vanish at Rmin. Similarly, the only nonvanishing
B-spline at the end-point Rmax is the last B-spline, B

(k)
i=n(R).

Notice that the spline support grid ti directly maps on the radial
grid, except the multiply defined end-points that map onto the
first and last points of the radial grid.

Below, we employ the Galerkin method to obtain a quasi-
spectrum of the radial Schrödinger equation, see, for example,
ref. 18. Central to this approach is an observation that the dif-
ferential equation (1) may be derived by seeking an extremum
of the action integral,

S =
∫ Rmax

Rmin

{
1

2µ

(
duJ (R)

dR

)2

+
(

V (R) + J (J + 1)

2µR2

)
u2

J (R)

}
dR

− E

∫ Rmax

Rmin

u2
J (R)dR

Further, we expand the rovibrational wave functions in terms
of the B-spline set,

uJ (R) =
n−1∑
i=2

ciB
(k)
i (R) (2)
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Notice that we discard the first and the last B-spline of the
set to enforce the boundary conditions uJ (Rmin) = 0 and
uJ (Rmax) = 0. The remaining splines vanish identically at
the end-points of the grid.

We substitute the expansion (2) in the action integral and seek
its extremum with respect to the expansion coefficients. As a
result, we arrive at the generalized eigenvalue equation for the
vector of the coefficients c = (c2, c3, ...cn−1):

Ac = E B c (3)

with matrices

Aij =
∫ Rmax

Rmin

{
1

µ

dBi

dR

dBj

dR

+2Bi

(
V (R) + J (J + 1)

2R2

)
Bj

}
dR

Bij =
∫ Rmax

Rmin

BiBj dR

(4)

The resulting eigenfunctions are orthonormal and form a nu-
merically complete basis set in the space of piecewise polyno-
mials of order k−1. The choice of the number of basis functions
is determined by the nodal structure of the wave functions that
we wish to represent.

2.2. Mapped grid method
Choosing a numerical grid for solving the radial Schrödinger

equation for loosely bound molecules requires special consid-
eration. Realistic potentials support a large number of bound
states. Near the dissociation limit the corresponding wave func-
tions have a large number of nodes. Moreover, the distance be-
tween two nodes, and hence the local De Broglie wavelength,
grows larger as we approach the outer turning point of the po-
tential. A large fraction of the wave function (especially for
halo-state molecules) may reside in the classically forbidden
region. Because of this behavior of the vibrational states, here
we depart from the usual choice of the radial grid of a constant
step as in refs. 4 and 5. Instead, we employ a more efficient grid
as prescribed by the “mapped grid” method of refs. 6 and 7, first
implemented in the framework of the DVR method described
below.

In the “mapped grid” method the radial grid is based on the
adaptive coordinate defined as

x(R) = β−1
√

2µ

pmax

∫ R

Rmin

dR′√Emax − Venv(R′)

where Venv(R) is the enveloping potential (it is chosen to be
either the same as or slightly deeper than the original potential
V (R)), Rmin is somewhat smaller than the position of the repul-
sive inner part of the potential, Emax is the maximum energy for
which accurate results are wanted, and pmax is the correspond-
ing value of the total linear momentum. The grid transformation
x(R) efficiently rescales the radial coordinate by the local de
Broglie wavelength. Factor β ≤ 1 makes the radial step smaller
than the local de Broglie wavelength and improves the represen-
tation of the wave function in the classically forbidden region.

We use a constant step of �x = π�/pmax for the adaptive co-
ordinate. This choice translates into a variable step of the radial
grid,

�R ≈ β
1√
2µ

1√
Emax − Venv(R)

(5)

At this point we recast the solution of the differential equa-
tion in terms of the generalized eigenvalue equation (3). To
solve this problem, we developed a numerical code using the
B-spline routines of ref. 17. Below we evaluate the performance
of the method by studying the rovibrational spectrum of several
potentials.

