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We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally
involve infinite number of terms and we devise a method of partial summétissing of the resulting
series. Our formalism is built upon an expansion of the prodlie of cluster amplitude< into a sum of
n-body insertions. We consider two types of insertions: parfiotde) line insertion and two-particléwo-hole
random-phase-approximation-like insertion. We demonstrate how to “dress” these insertions and formulate
iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at
single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams
for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We
illustrate our formalism with relativistic calculations of the hyperfine consiiis) and the 6;,,—6py/,
electric-dipole transition amplitude for the Cs atom. Finally, we augment the truncated coupled-cluster calcu-
lations with otherwise omitted fourth order diagrams. The resulting analysis for Cs is complete through the
fourth order of many-body perturbation theory and reveals an important role of triple and disconnected qua-
druple excitations.
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I. INTRODUCTION Z
AY Ni N]

The coupled-clustefCC) method[1,2] is a powerful and
ubiquitous technique for solving quantum many-body prob-Wwith normalizationN;=(¥;|¥;). It is clear that both the nu-
lems. Let us briefly recapitulate general features of the CQnerator and denominator have infinite numbers of terms,
method, so we can motivate our further discussion. At thee.g.,

heart of the CC method lies the exponential ansatz for the =
exact many-body wave function Z; = (W[Z|w) = 3 )\|_w<0i|(Ti’r)>\ Z(T)#o). (3
A=0 u=0 N = M-

In this paper we address the question of partially summing
the terms of the above expansion for matrix elements, so that
the result subsumes an infinite number of terms.

More specifically we are interested in transitions between
states of univalent atoms, such as alkali-metal atoms. There
® - ) . . has been a number of relativistic coupled-cluster calculations
Here Ti:EkTi is the cluster Operator |nV0|V|ng amplltudes for these Systemsg_g]_ In particu'ar, Ca'cu'ationgg_al |g-

Ti(k) of k-fold particle-hole excitations from the reference nore the nonlinear term@ >1 and x> 1) in the expansion
Slater determinanf0,). The parametrizatioril) is derived (3); we will designate this approximation as the linearized
from rigorous resummation of many-body perturbationcoupled-clustefLCC) method. At the same time, it is well
theory(MBPT) series. From solving the eigenvalue equationestablished that for univalent atoms an important chain of
one determines the cluster amplitudes and the associated efiany-body diagrams for matrix elements comes from the
ergies. While the ansatd) contains aninfinite number of  so-called random-phase approximati®PA). A direct com-
terms due to expansion of the exponent, the resulting equgarison of the RPA series and the truncated LCC expansion
tions for cluster amplitude?i(k) contain afinite number of in Ref.[10] leads to the conclusion that a fraction of the RPA
terms. This simplifying property is unfortunately lost when chain is missed due to the omitted nonlinear terms. One of
the resulting wave functions are used in calculations of mathe methods to correct for the missing RPA diagrams has
trix elements: upon expansion of exponents the number dbeen investigated in Ref4]. These authors replaced the bare
terms becomes infinite. Indeed, consider matrix elements ahatrix elements with the dressed matrix elements as pre-
an operatorZ, e.g., the transition amplitude between two scribed by the RPA method. Such a direct RPA dressing in-
states volved a partial subset of diagrams already included in the

|‘1'i>:eXFiTi)|Oi>:<1+Ti+%Ti2+ "‘)|Oi>- (1)
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CC method, i.e., it leads to a double counting of diagrams. |W;) = {exp(T)}|D)), (5)

To partially rectify this shortcoming, the authors of Ref]

have manually removed certain leading-order diagrams/here the curly brackets denote normal products of opera-
higher-order terms being doubly counted. Here we present aj'S: For univalent systems the above ansatz may be simpli-
alternative infinite-summation scheme for RPA chain thatied o

avoids the double counting and thus a manual removal of the

o
‘extra” diagrams. |W,) = exi(C) S,a/[00) = (2 Q) sajlo). (6
In addition to the RPA-like dressing of the coupled-cluster u=0 M
diagrams for matrix elements, we consider another subset ﬂere C represents the cluster operator involvitgingle
diagrams that leads to a dressing of particle and hole lines iaouble triple, etg. excitations of core orbitals ’
the CC diagrams. The leading-order corrections due to the ' e

dressing scheme presented here arise in the fourth order of 1) 2 ~@ _ + 1 ot
MBPT, and in this paper we present a detailed comparisonC=C"~ +C7+ - = > PrneinPa * o1 > Prnafhaa
with the relevant fourth-order diagrams. Finally, we illustrate ma -mnab

our approach with relativistic computation of hyperfine- + e, (7)

structure constants and dipole matrix elements for the Csnd incornorat dditional excitations from the valen
atom. In addition to dressing corrections we incorporate cerd S, incorporates additional excitations fro € valence

tain classes of diagrams from the direct fourth-order MBPTStateU’

calculation(as in Refs[10,11]), so that the result is complete S =1 +$Jl) + 5<U2> + ..

through the fourth order. To the best of our knowledge, the

reported calculations are the first calculations for Cs com- =1 +2 ina;rnav + 2 Pmmaa%alaaav +--. (8)
m mna

plete through the fourth order of MBPT.

