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We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally
involve infinite number of terms and we devise a method of partial summationsdressingd of the resulting
series. Our formalism is built upon an expansion of the productC†C of cluster amplitudesC into a sum of
n-body insertions. We consider two types of insertions: particlesholed line insertion and two-particlestwo-holed
random-phase-approximation-like insertion. We demonstrate how to “dress” these insertions and formulate
iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at
single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams
for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We
illustrate our formalism with relativistic calculations of the hyperfine constantAs6sd and the 6s1/2−6p1/2

electric-dipole transition amplitude for the Cs atom. Finally, we augment the truncated coupled-cluster calcu-
lations with otherwise omitted fourth order diagrams. The resulting analysis for Cs is complete through the
fourth order of many-body perturbation theory and reveals an important role of triple and disconnected qua-
druple excitations.
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I. INTRODUCTION

The coupled-clustersCCd methodf1,2g is a powerful and
ubiquitous technique for solving quantum many-body prob-
lems. Let us briefly recapitulate general features of the CC
method, so we can motivate our further discussion. At the
heart of the CC method lies the exponential ansatz for the
exact many-body wave function

uCil = expsTidu0il = S1 + Ti +
1

2!
Ti

2 + ¯ Du0il. s1d

Here Ti =okTi
skd is the cluster operator involving amplitudes

Ti
skd of k-fold particle-hole excitations from the reference

Slater determinantu0il. The parametrizations1d is derived
from rigorous resummation of many-body perturbation
theorysMBPTd series. From solving the eigenvalue equation
one determines the cluster amplitudes and the associated en-
ergies. While the ansatzs1d contains aninfinite number of
terms due to expansion of the exponent, the resulting equa-
tions for cluster amplitudesTi

skd contain afinite number of
terms. This simplifying property is unfortunately lost when
the resulting wave functions are used in calculations of ma-
trix elements: upon expansion of exponents the number of
terms becomes infinite. Indeed, consider matrix elements of
an operatorZ, e.g., the transition amplitude between two
states

Mij =
Zij

ÎNiNj

, s2d

with normalizationNi =kCi uCil. It is clear that both the nu-
merator and denominator have infinite numbers of terms,
e.g.,

Zij = kCiuZuC jl = o
l=0

`

o
m=0

`
1

l ! m!
k0iusTi

†dl ZsTjdmu0jl. s3d

In this paper we address the question of partially summing
the terms of the above expansion for matrix elements, so that
the result subsumes an infinite number of terms.

More specifically we are interested in transitions between
states of univalent atoms, such as alkali-metal atoms. There
has been a number of relativistic coupled-cluster calculations
for these systemsf3–9g. In particular, calculationsf3–6g ig-
nore the nonlinear termssl.1 andm.1d in the expansion
s3d; we will designate this approximation as the linearized
coupled-clustersLCCd method. At the same time, it is well
established that for univalent atoms an important chain of
many-body diagrams for matrix elements comes from the
so-called random-phase approximationsRPAd. A direct com-
parison of the RPA series and the truncated LCC expansion
in Ref. f10g leads to the conclusion that a fraction of the RPA
chain is missed due to the omitted nonlinear terms. One of
the methods to correct for the missing RPA diagrams has
been investigated in Ref.f4g. These authors replaced the bare
matrix elements with the dressed matrix elements as pre-
scribed by the RPA method. Such a direct RPA dressing in-
volved a partial subset of diagrams already included in the
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CC method, i.e., it leads to a double counting of diagrams.
To partially rectify this shortcoming, the authors of Ref.f4g
have manually removed certain leading-order diagrams,
higher-order terms being doubly counted. Here we present an
alternative infinite-summation scheme for RPA chain that
avoids the double counting and thus a manual removal of the
“extra” diagrams.

In addition to the RPA-like dressing of the coupled-cluster
diagrams for matrix elements, we consider another subset of
diagrams that leads to a dressing of particle and hole lines in
the CC diagrams. The leading-order corrections due to the
dressing scheme presented here arise in the fourth order of
MBPT, and in this paper we present a detailed comparison
with the relevant fourth-order diagrams. Finally, we illustrate
our approach with relativistic computation of hyperfine-
structure constants and dipole matrix elements for the Cs
atom. In addition to dressing corrections we incorporate cer-
tain classes of diagrams from the direct fourth-order MBPT
calculationsas in Refs.f10,11gd, so that the result is complete
through the fourth order. To the best of our knowledge, the
reported calculations are the first calculations for Cs com-
plete through the fourth order of MBPT.

The paper is organized as follows. First, we present a
more extensive discussion of the CC formalism in Sec. II. In
Sec. III we partition a product of CC operators into a set of
insertion operators. With these insertions, we dress particle
and hole lines in Sec. IV, and discuss RPA-like dressing in
Sec. V. The present paper may be considered as an all-order
extension of the fourth-order calculationf10,11g, and in Sec.
VI we present an illustrative comparison with the fourth-
order diagrams. Finally, the designed summation schemes
are illustrated numerically in Sec. VII and the conclusions
are drawn in Sec. VIII. Unless noted otherwise, atomic units
"= ueu =me;1 are used throughout the paper. We follow the
convention of Ref.f12g for drawing Brueckner-Goldstone
diagrams.

II. COUPLED-CLUSTER FORMALISM FOR UNIVALENT
SYSTEMS

In this section we specialize our discussion of the
coupled-cluster method to atomic systems with one valence
electron outside the closed-shell core. We review various ap-
proximations and summarize the CC formalism for calcula-
tion of matrix elements.

We are interested in solving the atomic many-body prob-
lem. The total HamiltonianH is partitioned as

H = H0 + G, s4d

where H0 is the suitably chosen lowest-order Hamiltonian
and the residual interactionG=H−H0 is treated as a pertur-
bation. For systems with one valence electron outside the
closed-shell core, a convenient choice forH0 is the frozen-
coresVN−1d Hartree-Fock Hamiltonianf13g. In the following,
we explicitly specify the statev of the valence electron, so
that the proper reference eigenstateu0il of H0 is u0vl
=av

† u0cl, where the pseudovacuum stateu0cl specifies the oc-
cupied core.

