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We explore the feasibility of probing atom-wall interaction with atomic clocks based on atoms trapped

in engineered optical lattices. Optical lattice is normal to the wall. By monitoring the wall-induced clock

shift at individual wells of the lattice, one would measure the dependence of the atom-wall interaction on

the atom-wall separation. We find that the induced clock shifts are large and observable at already

experimentally demonstrated levels of accuracy. We show that this scheme may uniquely probe the long-

range atom-wall interaction in all three qualitatively distinct regimes of the interaction: van der Waals

(image-charge interaction), Casimir-Polder (QED vacuum fluctuations), and Lifshitz (thermal-bath

fluctuations) regimes.
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Atomic clocks define the unit of time, the second.
Usually environmental effects (e.g., stray fields) degrade
the performance of the clocks. One may turn this around
and by measuring shifts of the clock frequency, character-
ize an interaction with the environment. The most funda-
mental experiments of this kind search for a potential
variation of fundamental constants [1], where the ‘‘envi-
ronmental agent’’ is the fabric of the Universe itself, affect-
ing the rate of ticking of atomic clocks. In this Letter, we
evaluate a feasibility of using atomic clocks to measure
basic laws of atom-wall interactions. We find that a certain
class of atomic clocks, the optical lattice clocks, are ca-
pable of accurately characterizing the atom-wall interac-
tion. Moreover, this is a unique system where the atom-
wall interaction may be probed in all three qualitatively
distinct regimes of the interaction in a single experiment:
van der Waals (image-charge interaction), Casimir-Polder
(QED vacuum fluctuations), and Lifshitz (thermal-bath
fluctuations).

Understanding the basic atom-wall interaction [2] is
important, for example, for probing a hypothetical ‘‘non-
Newtonian’’ gravity at a �m scale (see, e.g., Ref. [3]).
Also, with miniaturization of atomic clocks, for example,
using atomic chips [4], the atom-wall interaction may
become an important systematic issue.

In optical lattice clocks, ultracold atoms are trapped in
minima (or maxima) of intensity of a standing wave of a
laser light operated at a certain ‘‘magic’’ wavelength [5,6].
The lattice wavelength is tuned so that the differential light
perturbations of the two clock levels vanishes exactly. Such
ideas were experimentally realized [7–9] for divalent
atoms, such as Sr, yielding fractional accuracies at a
10�16 level [9]. The clock transition is between the ground
1S0 and the lowest-energy excited 3P0 state.

An idealized setup for measuring atom-wall interaction
is shown in Fig. 1. A conducting surface of interest acts as a
mirror for the laser beam normally incident on the surface.

The resulting interference of the beams forms an optical
lattice. Laser operates at a magic wavelength �m specific to
the atom (see Table I). For all tabulated �m, atoms are
attracted to maxima of the laser intensity and one could
work with 1D optical lattices. The first pancake-shaped
atomic cloud would form at �m=4 distance from the mirror.
The subsequent adjacent clouds are separated by a distance
�m=2. Reference [12] discusses an experimental procedure
for loading atoms into sites close to a mirror.
Two earlier proposals, by Florence [12] and Paris [13]

groups, considered trapping divalent atoms in optical lat-
tices for studying atom-wall interaction. In both proposals

FIG. 1 (color online). Inset: Idealized setup for measuring
atom-wall interaction with optical lattice clocks. Clouds of
ultracold atoms are trapped in an optical lattice operating at a
‘‘magic’’ wavelength. By monitoring the wall-induced clock
shift at individual trapping sites, one measures a dependence
of the atom-wall interaction on the atom-wall separation. Main
figure: Fractional clock shifts for Sr as a function of separation
from a gold surface at three temperatures, T ¼ 77 K (blue dots),
T ¼ 300 K (red squares), and T ¼ 600 K (brown diamonds).
Individual points represent shifts in individual trapping sites of
the optical lattice. The first well is placed at �m=4 and subse-
quent points are separated by �m=2.
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the lattices are oriented vertically and ultracold atoms
experience a combination of periodic optical potential
and linear gravitational potential. In the Florence proposal
[12], the atom-wall interaction modifies Bloch oscillation
frequencies of atomic wave packets in this potential. In the
Paris proposal [13], laser pulses at different frequencies are
used to create an interferometer with a coherent superpo-
sition of atomic wave packets at different sites; the experi-
ment is sensitive to a difference of atom-wall interaction at
spatially separated sites. Here we explore an alternative:
we consider using atomic clocks operating in magic latti-
ces. By monitoring the clock shift at individual trapping
sites, one measures a distance dependence of the atom-wall
interaction.