The paper is organized as follows. First, we present gn these formulas and throughout the paper we employ the
more extensive discussion of the CC formalism in Sec. Il Infojlowing labeling convention: indicesa,b,c,d denote
Sec. lll we partition a product of CC operators into a set ofsjngle-particle states occupied in the cdde) and indices
insertion operators. With these insertions, we dress particlg, n r st stand for the remainingvirtual) orbitals. In this
and hole lines in Sec. IV, and discuss RPA-like dressing in.onvention the valence statesandw form a subset of the
Sec. V. The present paper may be considered as an all-ordgityal orbitals. Finally, indices, j,k,| stand for any of the
extension of the fourth-order calculau@no,lﬂ,_and in Sec.  apove classes of single-electron orbitals. In Egs.and (8)

VI we present an illustrative comparison with the fourth- the cluster amplitudes; stand for single-particle excitations
order diagrams. Finally, the designed summation schemegng,,, for two-particle excitations, with an apparent gener-
are illustrated numerically in Sec. VII and the conclusionsyjization tok-fold excitation amplitudes.

are drawn in Sec. VIII. Unless noted otherwise, atomic units  pjctated by the computational complexity, in most appli-

f=|e[=me=1 are used throughout the paper. We follow thecations the cluster operator is truncated at single and double
convention of Ref[12] for drawing Brueckner-Goldstone excitations (CCSD approximation C~C®P+C®@ and S,

diagrams. ~1+8"+5?. A further linearized(LCCSD) approximation
Il. COUPLED-CLUSTER FORMALISM FOR UNIVALENT consists in neglecting nonlinear terms in the expansion of the
SYSTEMS exponent in Eq(5), i.e.,
. . T . . LCCSD — 1) 2) 1 2
In this section we specialize our discussion of the w,) =(1+§V+87+CcP+CP)o,). (9

coupled-cluster method to atomic systems with one valence
electron outside the closed-shell core. We review various ap- as discussed in the Introduction, the cluster amplitudes

proximations and summarize the CC formalism for calculaan pe found from solving a proper analog of the eigenvalue

tion of matrix elements. _ equation. We assume that these equations are solved and in a
We are interested in solving the atomic many-body probyypical application we are faced with the necessity of com-
lem. The total Hamiltoniard is partitioned as puting matrix elements, Eq2), between two many-body
H=Hy+G, (4)  wave functiong¥,) and|¥,). As demonstrated by Blundell

. _ et al [3], so-called disconnected diagrarfi] in the nu-
where Hy is the suitably chosen lowest-order Hamiltonian merator and the denominator of E@) cancel. Their final
and the residual |nteraCt|@:H_H0 is treated as a pertur- expression for the exact matrix element reads

bation. For systems with one valence electron outside the

closed-shell core, a convenient choice Ky is the frozen- Moy = 8o+ (Z:,/\,?}I)conn
core(VN"1) Hartree-Fock HamiltoniafiL3]. In the following, wo ML + (N oL + (N o}

we explicitly specify the state of the valence electron, so (10)
that the proper reference eigenstd®) of H, is |0,)
=a!|0,), where the pseudovacuum stélg specifies the oc- where the matrix elemeid,,, Eq. (3), is split into corezc"

cupied core. and valencil,’vi' contributions, the diagrams comprisizgf™
For open-shell systems a general CC parametrizatiobeing independent of the valence indices. The valence and
reads[12] core parts of the normalization factdi, are defined in a
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HF (2) RPA (©) BO (d)BO+ + o =

FIG. 1. Dominant LCCSD contributions for the matrix ele-
ments. The double arrows represent the valence state, crosses rep- - - -
resent matrix elementg, and heavy horizontal lines represent clus-
ter amplitudes. In particular, the RPA diagram involves valence F|G. 2. Schematic dressing of particle and hole lines in the CC
doubles and the BO diagram involves valence singles. Here angiagrams for matrix elements.
below we do not draw the exchange variants for the diagrams.

o oo

similar fashion. Notice that all the diagrams in E#j0) must (Zuw)eonn= 2 2 i(oc|awsfv(c‘r)h Z (0)*S,a'|0)conn

be rigorously connected as emphasized by subscripts “conn.” =0 p=0 M u!

Since the total angular momentum of the closed-shell core is (12)

zero, the core contributiod®°" vanishes for nonscaldand

pseudoscalaroperators and in the following discussion we As prescribed by the Wick theorefh2], this expression may

will mainly focus onZ),’vi'. be simplified by contracting creation and annihilation opera-
Blundell et al. [3] have employed the LCCSD parametri- tors between various parts of this expression. Very complex

zation for the wave functiori9) to derive 21 diagrams for structures may arise, so as a preliminary construct, consider a

2/ and five contributions t&'?. The LCCSD contributions  productC'C. Using the Wick theorem, this product may be

to Z°"can be found in Ref.14]. It is the goal of this paper expanded into a sum of normal forms

to go beyond these linearized LCCSD contributions. The _

LCCSD approximation will provide us with “skeleton” dia- CIC=(C'C)o+(CC)y + (CTC)p + - -

grams that will be “dressed” due to nonlinear CC terms. We B T 1 Tt

display representative LCCSD diagrams in Fig. 1. In a typi- =Gt E cij{aja} + EE Cijiaajaad + -+ .

cal calculation, the dominant correction to the Hartree-Fock U U

(HF) value arise from RPA-type diagrafa) and Brueckner- (13

gﬁtrﬁlegt%ndsli%;msg F‘;"gg](%; t(r\:ge dir:t?:anmt;z:rrég::rzl Here the notation(C'C), stands for thek-body term. The

the corresponding algebraic expressiong for fhese LCCS ero-body termc does not have any free pa_1rtic|e or hole

ines and would not contribute to connected diagrama,pf

contributions: The one-body term will lead to dressing of particle and hole
Z\(A:F) _ lines, discussed in Sec. IV. A part of the two-body term will
= Zw» lead to RPA-like dressing of LCCSD diagrams for matrix

elements, as shown in Sec. IV.