For open-shell systems a general CC parametrization
readsf12g

uCil = hexpsTidjuFil, s5d

where the curly brackets denote normal products of opera-
tors. For univalent systems the above ansatz may be simpli-
fied to

uCvl = expsCd Svav
†u0cl = So

m=0

`
sCdm

m!
D Svav

†u0cl. s6d

Here C represents the cluster operator involvingssingle,
double, triple, etc.d excitations of core orbitals

C = Cs1d + Cs2d + ¯ = o
ma

rmaam
† aa +

1

2! o
mnab

rmnabam
† an

†abaa

+ ¯ , s7d

and Sv incorporates additional excitations from the valence
statev,

Sv = 1 +Sv
s1d + Sv

s2d + ¯

= 1 +o
m

rmvam
† av + o

mna

rmnvaam
† an

†aaav + ¯ . s8d

In these formulas and throughout the paper we employ the
following labeling convention: indicesa,b,c,d denote
single-particle states occupied in the coreu0cl and indices
m,n,r ,s,t stand for the remainingsvirtuald orbitals. In this
convention the valence statesv and w form a subset of the
virtual orbitals. Finally, indicesi , j ,k, l stand for any of the
above classes of single-electron orbitals. In Eqs.s7d and s8d
the cluster amplitudesrij stand for single-particle excitations
andrijkl for two-particle excitations, with an apparent gener-
alization tok-fold excitation amplitudes.

Dictated by the computational complexity, in most appli-
cations the cluster operator is truncated at single and double
excitations sCCSD approximationd: C<Cs1d+Cs2d and Sv
<1+Sv

s1d+Sv
s2d. A further linearizedsLCCSDd approximation

consists in neglecting nonlinear terms in the expansion of the
exponent in Eq.s5d, i.e.,

uCvlLCCSD; s1 + Sv
s1d + Sv

s2d + Cs1d + Cs2ddu0vl. s9d

.
As discussed in the Introduction, the cluster amplitudes

can be found from solving a proper analog of the eigenvalue
equation. We assume that these equations are solved and in a
typical application we are faced with the necessity of com-
puting matrix elements, Eq.s2d, between two many-body
wave functionsuCvl and uCwl. As demonstrated by Blundell
et al. f3g, so-called disconnected diagramsf12g in the nu-
merator and the denominator of Eq.s2d cancel. Their final
expression for the exact matrix element reads

Mwv = dwvsZcoredconn+
sZwv

valdconn

hf1 + sNv
valdconngf1 + sNw

valdconngj1/2 ,

s10d

where the matrix elementZwv, Eq. s3d, is split into coreZcore

and valenceZwv
val contributions, the diagrams comprisingZcore

being independent of the valence indices. The valence and
core parts of the normalization factorNv are defined in a
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similar fashion. Notice that all the diagrams in Eq.s10d must
be rigorously connected as emphasized by subscripts “conn.”
Since the total angular momentum of the closed-shell core is
zero, the core contributionZcore vanishes for nonscalarsand
pseudoscalard operators and in the following discussion we
will mainly focus onZwv

val.
Blundell et al. f3g have employed the LCCSD parametri-

zation for the wave functions9d to derive 21 diagrams for
Zwv

val and five contributions toNv
val. The LCCSD contributions

to Zcore can be found in Ref.f14g. It is the goal of this paper
to go beyond these linearized LCCSD contributions. The
LCCSD approximation will provide us with “skeleton” dia-
grams that will be “dressed” due to nonlinear CC terms. We
display representative LCCSD diagrams in Fig. 1. In a typi-
cal calculation, the dominant correction to the Hartree-Fock
sHFd value arise from RPA-type diagramsad and Brueckner-
orbital sBOd diagramsscd and sdd. sWe retain the original
enumeration scheme of Ref.f3g for the diagrams.d Here are
the corresponding algebraic expressions for these LCCSD
contributions:

Zwv
sHFd = zwv,

Zwv
sad = o

ma

zamr̃wmva + H.c.s.,

Zwv
scd = o

m

zwmrmv + H.c.s,

Zwv
sdd = o

mn

zmnrmw
* rnv, s11d

where H.c.s. denotes Hermitian conjugation of the preceding
term with a simultaneous swap of the valence indicesw↔v.
Throughout the paper we use the following definition of

quantities with tildes,Ãijkl =Aijkl −Ajikl. In particular, in the
above equations,r̃wmva=rwmva−rmwva.

III. GENERATING OBJECT C†C

At this point we have reviewed application of the
coupled-cluster method to computing properties of univalent
systems. In the remainder of this paper we deal with the
mathematical object

sZwvdconn= o
l=0

`

o
m=0

`
1

l!m!
k0cuawSw

†sC†dl Z sCdmSvav
†u0clconn.

s12d

As prescribed by the Wick theoremf12g, this expression may
be simplified by contracting creation and annihilation opera-
tors between various parts of this expression. Very complex
structures may arise, so as a preliminary construct, consider a
productC†C. Using the Wick theorem, this product may be
expanded into a sum of normal forms

C†C = sC†Cd0 + sC†Cd1 + sC†Cd2 + ¯

= c0 + o
i j

cijhai
†ajj +

1

2o
i j

cijklhai
†aj

†alakj + ¯ .

s13d

Here the notationsC†Cdk stands for thek-body term. The
zero-body termc0 does not have any free particle or hole
lines and would not contribute to connected diagrams ofZwv.
The one-body term will lead to dressing of particle and hole
lines, discussed in Sec. IV. A part of the two-body term will
lead to RPA-like dressing of LCCSD diagrams for matrix
elements, as shown in Sec. IV.

