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Abstract. Recent advances in interpreting the most accurate-to-date measurement of atomic parity viola-
tion in Cs are reviewed. The inferred nuclear weak charge, QW (133Cs) = −72.65(28)expt(36)theor, agrees
with the prediction of the standard model at 1σ level. Further improved interpretation is limited by an
accuracy of solving the basic correlation problem of the atomic structure. We report on our progress in
solving this problem within the relativistic coupled-cluster formalism. We include single, double and triple
electronic excitations in the coupled-cluster expansion. Numerical results for energies, electric-dipole matrix
elements, and hyperfine-structure constants of Cs are presented.

PACS. 32.80.Ys Weak-interaction effects in atoms – 31.15.Dv Coupled-cluster theory – 32.10.Fn Fine
and hyperfine structure – 32.70.Cs Oscillator strengths, lifetimes, transition moments

1 Introduction

This year, 2006, marks 50 years of the fall of parity con-
servation, one of the hallmark discoveries of the 20th cen-
tury physics. The field has started with the seminal Lee
and Yang paper [1] and the discovery of parity viola-
tion in the nuclear β-decay [2]. Soon after this discov-
ery, Zel’dovich [3] contemplated the possibility of observ-
ing the parity-nonconserving (PNC) signal in atoms. He
concluded that the effect was too small to be of exper-
imental significance. In 1974, however, M.-A. Bouchiat
and C. Bouchiat [4] realized that the PNC is amplified
in heavy atoms. They showed that the relevant PNC am-
plitude scales steeply with the nuclear charge Z. In atomic
physics, the first P-violating signal has been observed in
1978 by Barkov and Zolotorev [5] in the Bi atom. Over
the following decades the experiments were refined, with
PNC signal observed in several atoms. So far the most ac-
curate measurement has been carried out in 133Cs by the
Boulder group [6].

Rich history of atomic parity violation is examined in
a number of review articles, e.g., refs. [7,8] and a book [9].
Here, due to the space limitation, we restrict our atten-
tion to recent developments in interpreting P-violation in
the Cs atom and report on the progress towards a more
accurate interpretation of atomic PNC in this atom.

The PNC measurements are interpreted in terms of the
weak nuclear charge QW , which quantifies the strength
of the electroweak coupling between atomic electrons and
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quarks in the nucleus. The relation between QW and the
PNC amplitude, EPNC, can be represented as

EPNC = k QW , (1)

where k is an atomic-structure factor. Apparently, the
interpretation requires atomic-structure calculations of k
with an accuracy that matches the experimental uncer-
tainty in EPNC. In particular, in Cs, the present theoreti-
cal uncertainty dominates over the experimental error bar
resulting in an overall 0.6% uncertainty in the inferred
value of QW (133Cs).

The underlying theory of the electroweak interactions
is well established and its predictions have been verified
in a variety of experiments. Much of the present efforts
are driven by searches for “new physics” beyond the stan-
dard model (SM). We may distinguish between two ap-
proaches to such searches: low- and high-energy experi-
ments. Atomic parity violation probes the low-energy elec-
troweak sector of the SM. While the relevant momentum
transfer is just ∼ 30MeV, the exquisite accuracy of the
interpretation constrains new physics at much higher en-
ergies. Indeed, following arguments of ref. [10], we find
that the present 0.6% determination of the QW (133Cs)
probes the new physics at a mass scale of

{

8
√

2 π
1

GF

∣

∣

∣

∣

QW

δQW

∣

∣

∣

∣

}1/2

≈ 20TeV,

where GF is the Fermi constant. Apparently by reducing
the uncertainty in the determination of the weak charge,
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Table 1. Present status of the 2.5σ deviation of the inferred QW (133Cs) from the prediction of the standard model. In the bulk
of the table, we summarize the recent theoretical progress on computing “small” sub-1% corrections to the 6s-7s PNC amplitude.
These corrections directly affect the inferred value of the weak charge of Cs. For illustrative purposes all the corrections (pulls)
are tabulated in terms of the original Bennet and Wieman [16] uncertainty, σ = {σ2

expt + σ2
theor}

1/2 ≈ 0.5%.