(&) — ~
ZwU = 2 ZgmPwmpa T H.C.S., IV. DRESSING PARTICLE AND HOLE LINES
ma

In this section we focus on one-body term of the product

©_ C'C, Eq.(14), and derive all-order insertions for particle and

ZWU—E ZymPmy + H.C.S, hole lines. To this end it is useful to explicitly express the
m one-body term using particle and core labels,

. cf'o) == cpaal + D cndla, + > Cala
Z\(,?U):EZmrpmmpnv, (11) ( )1 % baBaBp % mnmn % ma@ma
mn
+ ) CamPii - (14)
where H.c.s. denotes Hermitian conjugation of the preceding ma arPafm

term with a simultaneous swap of the valence indiwesv. ) , ) i
Throughout the paper we use the following definition of ToPologically, the first term is an object where a free hole
line enters somgpossibly very complex structure from

quantities with tildes Ay =Ajjq ~Ajis- In particular, in the above and another hole line leaves below. The second term

)

above equationgwma=Puma~Pma has a similar structure but with particle lines. In Fig. 2, we
draw these objects as rectangles with “stumps” indicating
lIl. GENERATING OBJECT cC'c where the particle or hole line is to be attached. The remain-

ing terms in Eqg.(14) have both particle and hole lines in-
At this point we have reviewed application of the volved; we will disregard these terms in the following dis-
coupled-cluster method to computing properties of univalentussion.
systems. In the remainder of this paper we deal with the First we prove that given a certain CC diagram for matrix
mathematical object elements we may “dress” all particle and hole lines as shown
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in Fig. 2. We start with a “seed{"bare”) diagram coming " .
from a certain set of contractions in Ed.2), . —
1 (TN t Y
o | MO! <0C|a‘WSN(C ) 0z (C)#Osua-u|0c>seed (15) A = + (A + @A

As a next step consider a subset of terms of @@), con-
strained as\=Ag+n, u=po+tn, n=1, 2, 3,... In these terms
carry out contractions within a product df+n C' operators

and up+n C operators, a @
c..cic..cC o= @ @‘@f
v Mgt b o—

Within this group there aréx X CZ ., ways to pick oun b b

pairs of operators from the two se@n being the binomial

coefficient. Once the two strings orfoperators are chosen, FIG. 3. Dressing of particle and hole lines in the singles-doubles
there aren! possible ways to contract into pairs thé'C), approximation. The upper and lower panels represent dressing of
object. Finally, we contract the resulting objects into a particle and hole lines, respectively.

chain(see Fig. 2, there aren! possible combinations. Com-

bining all these factors, we recover the original factor

1/(\o! uo!) in front of the seed diagrarfi5). Cmn= = 2 PraPma™ E PrrapPmrab » (19
We may define a dressed particle line insertigpin Fig. a 2 abr
2 as where we introduced antisymmetric quantiti®S,ax= Pmnab
~ Pnmab
> &mrlinBn = 2 i+ (C'C)pp + ((CT0)o(CTC) g rIWDn?;grammatically,
mn mn

+ e m m
where the subscripp-p denotes that we have to keep an ;
insertion with a single incoming and a single outgoing par- CrnQp,Qn = + .
ticle line, e.g.,(CTC)p_p:EmncmnaLan. Notice the absence of
numerical factors in front of terms of the series; this fact " "

follows from the preceding discussion. Explicitly, As discussed in the first part of this section, we may dress all

£ = St Ct S oG+ (16) _the partlcle and hole lines according to the all-order scheme
; in Fig. 3.
) _ ) ) ) ) Algebraically,
This series may be generated by iteratively solving an im-
plicit equation &mn= Smn— E PmaRna~ EﬁmrabRnraw
a abr
£mn= Snn* 2 Crrbin- (17)
r
. ) ) = 6pa~ EpmhRma EPmnbannao (20
The very same argument holds for dressed insertions into the mnc
hole lines. where we introduced dressed core cluster amplitudes
The derivation presented above can be generalized to in-
clude simultaneous dressing afl particle-hole lines of a R;a:E §baE P;bfsm

given diagram, including the inner lines of the original

“bare” object(C'C), itself. Below we illustrate our dressing

scheme in the case when the cluster operator is truncated at Rab= > £ Ensy Ecay Putcdab- (22)
single and double excitations.

We solve Eq.(20) iteratively,

A. Singles-doubles approximation n:;l) S E paR na E pmrameab,
With the truncated cluster operator the hole line insertion abr
reads
I+l) = 5ba 2 Pmme) E 5:11nbc.R§Tl1)nao (22)
E pmbpma+ E pmnboomnac (18) mne
Zemn where the dressed amplitudBY are to be computed with
and the particle line insertion is coefficientsg,(i.)_ obtained at the previous step.
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I

(a) RPA (c) BO (d) BO+ L

I
+

FIG. 4. Dressing of particle-hole lines in the dominant LCCSD
diagrams, Fig. 1. The circled crosses represent line-dressed matrix
elements, Eq(23), and the double-lined valence cluster amplitude
is the dressed amplitude, E@4).

FIG. 5. Graphical equation for RPA-dressed insertion. The
dashed horizontal line is the dressed inserfigg,, While the bare
objectc,pmais represented by a wavy line.

With the calculated insertion§ we can “upgrade” the : 5 i
LCCSD diagramgcompare Figs. 1 and)4To this end we (C'Crpa= > Cromdaiaauan}, (26)
introduce dressed matrix elemergs and dressed valence mnab

cluster amplitude and , Similar to Eq.(21), ~
. plitudety, Rirua, SIMI a.(21) where we used a symmetry property =Cji, and Ty

=Cjja —Cijk- An analysis identical to that presented for line

Znn= rEs EmiZrsEs dressing in Sec. IV leads us to introduce a RPA-dressed ob-
jeCt Tnbma
2ab: E Ecazcdfdba (23) E ﬁbma{alagaaam} =- E 5mn5ab{alagaaam} + (CTC)RPA
cd mnab mnab