IV. DRESSING PARTICLE AND HOLE LINES

In this section we focus on one-body term of the product
C†C, Eq. s14d, and derive all-order insertions for particle and
hole lines. To this end it is useful to explicitly express the
one-body term using particle and core labels,

sC†Cd1 = − o
ab

cbaaaab
† + o

mn

cmnam
† an + o

ma

cmaam
† aa

+ o
ma

camaa
†am . s14d

Topologically, the first term is an object where a free hole
line enters somespossibly very complexd structure from
above and another hole line leaves below. The second term
has a similar structure but with particle lines. In Fig. 2, we
draw these objects as rectangles with “stumps” indicating
where the particle or hole line is to be attached. The remain-
ing terms in Eq.s14d have both particle and hole lines in-
volved; we will disregard these terms in the following dis-
cussion.

First we prove that given a certain CC diagram for matrix
elements we may “dress” all particle and hole lines as shown

FIG. 1. Dominant LCCSD contributions for the matrix ele-
ments. The double arrows represent the valence state, crosses rep-
resent matrix elementszij , and heavy horizontal lines represent clus-
ter amplitudes. In particular, the RPA diagram involves valence
doubles and the BO diagram involves valence singles. Here and
below we do not draw the exchange variants for the diagrams.

FIG. 2. Schematic dressing of particle and hole lines in the CC
diagrams for matrix elements.
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in Fig. 2. We start with a “seed”s“bare”d diagram coming
from a certain set of contractions in Eq.s12d,

1

l0 ! m0!
k0cuawSw

†sC†dl0 Z sCdm0Svav
†u0clseed. s15d

As a next step consider a subset of terms of Eq.s12d, con-
strained asl=l0+n, m=m0+n, n=1, 2, 3,…. In these terms
carry out contractions within a product ofl0+n C† operators
andm0+n C operators,

Within this group there areCl0+n
n 3Cm0+n

n ways to pick outn
pairs of operators from the two sets,Ck

n being the binomial
coefficient. Once the two strings ofn operators are chosen,
there aren! possible ways to contract into pairs thesC†Cd1

object. Finally, we contract then resulting objects into a
chainssee Fig. 2d; there aren! possible combinations. Com-
bining all these factors, we recover the original factor
1/sl0! m0! d in front of the seed diagrams15d.

We may define a dressed particle line insertionjmn in Fig.
2 as

o
mn

jmnam
† an = o

mn

dmnam
† an + sC†Cdp-p + „sC†Cdp-psC†Cdp-pdp-p

+ ¯ ,

where the subscriptp-p denotes that we have to keep an
insertion with a single incoming and a single outgoing par-
ticle line, e.g.,sC†Cdp-p=omncmnam

† an. Notice the absence of
numerical factors in front of terms of the series; this fact
follows from the preceding discussion. Explicitly,

jmn= dmn+ cmn+ o
r

cmrcrn + ¯ . s16d

This series may be generated by iteratively solving an im-
plicit equation

jmn= dmn+ o
r

cmrjrn. s17d

The very same argument holds for dressed insertions into the
hole lines.

The derivation presented above can be generalized to in-
clude simultaneous dressing ofall particle-hole lines of a
given diagram, including the inner lines of the original
“bare” objectsC†Cd1 itself. Below we illustrate our dressing
scheme in the case when the cluster operator is truncated at
single and double excitations.

A. Singles-doubles approximation

With the truncated cluster operator the hole line insertion
reads

cba = o
m

rmb
* rma+

1

2o
cmn

r̃mnbc
* r̃mnac s18d

and the particle line insertion is

cmn= − o
a

rna
* rma−

1

2o
abr

r̃nrab
* r̃mrab , s19d

where we introduced antisymmetric quantitiesr̃mnab=rmnab
−rnmab.

Diagrammatically,

As discussed in the first part of this section, we may dress all
the particle and hole lines according to the all-order scheme
in Fig. 3.

Algebraically,

jmn= dmn− o
a

rmaRna
* − o

abr

r̃mrabRnrab
* ,

jba = dba − o
m

rmb
* Rma− o

mnc

r̃mnbc
* Rmnac, s20d

where we introduced dressed core cluster amplitudes

Rna
* = o

b

jbao
s

rsb
* jsn,

Rnrab
* = o

t

jrto
s

jnso
c

jcao
d

rstcd
* jdb. s21d

We solve Eq.s20d iteratively,

jmn
si+1d = dmn− o

a

rmaRna
sid* − o

abr

r̃mrabRnrab
sid* ,

jba
si+1d = dba − o

m

rmb
* Rma

sid − o
mnc

r̃mnbc
* Rmnac

sid , s22d

where the dressed amplitudesR
¯

sid are to be computed with
coefficientsj

¯

sid obtained at the previous step.

FIG. 3. Dressing of particle and hole lines in the singles-doubles
approximation. The upper and lower panels represent dressing of
particle and hole lines, respectively.
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With the calculated insertionsj we can “upgrade” the
LCCSD diagramsscompare Figs. 1 and 4d. To this end we
introduce dressed matrix elementszij and dressed valence
cluster amplitudesRmv andRmnva, similar to Eq.s21d,

zmn= o
rs

jmrzrsjsn,

zab = o
cd

jcazcdjdb, s23d

Rmv = o
n

jmnrnv,

Rmnva = o
brs

jnrjbajsmrsrvb . s24d

Notice that the incoming valence line in the valence ampli-
tudesrmnav andrmv is not dressed, since it does not represent
a free end. With these objects we may dress the LCCSD
diagrams, as shown in Fig. 4.

Numerically, we rigorously computed the four dressed
diagrams shown in Fig. 4. In the remaining LCCSD dia-
grams, listed in Ref.f3g, we have replaced the bare matrix
elements with the dressed matrix elements, Eq.s23d. Notice
that the dressing of the Hartree-Fock diagram subsumes
LCCSD diagrams,

Zwv
sgd = − o

ma

rma
* rwazmv + H.c.s.,

Zwv
std = − o

mnab

rmnba
* r̃nwabzmv + H.c.s s25d

from Ref. f3g, so that these diagrams are to be discarded in
the present approach. We postpone discussion of numerical
results until Sec. VII.