Qualitative estimates.—As the separation z between an
atom and a wall increases, the atom-wall interaction
evolves through several distinct regimes: (i) chemical-
bond region that extends a few nm from the surface,
(ii) van der Waals (vdW) region, (iii) retardation
[Casimir-Polder (CP)] region, and (iv) the thermal
(Lifshitz) zone. The chemical-bond region is beyond the
scope of our Letter and we focus on the three longer-range
regimes of the interaction between a perfectly conducting
wall and a spherically symmetric atom.

Qualitatively, the vdW interaction arises due to an inter-
action of atomic electrons and nucleus with their image
charges

UvdWðzÞ ¼ �C3z
�3; (1)

where the coefficientC3 depends on an atomic state. It may
be expressed in terms of the electric-dipole dynamic polar-
izability of the atom as

C3 ¼ 1

4�

Z 1

0
�ði!Þd!: (2)

Equation (1) assumes instantaneous exchange of virtual
photons. More rigorous QED consideration leads to the
Casimir-Polder limit [14]

UCPðzÞ ¼ �3=ð8�Þ@c�ð0Þz�4: (3)

A transition between the vdWand the CP regions occurs at
the length scale @c=�Ea, where �Ea is a characteristic
value of the atomic resonance excitation energy.
The CP interaction, Eq. (3), is mediated by vacuum

fluctuations of electromagnetic field. At finite temperatures
T, populations of the vacuum modes are modified and a
new length scale, @c=ðkBTÞ, appears. As shown by Lifshitz
[15], the interaction becomes

ULðzÞ ¼ �1=4kbT�ð0Þz�3: (4)

Because of the interaction with the wall, both clock
levels would shift. We may parametrize the resulting frac-
tional clock shifts as

��

�clock

ðz; TÞ ¼

8>><
>>:
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z Þ3;
�CPð�m

z Þ4;
�Lð T

300 KÞð�m

z Þ3:
(5)

We evaluated coefficients� for the clock transitions in Mg,
Ca, Sr, Yb, Zn, Cd, and Hg (see discussion of the method
later on). The results are presented in Table I. The esti-
mates of Table I immediately show that the atom-wall
interaction is a large effect, corresponding to 10�10 frac-
tional clock shifts at the first well. This is roughly 106 times
larger than the demonstrated accuracy of the Sr clock [9].
Rigorous consideration.—In general, as the atom-wall

separation is varied, there is a smooth transition between
the three interaction regimes. To properly describe the
crossover regions, we employ an expression by Babb
et al. [16], which may be represented as

Uðz; TÞ ¼ � kBT

4z3

�
�ð0Þ þX1

l¼1

�ði�lÞI
�
�l

2z

c
;

c
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��
;

(6)

where the atomic dynamic polarizability is convoluted with
Ið	;
Þ ¼ ð1þ 	2
2Þ�ð3; 	Þþ 	4
�ð0; 	Þ� 3	2
�ð2; 	Þþ
2	4
2�ð1; 	Þ� 	6
2�ð�1; 	Þ at Matsubara frequencies

�l ¼ ð2�kBT=@Þ � l; l ¼ 0; 1; 2; . . . ;

TABLE I. Fractional shifts of the 1S0 � 3P0 clock transitions in divalent atoms due to the presence of an ideal conducting surface.
The second column lists clock frequencies. Values of magic wavelengths, �m, in Sr and Yb are experimental [10,11] and are our
theoretical results for other atoms. The differences of the static polarizabilities �ð0Þ and the van der Waals coefficients C3 for the two
clock levels are tabulated in the fourth and fifth columns. Finally, we list the fractional-shift parameters �CP, �vdW, and �L, Eq. (5).
Notation a½b� stands for a� 10b.

Atom �clock, Hz �m, nm ��ð0Þ, a.u. �C3, a.u. �vdW �CP �L

Mg 6.55[14] 466 29 0.21 �3:1½�12� �7:9½�13� �1:0½�13�
Ca 4.54[14] 739 138 0.17 �8:8½�13� �8:6½�13� �1:8½�13�
Sr 4.29[14] 813 261 0.25 �1:1½�12� �1:2½�12� �2:6½�13�
Yb 5.18[14] 759 155 0.35 �1:5½�12� �7:6½�13� �1:6½�13�
Zn 9.69[14] 416 28 0.30 �4:2½�12� �8:2½�13� �9:4½�14�
Cd 9.03[14] 419 28 0.31 �4:6½�12� �8:7½�13� �1:0½�13�
Hg 1.13[15] 362 22 0.30 �5:5½�12� �9:8½�13� �9:8½�14�
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�ðn; 	Þ being the incomplete gamma function. In addition
to recovering various limiting cases, Eq. (6) also accounts
for realistic properties of conducting wall (described by
plasma frequency !p).