2.3. Discrete variable approach
The DVR approach to the computation of vibrational wave

functions [19], is based on a collocation scheme. A wave func-
tion ϕ is approximated by its projection P̂ ϕ on a linear combi-
nation of N interpolation functions, such that ϕ and P̂ ϕ have
the same values at the collocation points. The wave function
ϕ is thus represented by its values at the collocation points.
The Hamiltonian is represented by a matrix, which can be
used to compute bound and continuum states or to simulate
the temporal evolution of a wave packet. Spectral and colloca-
tion methods are discussed in a famous monograph by Gottlieb
and Orszag [20].

A great variety of systems have been studied, using various
sets of orthogonal interpolation functions. In contrast with the
B-splines, such functions do not vanish outside a small interval,
but rather they all are defined on the whole grid, and differ by
the number of nodes.

For applications to ultracold molecules, with bound and quasi-
bound vibrational levels in asymptotically R−6 and R−3 po-
tentials, Kokoouline et al. [6, 21, 22] implemented a Mapped
Fourier Grid method where the interpolation functions are plane
waves. The grid step is rescaled to the value of the local de
Broglie wavelength, as described above in (5). Accurate results
were obtained both for the vibrational energies and for the wave
functions, using a number of basis functions slightly larger than
the number of nodes of the wave function of the upper level.
The accuracy could be checked by comparison with asymptotic
methods [23] derived from generalized quantum-defect theory.
However, the occurrence of ghost levels after diagonalization of
the Hamiltonian matrix appeared as a drawback of the mapping
procedure. Willner et al. [7] have shown that when replacing
the plane waves by a basis of N sine functions of the adaptive
coordinate x,

sk(x) =
√

2

N
sin
(
k
π

L
x
)

k = 1, . . . , N − 1 (6)

with nodes at both ends of the grid, most of the ghost levels
would disappear.

The relevant formulae for the collocation scheme can be
found in ref. 7. (We notice, at the request of the referee, that a
similar radial grid, albeit using a nonadaptive coordinate, was
used in ref. 24 for B-splines.) Note that the number of basis
functions is entirely determined by the number of grid steps.
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The length of the grid is related to the constant grid step δx in
the x coordinate by

L = Nδx (7)

Levels of the Cs2 dimer with a binding energy as small as
∼10−16 a.u. could be computed, for which the vibrational wave
function extends up to 100 000a0, i.e., a few tens of a microme-
tre. This wave function with 528 nodes is computed with a grid
of only 706 points: it is typical of a halo-molecule, most of the
probability density lying in the classically forbidden region. The
efficiency of a set of oscillating sine functions to represent this
slowly decreasing exponential function is then questionable. A
discussion on the appearance of ghost levels shows that they are
influenced by the value chosen for the parameter β: a compro-
mise has to be found between the suppression of ghost states (β
small) and a minimum value of grid points (β ∼ 1). Moreover,
the numerical representation of the potential, where an analyt-
ical long-range behavior is usually matched to an interpolation
function between discrete ab initio data at short range may be a
source of unphysical levels. Our choice in the present paper is
to compare the efficiency of the B-spline and sine-grid methods
for the same grid.

Finally, we would like to highlight the advantages of the B-
spline and DVR methods over the commonly used Numerov
method. The Numerov method is a level-by-level determina-
tion of the eigenstates of a given potential. It consists of an
outward + an inward integrations of the Schrödinger equation
with a trial energy-value E, the correct boundary conditions
being satisfied at R small and R large. Then the energy E is
iteratively adjusted to connect the wave function and its deriva-
tive at the matching point of outward and inward integrations
for a solution having the correct number of nodes. By contrast,
in the DVR (and present B-spline) method all the eigenstates
are simultaneously determined through a diagonalization of the
Hamiltonian matrix. This is the meaning of a “global non iter-
ative method”.

Furthermore, a grid with a constant step is used in the Nu-
merov method, which is not adapted to the description of the last
vibrational levels extending to large distances and with a nodal
structure differing strongly in the R-domain located around the
minimum of the potential (rapid oscillations) and in the large
R-domain where the wave function oscillates slowly. The re-
sulting number of grid points is very large for the Numerov
method, while for the global methods (DVR and B-spline) with
a grid adapted to the local de Broglie wavelength, introducing
one grid-point per oscillation is sufficient.