V. RPA-LIKE DRESSING

In this section we continue with the systematic dressing of
the coupled-cluster diagrams for matrix elements based on
the topological structure of the productC†C, Eq. s14d. Here
we focus on the two-body term of this object. The insertion
that generates the RPA-like chain of diagrams is due to a
two-particle and two-hole part of the objectsC†Cd,

sC†CdRPA ; o
mnab

c̃nbmahan
†ab

†aaamj, s26d

where we used a symmetry propertycijkl =cjilk, and c̃ijkl
=cijkl −cijlk. An analysis identical to that presented for line
dressing in Sec. IV leads us to introduce a RPA-dressed ob-
ject Tnbma,

o
mnab

T̃nbmahan
†ab

†aaamj = − o
mnab

dmndabhan
†ab

†aaamj + sC†CdRPA

+ „sC†CdRPAsC†CdRPA…RPA + ¯ ,

s27d

where the subscript RPA specifies that the objects inside the
parentheses are to be contracted so that the result has the
same free particle and hole ends as the original bare object
sC†CdRPA, Eq. s26d. The sign of the leading termswith the
Kronecker symbolsd is chosen in such a way that a product
of this term with a particle-hole object likezrcacar

† results in
the original object.

A detailed consideration leads to an implicit equation for
the RPA-dressed particle-hole insertion

T̃nbma= − dmndab − o
rc

c̃ncraT̃rbmc . s28d

This equation, presented graphically in Fig. 5, can be solved
iteratively.

The resulting insertionTnbma may dress any particle-hole
vertex of a diagram as shown in Fig. 6.

As an example, consider dressing of particle-hole matrix
elements of the operatorZ: zmaam

† aa. The equation for the
dressed matrix elementzma may be derived simply as

zma
RPA ; − o

nb

T̃mbnaznb,

FIG. 4. Dressing of particle-hole lines in the dominant LCCSD
diagrams, Fig. 1. The circled crosses represent line-dressed matrix
elements, Eq.s23d, and the double-lined valence cluster amplitude
is the dressed amplitude, Eq.s24d.

FIG. 5. Graphical equation for RPA-dressed insertion. The
dashed horizontal line is the dressed insertionTnbma, while the bare
objectcnbma is represented by a wavy line.

FIG. 6. Dressing particle-hole vertex of a diagram with the RPA
insertion, Fig. 5.

“DRESSING” LINES AND VERTICES IN… PHYSICAL REVIEW A 71, 032509s2005d

032509-5



zma
RPA = zma+ o

rc

c̃mcrao
nb

T̃rbncznb = zma− o
nb

c̃mbnaznb
RPA,

where we used Eq.s28d for the dressed objectT̃mbna. Finally
we obtain a set of two equations

zam
RPA = zam− o

nb

c̃mbna
* zbn

RPA,

zma
RPA = zma− o

nb

c̃mbnazbn
RPA.

The resulting equations resemble the traditional RPA formu-
las for dressed matrix elementsssee, e.g., Ref.f15gd, but do
not couplezam

RPA andzma
RPA. In addition, the role of the residual

Coulomb interaction of the traditional RPA formulas is
played by the matrix elements of thesC†CdRPA objectswhich
is dominated by the Coulomb interaction in the second-
order; see Sec. VId. In addition, we would like to emphasize
that the line-dressed matrix elements, Eq.s23d, also include
matrix elements between core and virtual orbitals; these are
to be distinguished from the RPA-like matrix elements, Eq.
s29d.

The above derivation is only valid when dressing a single
isolated vertex. A more complex situation arises whenever a
horizontal crosscut through a diagram produces severalsnot
just two, as in Fig. 6d unquenched particle and hole lines.
Then the lower particle and hole lines of the objectsC†CdRPA

could be attached to the unquenched lines of the bare dia-
gram in any order and “cross dressing” may occur. As an
illustration, consider RPA dressing of the valence double
contribution to the wave functionomnarmnvaam

† an
†aa. It arises,

for example, when the diagramZwv
sad fsee Fig. 1sadg is cut

across horizontally. The valence double contains two equiva-
lent verticesam

† aa and an
†aa. First we may attach the RPA

object to them-a vertex and at the second step to then-a
vertex. Apparently, this scenario is not covered by Eq.s27d,
since it implies that all RPA insertions are attached to the
same vertex. Nevertheless, the RPA-like dressing can be car-
ried out in a straightforward fashion. To continue with the
illustration, the RPA-dressed valence double amplitude may
be defined as followsfcompare to Eq.s27dg

o
mna

Rmnva
RPA am

† an
†aa = sf1 + sC†CdRPA

+ „sC†CdRPAsC†CdRPA…RPA + ¯ g

3 o
mna

rmnvaam
† an

†aadval.double. s29d

Here the subscript “val. double” indicates that we select a
contribution having the same free ends as the right-hand side
R.H.S. of the equation. The numerical factors in front of the
individual RPA contributions are derived similarly to the
line-dressing factorsssee Sec. IVd. Explicitly, we deal with a
chain of diagrams

Rmnva
RPA = rmnva − o

br

c̃nbrar̃mrvb + o
bcrs

sc̃ncsac̃sbrcr̃mrvb

− c̃ncsac̃mbrcr̃srvbd + ¯ . s30d

Examining the structure of the above expression we finally
arrive at

Rmnva
RPA = rmnva − o

sb

c̃nbsaR̃msvb
RPA, s31d

i.e., we have demonstrated how to dress the valence doubles.
This example can be easily generalized to several equivalent
vertices: Eq.s29d has to be rewritten using as the seed object
the underlying structure of the unquenched lines produced by
a horizontal crosscut through a diagram.

A. Singles-doubles approximation

Now we specialize our discussion of the RPA-like dress-
ing to the cluster operator truncated at single and double
excitations. In this CCSD approximation we obtain for the
bare RPA-like insertion

c̃nbma< − rmb
* rna − o

rc

r̃mrbc
* r̃nrac. s32d

Notice that one has to be careful when dealing with the first
ssingles3 singlesd term; it is represented by a disconnected
diagram and may produce undesirable disconnected dia-
grams for matrix elements, Eq.s10d.