Atomic properties enter the atom-wall interaction
through the dynamic electric-dipole polarizability of
imaginary frequency �ði!Þ. For the two clock levels the
perturbation of the clock frequency may be expressed in
terms of the difference ��ði!Þ ¼ �3P

0
ði!Þ � �1S

0
ði!Þ.

We computed the polarizabilities using the ab initio rela-
tivistic configuration interaction method coupled with
many-body perturbation theory. The summation over in-
termediate states entering the polarizability was carried out
using the Dalgarno-Lewis method. Details of the formal-
ism may be found in Ref. [17]. Detailed dynamic polar-
izabilities �ði!Þ and C3 coefficients for the ground states
of alkaline-earth atoms may be found in Ref. [18]. A
comprehensive analysis of the accuracy of calculations
for Yb is presented in our forthcoming paper [19]; it is at
the level of 10%. Among atoms compiled in Table I, Yb
has the most electrons and thus the most complicated
structure; we expect that the relative accuracy for other
atoms does not exceed several per cent.

Dynamic polarizabilities of Sr atom are shown in Fig. 2.
Notice that the individual polarizabilities �3P

0
ði!Þ and

�1S0
ði!Þ slowly decrease as ! increases. At large frequen-

cies each polarizability approaches the same asymptotic
limit �ði!Þ � Ne=!

2, Ne being the number of atomic
electrons. As a result, compared to the individual �ði!Þ,
the differential polarizability, ��ði!Þ, is strongly peaked
around ! ¼ 0. Only the Matsubara frequencies inside this
peak are relevant in Eq. (6). Curiously, ��ði!Þ passes
through zero at ! � 0:05 a:u: This is reminiscent of the
magic frequency for the perturbation of the clock transition
by laser field which is expressed in terms of differential
polarizability of real argument, ��ð!Þ.

With the computed ��ði!Þ, we evaluate the atom-wall
clock shifts, Eq. (6). We use plasma frequency !p ¼ 9 eV

(gold wall) and consider several temperatures T ¼ 77, 300,
and 600 K. Results for the Sr clock are shown in Fig. 1.
Individual points represent shifts in individual wells of the
optical lattice. Roughly the first 20 wells produce a frac-
tional clock shift above the already demonstrated 10�16

accuracy limit [9]. We observe that over 20 wells the clock
shift varies by 6 orders of magnitude. As the temperature of
the surface is increased, the clock shifts become more
pronounced.
It is worth pointing out that Eq. (6) assumes that the

temperatures of the environment and the wall are the same
(otherwise, see Refs. [20,21]). Moreover, the clock shifts in
Fig. 1 do not include the conventional black-body-
radiation shifts [22].
Lattice clocks are sensitive to long-range atom-wall

interactions in all three regimes: van der Waals, retardation
(Casimir-Polder), and thermal-bath (Lifshitz) regimes.
Indeed, in Fig. 3 we draw a ratio

�ðz; TÞ ¼ Uðz; TÞ=UCPðzÞ: (7)

Parameter � is equal to one in the region where the
CP approximation is valid. From Fig. 3, we observe that
the transition between the vdW and the CP regimes occurs
around well number 4. The position of the second transi-
tion region, from the CP to the Lifshitz regimes, depends
on the temperature. For T ¼ 77 K, this crossover is de-
layed until well number 25 (not shown on the Fig. 3). T ¼
600 K represents another extreme, as the vdW region
immediately transforms into the Lifshitz region. Atom-
wall interaction at room temperature, T ¼ 300 K, repre-
sents an intermediate case, where the CP approximation is
valid over several wells, and all the three domains become
distinguishable.
We showed that the lattice clocks can be used

to detect all three qualitative-distinct mechanisms
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FIG. 2 (color online). Dynamic polarizabilities of imaginary
frequency �ði!Þ of the Sr clock levels, 5s5p3P0 (dotted line)

and 5s21S0 (dashed line) as a function of frequency. Differential

polarizability ��ði!Þ ¼ �3P
0
ði!Þ � �1S

0
ði!Þ is shown with a

solid line. All quantities are in atomic units.
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FIG. 3 (color online). Sr clock shift of Fig. 1 normalized to the
Casimir-Polder limit, Eq. (7) at T ¼ 77 K (blue dots), T ¼
300 K (red squares), and T ¼ 600 K (brown diamonds).
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of the atom-wall interaction. In this regard, the lat-
tice clocks offer a unique opportunity to map
out both van der Waals! Casimir-Polder and
Casimir! Polder-Lifshitz transition regions. This
distinguishes our clock proposal from previous ex-
periments: the former transition was probed in Ref. [23],
while the latter was detected in Ref. [21]. None of
the experiments so far has been able to map out both
transitions simultaneously.