+((C'C)rpaC'C)rparpA ™t
R, = 2 EmnPry s o1

where the subscript RPA specifies that the objects inside the
Ria= S édoaanPonp - (24) parentheses are to be contracted so that the result has the
mma nrébassimsib same free particle and hole ends as the original bare object
(C'C)rpa EQ. (26). The sign of the leading terrfwith the
Notice that the incoming valence line in the valence ampli-Kronecker symbolsis chosen in such a way that a product
tudespyng, aNdpy, is Not dressed, since it does not represenof this term with a particle-hole object like.aa results in
a free end. With these objects we may dress the LCCSDhe original object.
diagrams, as shown in Fig. 4. A detailed consideration leads to an implicit equation for
Numerically, we rigorously computed the four dressedthe RPA-dressed particle-hole insertion
diagrams shown in Fig. 4. In the remaining LCCSD dia-
grams, listed in Ref[3], we have replaced the bare matrix Troma= = Orndan = 2 CneraZrome - (28)
elements with the dressed matrix elements, 28). Notice rc
that the dressing of the Hartree-Fock diagram subsumes
LCCSD diagrams, This equation, presented graphically in Fig. 5, can be solved
iteratively.
Z‘(,gv) ==> P:nanaZmu +H.cs., The result_ing insertioﬁ;bman_way _dress any particle-hole
ma vertex of a diagram as shown in Fig. 6.
As an example, consider dressing of particle-hole matrix
elements of the operatd: zmaajnaa. The equation for the

brs

Z0== 2 PronpbrwaZme + H.C. (25  dressed matrix elemeat,, may be derived simply as
mnab
. . . —RPAE _ E 6—
from Ref.[3], so that these diagrams are to be discarded in Zma - mbnenb
n

the present approach. We postpone discussion of numerical
results until Sec. VII.

V. RPA-LIKE DRESSING

In this section we continue with the systematic dressing of
the coupled-cluster diagrams for matrix elements based on
the topological structure of the producfC, Eq. (14). Here
we focus on the two-body term of this object. The insertion
that generates the RPA-like chain of diagrams is due t0o a FIG. 6. Dressing particle-hole vertex of a diagram with the RPA
two-particle and two-hole part of the obje@'C), insertion, Fig. 5.
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5 ~ = ~ o RPA _ ~ o~ ~ o~
ZE:;AZ Znat E Cmcraz TroncZab= Zma— E CmbnaZEEAa Rmma= Pmma— E CrbraPmmb T 2 (Cressbrdmrub
rc nb nb br bers
q ) ~ _Encs;mbrg)srvb) o (30)
where we used Ed28) for the dressed objed,,,, Finally - . .
we obtain a set of two equations Examlmng the structure of the above expression we finally
arrive at
— ~ — RPA _ = 7 RPA
ZgnliAZ Zam— 2 Cmbne;t?r?A' Rmma = Pmma = E Crbsa¥mabs (31)
nb sb

i.e., we have demonstrated how to dress the valence doubles.
RPAZ, _SE RPA This_ example can be easily ge_neralize_d to several equivglent
Zma = Zma =~ mbnabn " - vertices: Eq(29) has to be rewritten using as the seed object

the underlying structure of the unquenched lines produced by

) ) - a horizontal crosscut through a diagram.
The resulting equations resemble the traditional RPA formu-
las for dressed matrix elemer(see, e.g., Ref.15]), but do A. Singles-doubles approximation

not couplezX"A andZ A, In addition, the role of the residual

Coulomb interaction of the traditional RPA formulas is . oW We specialize our discussion of the RPA-like dress-

: + ) . ing to the cluster operator truncated at single and double
played by the matrix elements of th€'C)rea object(which excitations. In this CCSD approximation we obtain for the
is dominated by the Coulomb interaction in the second- Do .

o X .~ bare RPA-like insertion
order; see Sec. VYIIn addition, we would like to emphasize
that the line-dressed matrix elements, E2B), also include
matrix elements between core and virtual orbitals; these are

to be distinguished from the RPA-like matrix elements, Eq. . ) ) ]
(29. Notice that one has to be careful when dealing with the first

The above derivation is only valid when dressing a single(Singlesx singles term; it is represented by a disconnected

isolated vertex. A more complex situation arises whenever i2gram and may produce undesirable disconnected dia-

horizontal crosscut through a diagram produces sevaaal 9rams for matrix elements, E(LO). .
just two, as in Fig. B unquenched particle and hole lines. _ BY substituting the CCSD insertion, E(B2), into Egs.

Then the lower particle and hole lines of the objé@tC)gpa (29) and (31), we immediately derive expressions for the

could be attached to the unquenched lines of the bare di&dressed matrix elements and the RPA-dressed valence
gram in any order and “cross dressing” may occur. As arfloubles. For example,

Enbmaz ~ PmbPna™ 2 Fmrbg)nrac- (32
rc

illustration, consider RPA dressing of the valence double RPA _ ~  ~% \ZRPA
contribution to the wave functioB ,ndmmadi-aiaa. It arises, Rimna™ Pmma % (rzc Prracsibd Rmsb: (33
for example, when the diagrali\(j‘v) [see Fig. 18] is cut

across horizontally. The valence double contains two equiva- _RPA e _RPA

lent verticesa' a, and a'a,. First we may attach the RPA 0= Zma* 2 (X PrpPmrad 2oy - (34)

object to them-a vertex and at the second step to thea b re

vertex. Apparently, this scenario is not covered by &7), Here we omitted a small contribution®q,,,, Eq.(32), from
since it implies that all RPA insertions are attached to thehe product of core singles. As discussed in Sec. VI this
same vertex. Nevertheless, the RPA-like dressing can be catentribution would arise in the higher ordgrixth ordej of

ried out in a straightforward fashion. To continue with the MBPT.