By substituting the CCSD insertion, Eq.s32d, into Eqs.
s29d and s31d, we immediately derive expressions for the
dressed matrix elements and the RPA-dressed valence
doubles. For example,

Rmnva
RPA = rmnva + o

sb

so
rc

r̃nracr̃srbc
* dR̃msvb

RPA, s33d

zma
RPA = zma+ o

nb

so
rc

r̃nrbc
* r̃mracdznb

RPA. s34d

Here we omitted a small contribution toc̃nbma, Eq.s32d, from
the product of core singles. As discussed in Sec. VI this
contribution would arise in the higher ordersssixth orderd of
MBPT.

Practically, we notice that among the dominant LCCSD
diagrams shown in Fig. 1, the particle-hole vertex occurs
only in the RPA diagramZwv

sad. Focusing on this particular
diagram, the “upgraded”Zwv

sad is simply

sZwv
sadddress= o

ma

zamR̃wmva
RPA + H.c.s. s35d

Notice that the use of the RPA-dressed matrix elements to
upgrade theZwv

sad diagram, such as

sZwv
saddmel.dress= o

ma

zam
RPAr̃wmva + H.c.s., s36d

does not lead to the identical result, because it misses dress-
ing of thew-a vertex. Moreover, we found numerically that
dressing of both vertices, as in the more general Eq.s35d, is
equally important.
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Finally, it is worth noting that with the RPA-like dressing
scheme proposed here, the CCSD calculations would recover
the entire chain of RPA diagrams. However, if the calcula-
tions of the wave functions are done using the linearized
version of the coupled-cluster equationssas in Refs.f3–6gd, a
part of the RPA diagrams would still be missingf3g. To sum-
marize, the inclusion of the CCSD nonlinear terms in the CC
equations is crucial for a fully consistent treatment of the
RPA sequence.

VI. COMPARISON WITH THE FOURTH-ORDER
DIAGRAMS

The coupled-cluster method can be straightforwardly con-
nected with the direct order-by-order many-body perturba-
tion theory. In particular, for univalent systems, when the
calculations are carried out starting from the frozen-core
Hartree-Fock potential, the lowest-order contributions to the
double excitation cluster amplitudes are

rmnva < −
gmnva

«m + «n − «a − «v
,

rmnab< −
gmnab

«m + «n − «a − «b
. s37d

Here gijkl is the matrix element of the residualsbeyond the
HF potentiald Coulomb interaction between the electrons. It
can be shown that while the LCCSD method recovers all
third-order diagrams for matrix elements, it starts missing
diagrams in the fourth order of MBPT. Our group has inves-
tigated these 1648 complementary fourth-order diagrams in
Refs. f10,11g. Among the diagrams complementary to
LCCSD matrix element contributions, there are seven terms
fclassZ132sDnld in Ref. f10gg due to nonlinear terms in the
expansion of the CCSD wave functions; namely these
Z132sDnld diagrams provide the lowest-order approximation
for the dressing scheme proposed here.

In Fig. 7 we explore the topological structure of the
Z132sDnld diagrams. All these diagrams come from various
ways of lowest-order dressing of theZwv

sad diagram, Eq.s11d.
A comparison shows that the present dressing approach re-
covers fivesthree line-dressed and two RPA-dressedd out of
seven fourth-order diagrams. The missing diagrams are
shown in the bottom row of Fig. 7, and we call them
“stretched” and “ladder” diagrams, the names being derived
from the structure of the highlighted dressing insertions.
While the ladder diagram comes from the untreated two-
body contribution to theC†C object, Eq.s14d, the stretched
diagram involves a more complex three-body contribution to
C†C. Dressing with these two insertions can be carried out in
a way similar to the line- and RPA-like dressing schemes
discussed in this paper and is beyond the scope of the present
analysis.

We verified that in the lowest-order MBPT approxima-
tion, Eq.s37d, our dressing formulas reproduce the pertinent
fourth-order expressions, explicitly presented in Ref.f10g.
Furthermore, in Table I we list numerical values for indi-
vidual contributions to the magnetic-dipole hyperfine-

structuresHFSd constantA for the ground state of133Cs and
the E1 transition amplitude for the principal 6p1/2−6s1/2
transition in Cs. Analyzing this table, we conclude that both
line– and RPA–like dressing are equally important. More-
over, for these two particular matrix elements there is a par-
tial cancellation between the line– and RPA–dressed dia-
grams, so that were one of the dressings omitted, the result
would be misleading. We also observe that the untreated
“ladder” diagram contributes a negligibly small fraction of
the total. At the same time the size of the untreated
“stretched” diagram indicates thatsat least for the HFS con-
stantd it is as important as the RPA-like and line-dressed
diagrams.

As to the numerics, the fourth-order calculations have
been carried out using relativisticB-spline basis sets as de-

FIG. 7. Topological structure of fourth-order diagrams of class
Z132sDnld derived in Ref.f10g. In these diagrams horizonal lines
denote Coulomb interaction and the topological objects coming
from the lowest-order approximation toC†C are highlighted. The
upper three diagrams arise in the leading order of the line-dressing
scheme and the two diagrams in the middle are related to the RPA-
dressing scheme.

TABLE I. Breakdown of contributions toZ132sDnld class of
diagrams for the hyperfine-structure constantA for the 6s1/2 state
and the 6s1/2-6p1/2 electric-dipole transition amplitude for133Cs
atom. The lowest-order Dirac-Hartree-FocksDHFd values are
1425.29 MHz for the HFS constant and 5.278 a.u. for the transition
amplitude. The notationxfyg stands forx310y.