3. Numerical examples

3.1. Morse potential
As a test of the quality of our numerical approach, we start

with the Morse potential [25], which has no long-range tail but
has an advantage of having analytically known energy levels
and wave functions. The Morse potential is given by

V (r) = D
[
e−2a(r−r0) − 2e−a(r−r0)

]
(8)

where D is the dissociation energy, r0 is the equilibrium po-
sition, and the parameter a governs the spatial extent of the
potential. The energies of the bound states are known exactly,

Ev = −D + �ω0

(
v + 1

2

)
−
(

�ω0

4D

)
�ω0

(
v + 1

2

)2

(9)

where the vibrational quantum number v = 0, 1, ..vD , with the
maximum, vD = ⌊

a−1√2µD − 1/2
⌋

. In these formulas, the
vibrational frequency is

ω0 = a

(
2D

µ

)1/2

(10)

In calculations we use the Morse potential fitted to the ground-
state potential of the 133Cs2 dimer. The parameters of the em-
ployed Morse potential are (in atomic units) r0 = 8.77, D =
0.016 627, a = 0.372 031 199. This potential supports 170
bound states.

We carry out the DVR and B-spline computations using iden-
tical grids. Given the same grid, the accuracy of the resulting
eigenvalues depends only on the basis, sin (DVR) or B-spline
set, and the method of solution of the Schrödinger equation (col-
location versus the Galerkin method). In Table 1, we compare
the computed energies (both DVR and B-splines) with analyti-
cal results for vibrational levels near the dissociation limit. The
results marked a were computed using a relatively small grid of
N = 275 points (Rmin = 6.3 a0, Rmax = 100 a0, and β = 0.7).
The larger and denser grid (entries marked b) has N = 553
points, Rmin = 6.3 a0, Rmax = 2000 a0, and β = 0.4. In both
cases Emax = 10−8. The order of B-splines is k = 15.

First we consider a case of the coarse grid (a). The accuracy of
reproducing the energies of the low-lying states in the B-spline
method is at the level of 10−11 cm−1, while the DVR method
has an accuracy of about 10−7 cm−1. More substantial is the
difference in the spectrum near the dissociation limit. Here, the
DVR spectrum is perturbed by a “ghost” state v = 168. Because
of the ghost state, the resulting number of bound states in the
DVR spectrum is incorrect. The spectral position of the ghost
state varies as the parameters of the grid change; for example,
the bound spectrum is no longer perturbed in the case of the
larger grid (b). By contrast, the B-spline set spectrum is free of
the ghost states regardless of the choice of the grid.

As we shift to the denser grids (case (b)), the numerical ac-
curacy of both methods improves. Because of the improved
accuracy, in Table 1 we list deviations of the numerical en-
ergies from the analytical values. Again, we observe that the
B-spline method outperforms the DVR method in terms of ac-
curacy. This conclusion seem to hold irrespective of a particular
choice of grid. The accuracy of computing the energy of the last
bound level requires special consideration. The relevant outer
classical turning point is located at R = 50.6 a0. However,
the wave function extends into the classically forbidden region
substantially. The small grid (Rmax = 100 a0) cannot fully ac-
commodate this tail. As the size of the cavity is increased to
2000 a0 for the large grid (b), the B-spline method starts to re-
cover 4–5 significant figures of the exact result for the energy
of the last bound state. Yet the DVR method reproduces only
the leading significant figure.
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Table 1. Comparison of the accuracy of the DVR and B-spline methods in the case of the Morse
potential for two choices of radial grids. Results marked (a) are for the case of a coarse grid and
results marked (b) are for a finer grid.