illustration, the RPA-dressed valence double amplitude may Practically, we notice that among the dominant LCCSD

be defined as followcompare to Eq(27)] diagrams shown in Fig. 1, the particle-hole vertex occurs
only in the RPA diagrarr(Z)fA"‘n‘j. Focusing on this particular
. “ a . .
D Rﬁ?aa;agaa: ([1+(C'C)ppn diagram, the “upgradedZ,, is simply
mna ~
(Z) qress= > ZamREA + H.c.S. (35)
+((C"C)rpa(C'C)rpalrrat -] e e
x> PmmaaLalaa)val.doume (29) Notice that the use of the RPA-dressed matrix elements to
mna upgrade theZ\(A"j‘v) diagram, such as
. . () = %' 5RPA-
Here the subscript “val. double” indicates that we select a (Z\I\iz)meLdreSS_%Zam Puwmat H.CS., (36)

contribution having the same free ends as the right-hand side

R.H.S. of the equation. The numerical factors in front of thedoes not lead to the identical result, because it misses dress-
individual RPA contributions are derived similarly to the ing of thew-a vertex. Moreover, we found numerically that
line-dressing factorésee Sec. IY. Explicitly, we deal with a  dressing of both vertices, as in the more general(B§), is
chain of diagrams equally important.
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Finally, it is worth noting that with the RPA-like dressing
scheme proposed here, the CCSD calculations would recover + ='k)
the entire chain of RPA diagrams. However, if the calcula-

tions of the wave functions are done using the linearized

version of the coupled-cluster equatidias in Refs[3-6]), a core line part.line  val. line
part of the RPA diagrams would still be missif)]. To sum-

marize, the inclusion of the CCSD nonlinear terms in the CC

/ix #
equations is crucial for a fully consistent treatment of the /VOA/ xw
RPA sequence.

RPA- | RPA- I

VI. COMPARISON WITH THE FOURTH-ORDER *
DIAGRAMS %

The coupled-cluster method can be straightforwardly con- FTZFT
nected with the direct order-by-order many-body perturba- H

tion theory. In particular, for univalent systems, when the
calculations are carried out starting from the frozen-core
Hartree-Fock potential, the lowest-order contributions to the
double excitation cluster amplitudes are

streched ladder

FIG. 7. Topological structure of fourth-order diagrams of class
Z1+2(Dyy) derived in Ref.[10]. In these diagrams horizonal lines
Omma denote Coulomb interaction and the topological objects coming
Pmra =~ m ) from the lowest-order approximation ®C are highlighted. The
m-o&n fa v upper three diagrams arise in the leading order of the line-dressing
scheme and the two diagrams in the middle are related to the RPA-
Prnab™ — _ Omnab _ (37) dressing scheme.
Emten—€ea—€p

. . . structure(HFS) constantA for the ground state of*Cs and
Here g;yq is the matrix element of the residuéeyond the the E1 transition amplitude for the principalpg,—6s,

HF pg)ten::a] Comalombr:qterﬁction between ;]hed electrons. Itlrransition in Cs. Analyzing this table, we conclude that both
can be shown that while the LCCSD method recovers all,o_ 2nq Rpa-like dressing are equally important. More-

third-order diagrams for matrix elements, it starts missing,er for these two particular matrix elements there is a par-
diagrams in the fourth order of MBPT. Our group has inVes+;a| cancellation between the line— and RPA—dressed dia-

tigated these 1648 complementary fourth-order diagrams i, mg s that were one of the dressings omitted, the result

Refs. [10,11. Almong the qt:i)ag_rams hcomplementary 0 \would be misleading. We also observe that the untreated
LCCSD matrix element contributions, there are seven terms,qqer giagram contributes a negligibly small fraction of

[classZ;o(Dy) in Ref. [10]] due to nonlinear terms in the o tqta1 At the same time the size of the untreated

expansion of the CCSD wave functions; namely thesegyatched” diagram indicates tht least for the HFS con-
Z1x2(Dy) diagrams provide the lowest-order approximationgany it is as important as the RPA-like and line-dressed
for the dressing scheme proposed here. diagrams.

In Fig. 7 we explore the topological structure of the  Ag to the numerics, the fourth-order calculations have
Z,x2(Dy) diagrams. All these diagrams come from variouspeen carried out using relativist®-spline basis sets as de-
ways of lowest-order dressing of tliéﬁv) diagram, Eq(11).

A comparison shows that the present dressing approach re- TABLE |. Breakdown of contributions t;,,(Dy) class of
covers five(three line-dressed and two RPA-dregsedt of  diagrams for the hyperfine-structure constantor the &, state
seven fourth-order diagrams. The missing diagrams arénd the 8,-6p;,, electric-dipole transition amplitude fol*Cs
shown in the bottom row of Fig. 7, and we call them atom. The lowest-order Dirac-Hartree-Fo¢HF) values are
“stretched” and “ladder” diagrams, the names being derived425;29 MHz for the.HFS constant and 5.278 a.u. for the transition
from the structure of the highlighted dressing insertions@mplitude. The notatiom[y] stands forx 10".

While the ladder diagram comes from the untreated two-
body contribution to theC'C object, Eq.(14), the stretched Type A(6s) (MHz) (6s1/2/|D||6py/2) (a.u)
difralgram inyolves a more com_plex three—body contri.bution t.oCore line 20 7.0-3]

C'C. Dressing with these two insertions can be carried out N rticle line

a way similar to the line- and RPA-like dressing schemes ) —0.90 2:%-3]
discussed in this paper and is beyond the scope of the presefence line —0.92 02-3]
We verified that in the lowest-order MBPT approxima- RPA-II 4.8 —0.04-3]
tion, Eq.(37), our dressing formulas reproduce the pertinentStretched -3.0 0.1-3]
fourth-order expressions, explicitly presented in Hé0]. Ladder 0.05 —0.008§—3]
Furthermore, in Table | we list numerical values for indi- 144 -1.9 0.41—-3]

vidual contributions to the magnetic-dipole hyperfine-
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scribed in Ref[16]. We used a basis set of 25 out of 30 TABLE Il. Contributions to the magnetic-dipole hyperfine-
positive-energy(e; >-m? pseudoeigenfunctions for each structure constand of the ground 8,, state of**Cs. LCCSRT
partial wave. Partial waves,;;,—gq;, Were included in the indicates linearized coupled-cluster singles-doubles method with
basis. The summation over intermediate core orbitals waRerturbative treatment of triples. ViP SE is the vacuum polariza-
limited to the eight highest-energy core orbitals for s tion and self-energy.