Type As6sd sMHzd k6s1/2u uD u u6p1/2l sa.u.d

Core line 22.0 7.0f23g
Particle line 20.90 2.5f23g
Valence line 20.92 0.2f23g
RPA-I 0.005 29.3f23g
RPA-II 4.8 20.05f23g
Stretched 23.0 0.1f23g
Ladder 0.05 20.008f23g
Total 21.9 0.41f23g
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scribed in Ref.f16g. We used a basis set of 25 out of 30
positive-energys«i .−mec

2d pseudoeigenfunctions for each
partial wave. Partial wavess1/2–g9/2 were included in the
basis. The summation over intermediate core orbitals was
limited to the eight highest-energy core orbitals for theE1
amplitude and included all core orbitals for the HFS con-
stant. The reader is referred tof11g for a description of our
fourth-order code.

We verified that numerical results for dressed all-order
LCCSD diagramsssee Sec. VId are consistent with the values
for the pertinent fourth-order diagrams. As an example con-
sider contributions to theAs6sd HFS constant. Line dressing
modifies the LCCSDZwv

sad diagram by24.3 MHz in good
agreement with the value of23.8 MHz, the sum of the first
three corresponding fourth-order diagrams from Table I.
Similarly, RPA-like dressing modifies theZwv

sad diagram by
14.4 MHz, while the sum of fourth-order RPA diagrams
from Table I is 4.8 MHz.

VII. NUMERICAL RESULTS AND DISCUSSION

To reiterate the discussion so far, we have developed the
formalism of line and RPA-like dressing of the coupled-
cluster diagrams for matrix elements. Further, we reduced
our general formalism to the case when the cluster operator
is truncated at single and double excitation amplitudes. We
have also verified that in the lowest order we recover the
relevant fourth-order diagrams both analytically and numeri-
cally. In this section we illustrate our all-order dressing for-
malism with numerical results.

We have carried out relativistic calculations of the
hyperfine-structure constantA for the 6s1/2 state and
6s1/2–6p1/2 electric-dipole transition amplitude for the133Cs
atom. It is worth noting that matrix elements of the hyperfine
interaction and the electric-dipole operator allow one to ac-
cess the quality ofab initio wave functions both close to the
nucleus and at intermediate values of the electronic coordi-
nate. Such a test is essential for estimates of theoretical un-
certainties of calculations of parity-nonconservingsPNCd
amplitudes. Theab initio PNC amplitudes are key for high-
accuracy probes of new physics beyond the standard model
of elementary particles with atomic parity violation.

The results of calculations are presented in Tables II and
III. In these tables we augment results of the previous all-
order calculationsf6g with two types of additional contribu-
tions: sid all-order RPA and line dressing, outlined in Secs.
IV and V, andsii d complementary fourth-order contributions,
so that the results are complete through the fourth-order per-
turbation theory. Also, for the HFS constant, we incorporate
the most recent values of the Breit and radiative corrections
f17,18g.

LCCSDPT (perturbative triples) approximation.We de-
part from the results of the coupled-cluster calculation de-
scribed in Ref.f6g. These are linearized coupled-cluster cal-
culations, with the wave functions truncated at single and
double excitations from the reference Slater determinant. In
addition, following Ref.f4g, the perturbative effect of triple
excitations has been incorporated into the singles-doubles
equationsLCCSDPT methodd. The main consequence of this

perturbative treatment is that the resulting valence removal
energies are complete through the third order of perturbation
energies. There is also a substantialsa few percent for Csd
improvement in the accuracy of the resulting LCCSDPT hy-
perfine constants over the LCCSD values. At the same time
the theory-experiment agreement for theE1 amplitudes sig-
nificantly degradesssee Table IIId: while the LCCSD ampli-
tudes differ by 0.4% from 0.03% accurate experimental data
f22g, the more sophisticated LCCSDPT matrix elements de-
viate from measurements by as much as 1.3%. In other
words, both LCCSD and LCCSDPT methods are poorly
suited for calculating parity-nonconserving amplitudes in
133Cs with uncertainty of a few 0.1%. It is one of the goals of
this paper to establish a method that will provide a consistent
accuracy for both HFS constants and dipole matrix elements
sand thus PNC amplitudesd.

Procedure. First we solved the relativistic LCCSDPT
equations, as described in Ref.f6g. With the computed clus-
ter amplitudes we calculated LCCSDPT matrix elements and
recovered results published in Ref.f6g. Further, we solved
the line-dressing equationss22d and computed the line-
dressed cluster amplitudes and matrix elements. The conver-
gence rate was fast: four iterations were sufficient to stabilize
the norms of the line-dressed cluster amplitudes at a level of
a few parts per million. Finally, we solved the iterative equa-
tion for the RPA-dressed valence amplitudes, Eq.s33d. It
turned out to be a very computationally intensive part of the
scheme and we iterated the equations only once. We used the
computed RPA-dressed valence amplitudes in calculations of

TABLE II. Contributions to the magnetic-dipole hyperfine-
structure constantA of the ground 6s1/2 state of133Cs. LCCSDPT
indicates linearized coupled-cluster singles-doubles method with
perturbative treatment of triples. VP1 SE is the vacuum polariza-
tion and self-energy.

Contribution ValuesMHzd

DHF 1425.29

LCCSDPT, Coulomb 2283.1

Breit f17g 4.6

VP1SE f18g 29.7

LCCSDPT reference 2278.0

Dressing

Dsline dressd 211.0

DsRPA dressd 4.4

Dressing total 26.7

Complementary fourth-order

Triplesa 117.7

Z033sDnld 25.5

Z132sDnld, stretched 23.0

Z132sDnld, ladder 10.1

Complementary fourth-order total 19.3

Final ab initio 2280.6

Experiment 2298.2

aThe fourth-order contributions from triple excitations are beyond
those treated in the LCCSDPT approximation.
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the dominant diagramZwv
sad; see Eq.s35d. In the remaining

diagrams that involve particle-hole matrix elements, we em-
ployed RPA-dressed matrix elementszij

RPA. A numerical itera-
tive solution of equations forzij

RPA, Eq. s34d, required only a
few iterations to converge to seven significant figures.