Accuracy and atomic confinement.—Commonly, the ac-
curacy of determination of the atom-wall interaction is
limited by the spatial extent of an atomic ensemble [2].
An advantage of working with optical lattices lies with a
tight spatial confinement at the lattice sites. Because of a
variation of the atom-wall interaction over a trapping site,
the clock shift acquires a width, leading to an uncertainty

�Uðz; TÞ=Uðz; TÞ � 0:3=N2
wðEr=V0Þ1=2, where V0 is the

depth of the optical lattice and Er ¼ @
2ð2�=�mÞ2=ð2MÞ

is the photon recoil energy for an atom of mass M. Nw is
the lattice site number counting from the surface. This
uncertainty becomes smaller as Nw increases (potential
becomes less steep) and as the ratio V0=Er increases (better
confinement).

The ratio V0=Er can be increased by ramping up the
intensity of the lattice laser. For a given accuracy of the
clock, the limitation on the maximum of intensity arises
from higher-order corrections to ac Stark effect (hyper-
polarizability), experimentally studied in Ref. [24]. They
found that V0=Er can be as high as 100 without affecting
the performance of the clock at the 10�16 level. With this
ratio, we find that for Nw � 10 the error in the determi-
nation of the atom-wall interaction due to imperfect con-
finement of the atoms can be as small as 0.1%.

For lattice sites near the wall, the accuracy can be
improved by increasing V0=Er. As an example, consider
the well number 2. The wall-induced clock shift here is
�10�12 (see Fig. 1) and for a 1% measurement the clock
may operate at the 10�14 accuracy level. At this level, the
hyperpolarizability effect would require V0=Er < 1000
(the required laser intensity is feasible [24]), consistently
translating into a sub-1% error in the determination of the
atom-wall interaction.

The spread of the atomic wave function constrains per-
formance of the earlier proposals for studying atom-wall
interaction with optical lattices. For example, in the Bloch
oscillation scheme of Ref. [12] the atomic cloud extends
over many lattice sites; this limits that scheme to measure-
ments at relatively large atom-wall separations. In
Ref. [13] the performance of the interferometric measure-
ments is optimized at V0=Er � 5, which is too small for

accurately determining the interaction strength near the
surface (requires V0=Er � 1000).
To conclude, here we explored a feasibility of using

atomic clocks for measuring atom-wall interaction by
monitoring wall-induced clock shift. We demonstrated
that the exquisite accuracy of the clocks offers a unique
opportunity to map out all three qualitatively distinct re-
gimes of the long-range atom-wall interaction in a single
experiment. None of the previous experiments was capable
of measuring the interaction in all three regimes.
We thank J. Babb, J. Weinstein, H. Katori, G. Tino, P.
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[1] T.M. Fortier et al., Phys. Rev. Lett. 98, 070801 (2007).
[2] D. Bloch and M. Ducloy, in Advances in Atomic,

Molecular, and Optical Physics, edited by B. Bederson

and H. Walther (Academic, San Diego, 2005), Vol. 50,

pp. 91–154.
[3] L. Randall, Science 296, 1422 (2002).
[4] D. Gallego et al., arxiv:0905.2207v1.
[5] H. Katori et al., Phys. Rev. Lett. 91, 173005 (2003).
[6] J. Ye, H. J. Kimble, and H. Katori, Science 320, 1734

(2008).
[7] M. Takamoto et al., Nature (London) 435, 321 (2005).
[8] R. Le Targat et al., Phys. Rev. Lett. 97, 130801 (2006).
[9] A. D. Ludlow et al., Science 319, 1805 (2008).
[10] M. Takamoto and H. Katori, Phys. Rev. Lett. 91, 223001

(2003).
[11] Z.W. Barber et al., Phys. Rev. Lett. 96, 083002 (2006).
[12] F. Sorrentino et al., Phys. Rev. A 79, 013409 (2009).
[13] P. Wolf et al., Phys. Rev. A 75, 063608 (2007).
[14] H. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
[15] E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1956) [Sov.

Phys. JETP 2, 73 (1956)].
[16] J. F. Babb, G. L. Klimchitskaya, and V.M. Mostepanenko,

Phys. Rev. A 70, 042901 (2004).
[17] K. Beloy, V. A. Dzuba, and A. Derevianko, Phys. Rev. A

79, 042503 (2009).
[18] A. Derevianko, S. G. Porsev, and J. F. Babb,

arXiv:0902.3929v1.
[19] V. A. Dzuba and A. Derevianko, arXiv:0908.2278v1.
[20] M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev.

Lett. 95, 113202 (2005).
[21] J.M. Obrecht et al., Phys. Rev. Lett. 98, 063201 (2007).
[22] S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502

(R) (2006).
[23] C. I. Sukenik et al., Phys. Rev. Lett. 70, 560 (1993).
[24] A. Brusch et al., Phys. Rev. Lett. 96, 103003 (2006).

PRL 103, 133201 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

133201-4