amplitude and included all core orbitals for the HFS con-

stant. The reader is referred [ibl] for a description of our Contribution Value(MHz)
fou\;\tlz-ofrireijoﬁﬁét numerical results for dressed all orderDHF 142529
verifi umeri u -
LCCSD diagramsgsee Sec. \Jlare consistent with the values LCC_:SD’T’ Coulomb 2283.1
for the pertinent fourth-order diagrams. As an example conBreit [17] 4.6
sider contributions to th&(6s) HFS constant. Line dressing VP+SE[18] —-97
modifies the LCCSDZ?? diagram by—4.3 MHz in good =~ LCCSDHT reference 2278.0
agreement with the value of3.8 MHz, the sum of the first Dressing
three corresponding fourth-order diagrams from Table [A(line dresg -11.0
Similarly, RPA-like dressing modifies thE\(,fg diagram by  A(RPA dres} 4.4
+4.4 MHz, \{vhile the sum of fourth-order RPA diagrams pressing total —6.7
from Table | is 4.8 MHz. Complementary fourth-order
Triples +17.7
VIl. NUMERICAL RESULTS AND DISCUSSION Zox3(Dpn) -55
To reiterate the discussion so far, we have developed théix2(Pn), stretched —3.0
formalism of line and RPA-like dressing of the coupled- Zix2(Dy), ladder +0.1
cluster diagrams for matrix elements. Further, we reduced@omplementary fourth-order total +9.3
our general formalism to the case when the cluster operat®inal ab initio 2280.6
is truncated at single and double excitation amplitudes. We:periment 2298.2

have also verified that in the lowest order we recover the
relevant fourth-order diagrams both analytically and numeri~The fourth-order contributions from triple excitations are beyond
cally. In this section we illustrate our all-order dressing for-those treated in the LCCSD approximation.

malism with numerical results.

We have carried out relativistic calculations of the perturbative treatment is that the resulting valence removal
hyperfine-structure constanf for the 6, state and energies are complete through the third order of perturbation
6s,,,-6py,, electric-dipole transition amplitude for tHé%Cs  energies. There is also a substantalfew percent for Os
atom. It is worth noting that matrix elements of the hyperfineimprovement in the accuracy of the resulting LCGSThy-
interaction and the electric-dipole operator allow one to acperfine constants over the LCCSD values. At the same time
cess the quality o&b initio wave functions both close to the the theory-experiment agreement for & amplitudes sig-
nucleus and at intermediate values of the electronic coordirificantly degradegsee Table Il: while the LCCSD ampli-
nate. Such a test is essential for estimates of theoretical utddes differ by 0.4% from 0.03% accurate experimental data
certainties of calculations of parity-nonconserviG@NC)  [22], the more sophisticated LCCSID matrix elements de-
amplitudes. Theb initio PNC amplitudes are key for high- viate from measurements by as much as 1.3%. In other
accuracy probes of new physics beyond the standard modelords, both LCCSD and LCCSI> methods are poorly
of elementary particles with atomic parity violation. suited for calculating parity-nonconserving amplitudes in

The results of calculations are presented in Tables Il and®Cs with uncertainty of a few 0.1%. It is one of the goals of
[ll. In these tables we augment results of the previous allthis paper to establish a method that will provide a consistent
order calculation$6] with two types of additional contribu- accuracy for both HFS constants and dipole matrix elements
tions: (i) all-order RPA and line dressing, outlined in Secs.(and thus PNC amplitudgs
IV and V, and(ii) complementary fourth-order contributions,  Procedure. First we solved the relativistic LCCSDD
so that the results are complete through the fourth-order peequations, as described in RE8]. With the computed clus-
turbation theory. Also, for the HFS constant, we incorporateer amplitudes we calculated LCC$SD matrix elements and
the most recent values of the Breit and radiative correctionsecovered results published in R¢&]. Further, we solved
[17,18. the line-dressing equation®2) and computed the line-

LCCSOT (perturbative triples) approximationVe de-  dressed cluster amplitudes and matrix elements. The conver-
part from the results of the coupled-cluster calculation degence rate was fast: four iterations were sufficient to stabilize
scribed in Ref[6]. These are linearized coupled-cluster cal-the norms of the line-dressed cluster amplitudes at a level of
culations, with the wave functions truncated at single anch few parts per million. Finally, we solved the iterative equa-
double excitations from the reference Slater determinant. Ition for the RPA-dressed valence amplitudes, E2B). It
addition, following Ref[4], the perturbative effect of triple turned out to be a very computationally intensive part of the
excitations has been incorporated into the singles-doublescheme and we iterated the equations only once. We used the
equation(LCCSDsT method. The main consequence of this computed RPA-dressed valence amplitudes in calculations of
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TABLE |ll. Contributions to (6s;,||D|[6py) electric-dipole 2 ' Eq. (25). A direct calculation of these diagrams results

matrix element for Cs atom. Notatiofly] stands forx X 10". in Z\(n?u)+ ) —_29 9 MHz forA(6s) and -1.75< 1072 a.u. for
. the E1 amplitude. These values are consistent with dressing-
Contribution Value(a.u) induced modifications of the HF diagrafr22.0 MHz and
DHE 5.278 -1.7X 1072 a.u., respectivelyfrom Table V. The modifica-
LCCSD[6] 4.482 tions of therj‘g diagram are consistent with the values of the