v Analytical Ev , DVRa Ev , B-splines
a

�Ev , DVRb �Ev B-splines
b

162 −8.2264075 −8.2263504 −8.2264050 9 × 10−6 5 × 10−13

163 −6.3205792 −6.3205024 −6.3205766 1 × 10−5 −1 × 10−12

164 −4.6655178 −4.6654299 −4.6655114 1 × 10−5 1 × 10−12

165 −3.2612233 −3.2611065 −3.2612136 2 × 10−5 8 × 10−11

166 −2.1076957 −2.1075487 −2.1074619 2 × 10−5 9 × 10−9

167 −1.2049349 −1.2046878 −1.2023402 4 × 10−5 2 × 10−6

168 −0.5529410 −1.0604859 −0.54813941 6 × 10−5 9 × 10−6

169 −0.15171398 −0.5527958 −0.14926508 2 × 10−4 4 × 10−6

170 −1.2538365 × 10−3 −0.1507383 −1.0319455 × 10−3 2 × 10−4 9 × 10−8

The superior performance of the B-spline method seems to
be due to the compactness of B-splines. A given B-spline ex-
tends over only the k intervals of the grid: the B-spline number
i vanishes identically outside a support interval (ti , ti+k). In
particular, it means that for a given coordinate R only a sum of
k (in our case k = 15) B-splines contributes. This is in stark
contrast to the DVR method: here, all N ∼ 1000 rapidly os-
cillating functions contribute to a value of the wave function
at a given coordinate, leading to the deterioration of the nu-
merical accuracy. Moreover, it is intuitively clear that while
the DVR sin basis is natural for describing rapid oscillations
in the classically allowed region, the forbidden region with its
extended exponential tail requires well-balanced interference
of many basis functions. The accurate description of the classi-
cally forbidden region becomes more important as we approach
the dissociation limit. Namely, in this limit the advantages of
using B-splines become more substantial.

3.2. Attractive 1/R3 interactions
Compared to the Morse potential, a realistic molecular poten-

tial displays a long-range tail leading to a dense vibrational spec-
trum near the dissociation limit. The long-range neutral-atom
interactions depend on the internuclear distance as −Cn/R

n,
with n ≥ 3.

The most challenging is the case of two atoms interacting via
attractive −C3/R

3, C3 > 0, interactions. Such potentials, for
example, do not possess scattering length [26]. As a particular
example, we consider the A1�+

u potential of 87Rb2 dimer corre-
lating to the 5s +5p asymptotic limit, shown in the upper panel
of Fig. 1. This potential is attractive at large internuclear dis-
tances, V (R) ≈ −C3/R

3. In our specific case C3 ≈ 17.81 a.u.
As shown by Le Roy and Bernstein [23] for long-range po-

tentials varying as V (R) ≈ −C3/R
3

Ev = D − [H3 (vD − v)]6 (11)

where the constant H3 is related to the long-range constant. In
our case the dissociation limit D = 0.

We plot our computed dependence of (−Ev)
1/6 on the vi-

brational quantum number in the lower panel of Fig. 1. We
see that the Le Roy–Bernstein formula, (11), is followed up
to v ≈ 435. This equation was derived using semiclassical ar-
guments and it is known to be violated for the last vibrational

Fig. 1. Upper panel: Molecular potential A1�+
u of the Rb2

molecule. Lower panel: comparison of the Le Roy–Bernstein fit
(continuous line) with the results obtained with the B-spline code
(squares).

levels [27]. However, in our case the deviation from (11) for
levels of v > 435 is simply due to limitations of the double
precision arithmetic (15 significant figures) used in the compu-
tations. Indeed, the energy spectrum spans 14 orders of magni-
tude: the lowest vibrational state has an energy of −2.9 × 10−2

a.u., while Ev=435 ≈ −3.8 × 10−16. Both the B-spline and the
DVR methods, since they reproduce the entire spectrum in one
shot, do not cope well with the loss of numerical accuracy. If
desired, numerical accuracy could be improved by switching to
quadruple precision arithmetic.

We find that the B-spline results for levels v < 435 were
insensitive to a particular choice of the grid, as long as the Rmax
was well beyond the outer classical turning point of the wave
function. By contrast, the DVR code has produced a multitude
of ghost levels, and, for the best choice of the grid parameters,
we were able to reproduce positions of at most 430 vibrational
levels.