Deviation (1999)
Bennet and Wieman [16]

2.5σ

Based on calculations by

Dzuba et al. (1989) [14] and

Blundell et al. (1990) [15]

Theoretical correction Pull Reference

Derevianko (2000) [20]

Breit interaction −1.2σ Dzuba et al. (2001) [21]

Kozlov et al. (2001) [22]

Vacuum polarization (+0.8σ) Johnson et al. (2002) [23]

Vertex/self-energy (−1.3σ) Milstein et al. (2002) [24,25]

−0.5σ Kuchiev and Flambaum (2002) [26]

Sapirstein et al. (2003) [27]

Shabaev et al. (2005) [28]

Neutron skin −0.4σ Derevianko (2002) [29]

Updated correlated EPNC and β +0.7σ Dzuba et al. (2002) [30]

e-e P-violating interaction,
Sushkov and Flambaum (1978)
Milstein et al. (2002) [24]

Renormalization Q → 0, −0.08σ

Giant nuclear resonance

Total deviation (agreement) 1σ

|δQW |, we may access even higher mass scales. Such a re-
duction in the uncertainty of QW is the goal of our present
efforts outlined in sect. 3.

While discussing the impact of atomic PNC on parti-
cle physics, it is worth noting that colliders are blind to
certain “new physics” scenarios [10]. For example, atomic
PNC is uniquely sensitive to extra Z bosons predicted
in grand unified theories, technicolor models, SUSY, and
string theories. Generally, atomic PNC is one of a few
probes of electroweak coupling below the Z-pole. Com-
peting and at the same time complementary experiments
include determination of the weak charge of the electron
at SLAC [11] and ν-nucleus deep inelastic scattering by
the NuTeV Collaboration [12]. With an upgrade at Jef-
ferson Lab, an even more accurate constraint on elec-
troweak coupling is expected to come from a P-violating
e-p scattering experiment (Q-weak Collaboration) [13].
Still, the atomic PNC will continue to play an important
complementary role, as the atomic PNC is sensitive to
electron-neutron couplings, while the Q-weak experiment
will probe electron-proton coupling, i.e., a different linear
combination in terms of the up and down quark-electron
couplings.

2 Deviation from the standard model and

recent theoretical progress

Parity violation in Cs has been the subject of a recent con-
troversy. To infer the value of the weak charge, one needs
to combine measurements with atomic-structure calcula-

tions. The uncertainty in the value of the inferred QW is
usually determined by summing experimental and theo-
retical uncertainties in quadrature,

σ =
{

σ2
expt + σ2

theor

}1/2
. (2)

In 1997, the most accurate to date (0.35%) measurement
of PNC has been carried out by the Boulder group [6].
At that time, the accuracy of calculations [14,15] has
been estimated to be 1%. In 1999, Bennet and Wie-
man [16], in light of new lifetime data which improved
theory-experiment agreement, have reduced the theoreti-
cal error bar to 0.4%. While compared with the prediction
of the SM, the resulting value of QW differed by 2.5σ,
one of the largest deviations in the recent history. The
deviation has prompted a substantial interest from the
particle physics community (see, e.g., [10,17–19]). At the
same time the reduced theoretical uncertainty raised the
questions whether some “small” sub-1% atomic-structure
effects could be the reason for the deviation.

Over the last few years, there has been an impor-
tant progress in understanding “small” corrections, such
as Breit, radiative, and neutron-skin corrections. These
advances are summarized in table 1.

Taking into account the tabulated “small” corrections,
the revised value of vector transition polarizability and
the somewhat improved value of EPNC [30], we arrive at
the following revised value of the weak charge (the as-
signed theoretical uncertainty of 0.5% is consistent with
an estimate of ref. [30] and the central value with that of
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ref. [28]):

QW (133Cs) = −72.65(28)expt(36)theor . (3)

This value agrees with the SM value [19] of −73.19(13) at
1σ level.