pertinent fourth-order diagrams; see Sec. VI and Table I. A

LCCS,D’T reference 4.558 large dressing correction for the HFS constant comes from
D“?SS'”Q the diagrame;g; it is nominally a fifth-order diagram. The
A(line dres$ 0.008 relative importance of this diagram is not surprising since it
A(RPA dresy —0.007 is based upon Brueckner orbitglself-energy or core polar-
Dressing correction total —0.001 ization effec. As for the E1 amplitude, the line-dressing
Complementary fourth-order correction is dominated bg'®: i.e., it is dominated by the
Tripled —-0.043 fourth-order contribution. For the HFS constant, the relative
Zox3(Dn) 0.014 smallness of the line-dressing correction to ﬂﬁ% diagram
Z1»(Dyy), stretched 100-4] arises due to a delicate cancellation of relatively large con-
Z1x2(Dpy), ladder —8.4-6] t_rlbutlons from dressing of the core, p_art|cle, and vglence
Complementary fourth-order total _0.029 lines of the diagranfsee Table)l _Flnally, in the bottom Ime

i o : of Table IV we present the difference between the line-
Final ab initio 4.528 dressedall diagram$ and bare values. The dressing of the
Experiment HF diagram plays a negligible role here, since it is domi-
Young et al.[19] 4.509745) nated by the diagrams already included in the LCGEBD
Rafacet al. [20] 4.489065) values. The line dressing contributes at a sizable 0.5% level
Derevianko and Porsd21]® 4.506447) to the HFS constant and at 0.2% level to tt amplitude.
Amiot et al. [22]° 4.500613) RPA-like dress[ngA numgncally dominant g:oqtnbuuon
Amini and Gould[23]" 4.5104) due to the RPA-like dressing arises for tﬁ@ diagram,

where we used RPA-dressed valence amplitudes. The in-
*The fourth-order contributions from triple excitations are beyondduced correction is as large as 0.2% for both dipole ampli-
those treated in the LCCSID approximation. tude and HFS constant. The dressing of particle-hole matrix
PErom van der Waals coefficielg of the ground molecular state. elements(zij _}ZRPA) in diagrams beyon(Z\(;U) played a rela-
“Photoassociation spectroscopy; this is the most accurate detemiii/ely minor rOIGJ), contributing at a level of only 0.01% for

nation.
both test cases.
d . . . - .
[;E)m static-dipole polarizability of§,, state with method of Ref. Complementary fourth-order diagramhe LCCSRT

method misses certain many-body diagrams for matrix ele-

ments starting from the fourth order of MBPT. These

i : @. .
the dominant g:hagranim, see Eq.(35). _In the remaining complementary corrections in the fourth order come from
diagrams that involve particle-hole matrix elements, we em-

: " RDPA s triple and disconnected quadrugler nonlinear doubleex-
ployed REA-dressed matrlx_els/inezifSD A nume_\rlcal ltera- citations. In Ref[10] these corrections were classified by the
tive solution of equations fo;? , EQ. (34), required only a

few iterations t nverge t ven sianificant fiqur role of triples and disconnected quadruples in the matrix el-
Ew lterations 1o converge 1o seven signiticant Nigures. ements(i) anindirect effect of triples and disconnected qua-
Line dressingln Table IV we illustrate the importance of

. ; ; . . rupl n single an le excitations lum into th
line dressing; in this table we present differences betweeoI uples on single and double excitations lumped into the

QlassZoys; (i) direct contribution to matrix element&;;
line-dressed and bare LCCSDdiagrams for the the hyper- .oy o %% N o 2
fine constant an&1 amplitude. The dressing of the leading- (iit) corrections to normalizatio o A more refined clas

sification reads
order HF diagram subsumes the LCCSD diagrzﬂﬁvéand

i =Z1.0(T,) + Ziyo(T) + Z T
TABLE IV. Line-dressing-induced modifications to dominant (Zuwnon-Loeso™ Zuxa(Tu) * Z1x2(To) + Zoxa(STo])

LCCSD.T diagrams, Eq(11), for the HFS constan for the 65/, + Zox3(D,[T,]) + Zoxa(SLTe))

state and the $,,—6p;/, E1 transition amplitude for*Cs atom.
Notationx[y] stands forxx 10". + Zox3(Dy[ Tel) + Zyx2(Dip) + Zox3(Dry)

+ Zoormd(Ty) - (39
Type A(6s) (MHz) (6s1/2/|D|[6py2) (a.u) o
o Here we distinguished between valer(@) and core(T,)
Zyyy —22 —1.71-3] triples and introduced a similar notation for singl& and
Z(f,‘u) 0.04 9.3-3] doubles(D). Notation like D,[T.] stands for the effect of
;fg -8.6 -0.9-3] core triples(T,) on valence doubleB, through an equation
Z&‘,‘j -08 —-3.6-5] for valence doubles. The LCCSD method combines sev-
All diagrams _11 8.0—3] eral diagrams fronZ;,,(T,) and Zy3(S,[T,]) classes. We

removed these already included diagrams from the fourth-
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order triples in Tables Il and Ill. The diagrany, are con- matrix elements at the bottom of Table Ill. In Ref49,2(
tributions of disconnected quadruples. As discussed in Sethis matrix element has been extracted from the measured
VI one of such contributionsZ;.»(Dy), provides the lowest- lifetime of the @;,, state. The determination of R¢R2] is
order approximation to our all-order dressing scheme. Irbased on photoassociative spectroscopy of cold Cs atoms
Tables Il and 1ll we added the contributions of untreated(i.e., inferred from high-accuracy measurement of molecular
“stretched” and “ladder” diagrams of tf# ,»(Dy,) class and  potentialy. Another approach to extraction of dipole matrix
also from theZy,5(D,,) class. The latter contribution would elements has been proposed by us in R&f]: we exploited
have been accounted for by solving the firibt linearized  an enhanced sensitivity of the static electric-dipole polariz-
CC equations. In our large-scale fourth-order calculations wepijlity «(0) of the ground state and van der Waals coefficient

have employed the code described in Réd]; all the for- ¢ of the ground molecular state to the matrix elements of
mulas for a large number of diagrams and the code havg,, principal transitions  (6ps||D||6sy2) and

been generated automatically using symbolic algebra t°0|§6p1,2||D||6si,2>. Essential to the extraction of individual