The computed wave function of the v = 434 level is plotted
in Fig. 2. For this state, the classical turning point is located at
1.9 × 105 bohr. The B-spline code was run using the mapped
grid with the following parameters: Rmin = 5.0 a0, Rmax =
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Fig. 2. Vibrational wave function of v = 434, J = 0 level of
the Rb A1�+

u electronic potential as computed in the B-spline
method. The vertical line marks the position of the classical
turning point.

1 × 107 a0, β = 0.5, Emax = 10−15. This corresponds to 1292
grid points. Notice that the v = 434 wave function has 434
nodes, yet it was accurately computed using only 1292 grid
points. This is an excellent demonstration of the efficiency of
the mapped-grid technique coupled with the B-spline method.

4. Relation between the position of the last
bound level and the scattering length

Here, we consider two atoms interacting at long-range sep-
arations via attractive −C6/R

6, C6 > 0, potentials. We will
employ two scaling parameters: the van der Waals length r̄6 =
(2µC6)

1/4 and the energy Ē6 = 1/
(
µ (r̄6)

2). In particular, the
regime of quantum halo states is reached when the energy of
the last bound state is −E−1 	 Ē6 and its spatial extension
reaches distances much larger than r̄6.

We have investigated the performance of the B-spline method
in the case of a realistic molecular potential that follows the
1/R6 power law at large distances (this is the case of the ground
state of the alkali dimers). The numerical results are quite sim-
ilar to the cases of the Morse and 1/R3 long-range potential
already presented. Instead, in this section we use the method
developed to study the universal relation between the scattering
length and the position of the last bound state in the molecular
potential. To this end, we focus on a simple model of a hard-core
sphere with a van der Waals tail. In this model the short-range
physics is modeled by placing an impenetrable wall at R = R0:

V (R) =
{

∞, R < R0

−C6/R
6, R ≥ R0

(12)

This simple model offers insights into the universal laws of
low-energy scattering. Let us enumerate several analytical re-
sults [16, 28] for this model relevant to our discussion. These
are formulated in terms of the scaling factor

ā = 2π

[�(1/4)]2 r̄6 ≈ 0.477989 r̄6

and accumulated phase inside the potential

	 = r̄2
6

2R2
0

which determines the physics close to threshold. Indeed, the
number of bound states is given by [28]

Nb =
⌊

	

π
− 7

8

⌋
+ 1

and the scattering length a by [28]

a = ā

[
1 − tan

(
	 − 3π

8

)]
(13)

For |a|/r6 � 1, there is either a bound level close to the disso-
ciation limit (a > 0) or a virtual state (a < 0).

In our numerical study, we take C6 = 6851 for the ground-
state Cs dimer [29], and a reduced mass for 133Cs atoms. For
the 133Cs2 molecule r̄6 ≈ 202 a0, and Ē6 ≈ 4.4 × 10−5 cm−1.
Increasing R0, the position of the inner “hard” wall of the po-
tential, reduces the number of bound states in the potential. For
example, we find from analytical formula that a new bound state
appears at the value of R∗

0 ≈ 6.02073a0. The potential binds
180 states for R0 just below R∗

0 and 179 states for R0 just above
R∗

0 .
For our initial numerical test, we choose the position of the

inner wall at R0 = 6.02 bohr. The B-spline method reliably
produces all 179 bound states and reveals a loosely bound state
with an energy of −9.33×10−12 a.u. We verified that the ener-
gies of the states near the dissociation limit follow the Le Roy–
Bernstein pattern (similar to the analysis presented in Fig. 1
for the 1/R3 potential.) In this case, however, some additional
observations can be made.

For R0 = 6.02a0, the scattering length, (13) is large and
positive, a = +796a0. Large and positive scattering lengths
result from having a bound state just below the threshold. In this
regime, the energy of the last bound state may be approximated
by [16]

E
QDT
−1 ≈ − 1

2µ

1

(a − ā)2

×
(

1 + c1
r̄6

(a − ā)
+ c2

r̄2
6

(a − ā)2

)
(14)

where c1 ≈ 0.438 7552, c2 ≈ −0.216 3139. The above ex-
pression was derived using the quantum defect theory and it
differs substantially from the commonly-used effective-range
expansion formula

Eeff−1 = − 1

2µ

1

a2 (15)