Line dressing.In Table IV we illustrate the importance of
line dressing; in this table we present differences between
line-dressed and bare LCCSDPT diagrams for the the hyper-
fine constant andE1 amplitude. The dressing of the leading-
order HF diagram subsumes the LCCSD diagramsZwv

sgd and

Zwv
std , Eq. s25d. A direct calculation of these diagrams results

in Zwv
sgd+Zwv

std =−22.9 MHz forAs6sd and −1.75310−3 a.u. for
theE1 amplitude. These values are consistent with dressing-
induced modifications of the HF diagrams222.0 MHz and
−1.7310−3 a.u., respectivelyd from Table IV. The modifica-
tions of theZwv

sad diagram are consistent with the values of the
pertinent fourth-order diagrams; see Sec. VI and Table I. A
large dressing correction for the HFS constant comes from
the diagramZwv

scd; it is nominally a fifth-order diagram. The
relative importance of this diagram is not surprising since it
is based upon Brueckner orbitalssself-energy or core polar-
ization effectd. As for the E1 amplitude, the line-dressing
correction is dominated byZwv

sad; i.e., it is dominated by the
fourth-order contribution. For the HFS constant, the relative
smallness of the line-dressing correction to theZwv

sad diagram
arises due to a delicate cancellation of relatively large con-
tributions from dressing of the core, particle, and valence
lines of the diagramssee Table Id. Finally, in the bottom line
of Table IV we present the difference between the line-
dressedsall diagramsd and bare values. The dressing of the
HF diagram plays a negligible role here, since it is domi-
nated by the diagrams already included in the LCCSDPT
values. The line dressing contributes at a sizable 0.5% level
to the HFS constant and at 0.2% level to theE1 amplitude.

RPA-like dressing.A numerically dominant contribution
due to the RPA-like dressing arises for theZwv

sad diagram,
where we used RPA-dressed valence amplitudes. The in-
duced correction is as large as 0.2% for both dipole ampli-
tude and HFS constant. The dressing of particle-hole matrix
elementsszij →zij

RPAd in diagrams beyondZwv
sad played a rela-

tively minor role, contributing at a level of only 0.01% for
both test cases.

Complementary fourth-order diagrams.The LCCSDPT
method misses certain many-body diagrams for matrix ele-
ments starting from the fourth order of MBPT. These
complementary corrections in the fourth order come from
triple and disconnected quadruplesor nonlinear doubled ex-
citations. In Ref.f10g these corrections were classified by the
role of triples and disconnected quadruples in the matrix el-
ementssid an indirect effect of triples and disconnected qua-
druples on single and double excitations lumped into the
classZ033; sii d direct contribution to matrix elements,Z132;
siii d corrections to normalization,Znorm. A more refined clas-
sification reads

sZwv
s4ddnon−LCCSD= Z132sTvd + Z132sTcd + Z033sSvfTvgd

+ Z033sDvfTvgd + Z033sScfTcgd

+ Z033sDvfTcgd + Z132sDnld + Z033sDnld

+ ZnormsTvd . s38d

Here we distinguished between valencesTvd and coresTcd
triples and introduced a similar notation for singlessSd and
doublessDd. Notation like DvfTcg stands for the effect of
core triplessTcd on valence doublesDv through an equation
for valence doubles. The LCCSDPT method combines sev-
eral diagrams fromZ132sTvd and Z033sSvfTvgd classes. We
removed these already included diagrams from the fourth-

TABLE III. Contributions to k6s1/2u uD u u6p1/2l electric-dipole
matrix element for Cs atom. Notationxfyg stands forx310y.

Contribution Valuesa.u.d

DHF 5.278

LCCSD f6g 4.482

LCCSDPT reference 4.558

Dressing

Dsline dressd 0.008

DsRPA dressd 20.007

Dressing correction total 20.001

Complementary fourth-order

Triplesa 20.043

Z033sDnld 0.014

Z132sDnld, stretched 1.0f24g
Z132sDnld, ladder 28.6f26g
Complementary fourth-order total 20.029

Final ab initio 4.528

Experiment

Young et al. f19g 4.5097s45d
Rafacet al. f20g 4.4890s65d
Derevianko and Porsevf21gb 4.5064s47d
Amiot et al. f22gc 4.5006s13d
Amini and Gouldf23gd 4.510s4d
aThe fourth-order contributions from triple excitations are beyond
those treated in the LCCSDPT approximation.
bFrom van der Waals coefficientC6 of the ground molecular state.
cPhotoassociation spectroscopy; this is the most accurate determi-
nation.
dFrom static-dipole polarizability of 6s1/2 state with method of Ref.
f21g.

TABLE IV. Line-dressing-induced modifications to dominant
LCCSDPT diagrams, Eq.s11d, for the HFS constantA for the 6s1/2

state and the 6s1/2−6p1/2 E1 transition amplitude for133Cs atom.
Notationxfyg stands forx310y.

Type As6sd sMHzd k6s1/2u uD u u6p1/2l sa.u.d

Zwv
sHFd 222 21.7f23g

Zwv
sad 0.04 9.3f23g

Zwv
scd 28.6 20.5f23g

Zwv
sdd 20.8 23.6f25g

All diagrams 211 8.0f23g
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order triples in Tables II and III. The diagramsDnl are con-
tributions of disconnected quadruples. As discussed in Sec.
VI one of such contributions,Z132sDnld, provides the lowest-
order approximation to our all-order dressing scheme. In
Tables II and III we added the contributions of untreated
“stretched” and “ladder” diagrams of theZ132sDnld class and
also from theZ033sDnld class. The latter contribution would
have been accounted for by solving the fullsnot linearizedd
CC equations. In our large-scale fourth-order calculations we
have employed the code described in Ref.f11g; all the for-
mulas for a large number of diagrams and the code have
been generated automatically using symbolic algebra tools.
While the resulting fourth-order corrections from triples are
at the level of 1% , we notice that there are certain noticeable
cancellations between various diagrams. Thus a complete all-
order treatment of triples would be essential for attaining the
next level of theoretical accuracy.