While the resulting fourth-order corrections from triples are : ) . .
at the level of 1% , we notice that there are certain noticeabl&arix elements was a high-accuracy ratio of these two di-

cancellations between various diagrams. Thus a complete aff0lé matrix elements measured in RE24]. Based on the
order treatment of triples would be essential for attaining thePfoPosed metho@21], the (6py,|[D|[6s,) matrix element
next level of theoretical accuracy. has been deduced from high-accur&yin Ref.[21] and in
Hyperfine-constant resultetails of calculation of the Ref. [23] it has been inferred frona(0) measured in that
hyperfine constanfA(6s;,,) are presented in Table Il. To work. The most accurate matrix element comes from photo-
clarify the role of correlations, we first incorporate a numberassociation spectroscop2]; that result has 0.03% accuracy
of small but important effects into the reference value: theand we will use that value below for calibratirap initio
Bohr-Weisskopf effect and Breit and radiative corrections.calculations.
The “LCCSD-T, Coulomb” value has been computed using The reference LCCSEY E1 matrix element deviates
the finite nuclear size, for both determination of wave func-from high-accuracy measurements by as much as 1.3%. The
tions and computing matrix elements of the hyperfine intercorrelation correctiongdressing and fourth ordecomputed
action (this accounts for 0.5%9 We also include Breit cor- by us improve the agreement to about 0.6%, i.e. athéitio
rections from Ref[17]; these corrections differ substantially accuracy becomes comparable to that for the HFS constant.
from those incorporated in Refg4,6] due to order-of- An analysis of Table Ill shows that due to cancellation of
magnitude important correlation corrections. Finally, radia-line- and RPA-like-dressing corrections the overall effect of
tive corrections to magnetic-dipole hyperfine-structure condressing is negligible for this transition amplitude. At the
stants for the ground state of alkali-metal atoms weresame time, the fourth-order corrections due to triple excita-
computed recently by Sapirstein and Chéhg]. They found  tions beyond LCCSPT triples are very large, almost 1% .
that the vacuum polarization and self-enety¥+SE) con-  There corrections due to residual fourth-order RPA correc-
tribute as much as 0.4% to thab initio value. The reader tions [Z,,3(D,)] are also sizable, and tend to decrease the
should be careful with adopting Breit values from Réf8],  effect of triples. Our fourth-order calculation demonstrates
because these values do not include correlation correctionfat a full (beyond that of LCCSPT) treatment of triple

(see Ref.[17] and references therginThe final value, excitations improves the accuracyath initio transition am-
marked as “LCCSPT reference” deviates by 0.9% from the plitudes.

(exac) experimental value.
Dressing corrections partially cancel, resulting in 0.3%
total dressing contribution. Fourth-order diagrams, comple- VIIl. CONCLUSION
mentary to those already included in the LCGSDvalue,
are dominated by a contribution due to triple excitations The main two results of this work afg development and
(0.8%). We also include the “stretched” and “ladder” fourth- application of all-order dressing formalism for matrix ele-
order diagrams missed by our dressing schésee Sec. I  ments computed with the coupled-cluster method; &nd
Almost all the correlation corrections are of similar sizes butcalculations of matrix elements for Cs complete through the
of different signs, so the dressing and fourth-order correcfourth order of many-body perturbation theory.
tions cancel, so that the final correlation correction is only To reiterate, our dressing formalism is built upon a hier-
0.1%, just slightly improving the theory-experiment agree-archical expansion of the product of clust&C into a sum
ment when compared with the “LCCSD reference” value. of n-body insertions. We considered two types of insertions:
Our ab initio value for the HFS constant deviates by 0.8%particle or hole line insertion coming from the one-body part
from the experimental value. of the product and two-particle or two-hole RPA-like inser-
Electric-dipole 6s;,,—6p;stransition amplitude.Details  tion due to the two-body part. We demonstrated how to
of calculation for the dipole matrix element are compiled in“dress” these insertions and formulated iterative equations.
Table Ill. We do not include Breit and radiative corrections Particular attention has been paid to the singles-doubles trun-
in that table, since the Breit interaction contributes onlycation of the full cluster operator and we derived the dressing
0.02% to this matrix elemenifl7], and radiative corrections equations for this popular approximation. We have upgraded
are not known from the literature. coupled-cluster diagrams for matrix elements with the
There were several high-accuracy experimental determidressed insertions for univalent systems and highlighted the
nations of the(6p,,||D||6s,/,) matrix element. We list these relation to pertinent fourth-order diagrams. Finally, we illus-
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TABLE V. Absolute percentage deviation from high-precision these complementary diagrams substantially improve the

data for variousab initio approximations. theory-experiment agreement for the important electric-
dipole 6s,,,-6py,, transition amplitude, and slightly improve
Type A(6s) (6s1/2/D|[6p1s2) the agreement for the hyperfine constant. To illustrate it we

present in Table V the percentage deviation from high-

LCCSD 5% 0.4% L d f . b initi . .
y 1 30 precision data for variousb initio approximations. We

LCCSDT ) 0.9% 270 found sizable cancellations between various fourth-order

LCCSDsT+IV (this work) 0.8% 0.6% contributions; a full all-order treatment of triple and discon-

nected quadruple excitations is desirable to further improve

trated our formalism with relativistic calculations for the Cs the theoretical accuracy.
atom.

Our relativistic calculations also include a large number
of fourth-order diagrams complementary to the LCGSD ACKNOWLEDGMENTS
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