From (14), we find E
QDT
−1 ≈ −9.35×10−12, while the effective-

range formula results in Eeff−1 ≈ −6.52 × 10−12. Clearly, our
numerical result, −9.33 × 10−12 a.u., supports the analytical
analysis [16]. In this calculation, the parameters of the grid
were chosen to be Rmin = R0, Rmax = 5 × 104, β = 0.4, with
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Fig. 3. Energy of the last bound state as a function of the
position of the inner wall of the model potential. Dots mark
numerical results obtained with the B-spline approach. Predictions
of the effective-range approximation are shown with a broken line
and that of the quantum-defect theory — with a continuous line.

the number of points 2407. When the number of points was
reduced by a factor of three, the energy of the last bound state
was affected in the third significant figure. We again notice that
the DVR method was unable to match the numerical accuracy
of the B-spline approach.

While offering an improved accuracy over the effective-range
expression, the QDT (14) is still an approximate result. In Fig. 3,
we compare the QDT prediction with our numerical results.
Here, we move the position of the inner wall just below the
critical value of R∗

0 ≈ 6.020 73, at which the least bound state
disappears. The range of values for the position of the inner
wall was chosen so that the scattering length remained positive.
An increase in R0 translates into increasingly larger values of
the scattering length. For a/ā � 1, i.e., near the threshold,
both the effective-range and the QDT results become iden-
tical. As the scattering length decreases, the effective range
approximation rapidly loses its accuracy. Our comparison in
Fig. 3 clearly demonstrates that, compared to the conventional
effective-range theory, the QDT approximation is applicable
over a much wider range of parameters. At the same time, as
R0 is decreased from its critical value, the QDT approxima-
tion starts to break down at R0 ≈ 6.017 bohr. The relevant
parameter governing the validity of (14) is the reduced scatter-
ing length a/ā: the critical value R0 ≈ 6.017a0 corresponds to
a/ā ≈ 2. To reiterate, the QDT formula, (14), is an excellent
approximation as long as a/ā > 2, while the effective range
approximation requires a/ā � 1.

Finally, it is worth pointing out that our method is robust
enough to reproduce halo states of diatomic molecules bound by
the van der Waals forces. We varied R0 just below the threshold
value and examined the energies of the least bound state pro-
duced by the B-spline method. For example, for R0 = 6.0207,
we obtain with the B-spline code E−1 = −1.71 × 10−14 a.u.,
while analytical results are E

QDT
−1 ≈ −1.82 × 10−14 a.u., and

Eeff−1 ≈ −1.78×10−14 a.u. The binding energies are four orders
of magnitude smaller than the van der Waals energy.At the same

time, the corresponding scattering length, governing the extent
of the wave function, is about 2 × 104 bohr, i.e., two orders of
magnitude larger than the van der Waals length. Satisfying both
enumerated conditions signifies reaching the universal regime
of quantum halo states.

5. Conclusion

With the experimental control of quantum-mechanical sys-
tems becoming more refined, new theoretical tools have to be
adopted to meet the new challenges. Recently, fragile Feshbach
(quantum halo-state) molecules became an experimental reality
(see, for example, ref. 30). Motivated by this progress, here we
have developed a numerical method for solving the Schrödinger
equation for diatomic molecules based on the B-spline finite
basis sets. The method produces a numerically complete quasi-
spectrum of rovibrational states. We find, that B-splines offer an
accurate description of the loosely-bound molecular states near
the dissociation limit. The quasi-spectrum is entirely devoid
of the unphysical ghost states that appear in the DVR method
and require special effort to be eliminated [7, 31]. Moreover,
coupled with the “mapped grid” method of ref. 7, the represen-
tation is both accurate and efficient: both the rapidly oscillating
part of the wave function in the classically allowed region and
the slowly varying exponential tail in the classically forbidden
region are adequately reproduced. As an application of the de-
veloped method we investigated the universal law relating the
energy of the last bound state to the scattering length. We find
that the new QDT formulation of such a law for 1/R6 potentials
by Gao [16] remains valid over a substantially wider range of
parameters than the commonly used effective-range approxi-
mation.
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