Hyperfine-constant results.Details of calculation of the
hyperfine constantAs6s1/2d are presented in Table II. To
clarify the role of correlations, we first incorporate a number
of small but important effects into the reference value: the
Bohr-Weisskopf effect and Breit and radiative corrections.
The “LCCSDPT, Coulomb” value has been computed using
the finite nuclear size, for both determination of wave func-
tions and computing matrix elements of the hyperfine inter-
action sthis accounts for 0.5% .d We also include Breit cor-
rections from Ref.f17g; these corrections differ substantially
from those incorporated in Refs.f4,6g due to order-of-
magnitude important correlation corrections. Finally, radia-
tive corrections to magnetic-dipole hyperfine-structure con-
stants for the ground state of alkali-metal atoms were
computed recently by Sapirstein and Chengf18g. They found
that the vacuum polarization and self-energysVP1SEd con-
tribute as much as 0.4% to theab initio value. The reader
should be careful with adopting Breit values from Ref.f18g,
because these values do not include correlation corrections
ssee Ref. f17g and references thereind. The final value,
marked as “LCCSDPT reference” deviates by 0.9% from the
sexactd experimental value.

Dressing corrections partially cancel, resulting in 0.3%
total dressing contribution. Fourth-order diagrams, comple-
mentary to those already included in the LCCSDPT value,
are dominated by a contribution due to triple excitations
s0.8%d. We also include the “stretched” and “ladder” fourth-
order diagrams missed by our dressing schemessee Sec. VId.
Almost all the correlation corrections are of similar sizes but
of different signs, so the dressing and fourth-order correc-
tions cancel, so that the final correlation correction is only
0.1%, just slightly improving the theory-experiment agree-
ment when compared with the “LCCSDPT reference” value.
Our ab initio value for the HFS constant deviates by 0.8%
from the experimental value.

Electric-dipole 6s1/2−6p1/2transition amplitude.Details
of calculation for the dipole matrix element are compiled in
Table III. We do not include Breit and radiative corrections
in that table, since the Breit interaction contributes only
0.02% to this matrix elementf17g, and radiative corrections
are not known from the literature.

There were several high-accuracy experimental determi-
nations of thek6p1/2u uD u u6s1/2l matrix element. We list these

matrix elements at the bottom of Table III. In Refs.f19,20g
this matrix element has been extracted from the measured
lifetime of the 6p1/2 state. The determination of Ref.f22g is
based on photoassociative spectroscopy of cold Cs atoms
si.e., inferred from high-accuracy measurement of molecular
potentialsd. Another approach to extraction of dipole matrix
elements has been proposed by us in Ref.f21g: we exploited
an enhanced sensitivity of the static electric-dipole polariz-
ability as0d of the ground state and van der Waals coefficient
C6 of the ground molecular state to the matrix elements of
the principal transitions k6p3/2u uD u u6s1/2l and
k6p1/2u uD u u6s1/2l. Essential to the extraction of individual
matrix elements was a high-accuracy ratio of these two di-
pole matrix elements measured in Ref.f24g. Based on the
proposed methodf21g, the k6p1/2u uD u u6s1/2l matrix element
has been deduced from high-accuracyC6 in Ref. f21g and in
Ref. f23g it has been inferred fromas0d measured in that
work. The most accurate matrix element comes from photo-
association spectroscopyf22g; that result has 0.03% accuracy
and we will use that value below for calibratingab initio
calculations.

The reference LCCSDPT E1 matrix element deviates
from high-accuracy measurements by as much as 1.3%. The
correlation correctionssdressing and fourth orderd computed
by us improve the agreement to about 0.6%, i.e., theab initio
accuracy becomes comparable to that for the HFS constant.
An analysis of Table III shows that due to cancellation of
line- and RPA-like-dressing corrections the overall effect of
dressing is negligible for this transition amplitude. At the
same time, the fourth-order corrections due to triple excita-
tions beyond LCCSDPT triples are very large, almost 1% .
There corrections due to residual fourth-order RPA correc-
tions fZ033sDnldg are also sizable, and tend to decrease the
effect of triples. Our fourth-order calculation demonstrates
that a full sbeyond that of LCCSDPTd treatment of triple
excitations improves the accuracy ofab initio transition am-
plitudes.

VIII. CONCLUSION

The main two results of this work aresid development and
application of all-order dressing formalism for matrix ele-
ments computed with the coupled-cluster method; andsii d
calculations of matrix elements for Cs complete through the
fourth order of many-body perturbation theory.

To reiterate, our dressing formalism is built upon a hier-
archical expansion of the product of clustersC†C into a sum
of n-body insertions. We considered two types of insertions:
particle or hole line insertion coming from the one-body part
of the product and two-particle or two-hole RPA-like inser-
tion due to the two-body part. We demonstrated how to
“dress” these insertions and formulated iterative equations.
Particular attention has been paid to the singles-doubles trun-
cation of the full cluster operator and we derived the dressing
equations for this popular approximation. We have upgraded
coupled-cluster diagrams for matrix elements with the
dressed insertions for univalent systems and highlighted the
relation to pertinent fourth-order diagrams. Finally, we illus-
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trated our formalism with relativistic calculations for the Cs
atom.

Our relativistic calculations also include a large number
of fourth-order diagrams complementary to the LCCSDPT
method slinearized coupled-cluster single-doubles method
with perturbative treatment of triples; it is the most sophisti-
cated CC approximation applied in relativistic calculations
for Cs so fard. The resulting analysis is complete through the
fourth order of many-body perturbation theory. We find that

these complementary diagrams substantially improve the
theory-experiment agreement for the important electric-
dipole 6s1/2-6p1/2 transition amplitude, and slightly improve
the agreement for the hyperfine constant. To illustrate it we
present in Table V the percentage deviation from high-
precision data for variousab initio approximations. We
found sizable cancellations between various fourth-order
contributions; a full all-order treatment of triple and discon-
nected quadruple excitations is desirable to further improve
the theoretical accuracy.
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