The present theoretical uncertainty in PNC calcula-
tions is estimated to be 0.5%. Since the overall error is
obtained with quadrature (2), reducing σtheor below the
experimental uncertainty of 0.35% will either reveal new
physics or set important constraints on competing exten-
sions to the SM. In addition, it will set a stage for further
experimental efforts, such as those by the Paris group [31,
32]. Other experimental efforts which will benefit from
the improved calculations are PNC measurements with
Ba+ [33,34], Tl [35], and Fr [36].

3 High-accuracy atomic-structure calculations

The present accuracy in the determination of the weak
charge of Cs is limited by the accuracy of solving the
basic correlation problem. The many-body problem is
hard. Even classically, the three-body problem cannot
be solved in closed form. While adequate numerical ap-
proaches (e.g., configuration interaction and variational
methods) were developed for few-electron atoms, accurate
solution of the many-body problem for atoms with many
electrons still remains a challenge.

In a particular case of the PNC problem in Cs, we need
to evaluate the PNC amplitude for the 6S1/2 → 7S1/2

transition

EPNC =
∑

n

〈7S|D|nP1/2〉〈nP1/2|HW |6S〉
E6S − EnP1/2

+
∑

n

〈7S|HW |nP1/2〉〈nP1/2|D|6S〉
E7S − EnP1/2

. (4)

Here D and HW are the electric-dipole and the weak inter-
action matrix elements, and Ei are the atomic energy lev-
els. The effective weak interaction, averaged over quarks
is accumulated inside the nucleus

HW = −GF√
8

QW γ5 ρ(r) , (5)

where ρ(r) is the neutron-density distribution. One could
easily recast eqs. (4) and (5) in terms of the structure
factor k of eq. (1).

We wish to evaluate accurately the sum (4). Let us
comment on the pre-requisites for such calculations. i) Due
to the particular characters of the involved operators
in summation (4), the approximate wave functions have
to reproduce the short-range (close to the nucleus) and
long-range atomic properties simultaneously. The accu-
rate short-range description requires ab initio relativistic
approach, as the ratio of the velocity of the electron to
the speed of light near the nucleus is ∼ αZ ∼ 0.4 for Cs.
ii) With respect to the accuracy, we notice that simple
Dirac-Hartree-Fock (DHF) calculations for the hyperfine-
structure (HFS) constant of the ground state are about

50% off from the experimental value. This constant de-
scribes the strength of the coupling of the electron to the
nuclear magnetic moment and its short-distance nature
mimics the behavior of the weak matrix elements. There-
fore we arrive at the conclusion that so-called correlation
corrections (those beyond the DHF approximation) have
to be addressed. We treat the correlations within the sys-
tematic and successful methods of many-body perturba-
tion theory.

How do we estimate the accuracy of calculating EPNC?
Ultra-precise experimental data are available for Cs. These
data have accuracy better than our anticipated theoret-
ical uncertainty thus allowing us to calibrate our calcu-
lations. Atomic energies are known to many significant
figures. The Ultra-precise (0.01% accurate) value of the
lifetime of the 6P3/2 state of Cs has been recently inferred
from photoassociation spectroscopy [37,38] with ultracold
atoms. The HFS constants for Cs are also measured to a
good accuracy (the HFS constant A6S of 133Cs is known
exactly by the definition of the second).

To reiterate, to further improve the interpretation of
atomic parity violating signals, we need a high-accuracy ab
initio relativistic many-body method capable of reaching
the accuracy level of 0.1% for Cs.

4 Relativistic coupled-cluster method

Many-body perturbation theory (MBPT) provides a
systematic way of treating correlation corrections, the
critical issue for an improved interpretation of atomic
PNC. First, we review main ideas of MBPT and the
all-order coupled-cluster (CC) method. Then, we describe
our present CC-inspired computational scheme and
illustrate it with numerical results for the basic atomic
properties of the Cs atom.

4.1 Generalities

In MBPT the atomic Hamiltonian is partitioned as

H =

(

∑

i

hnuc(ri) +
∑

i

UDHF(ri)

)

+





1

2

∑

i6=j

1

rij
−
∑

i

UDHF(ri)



 ,

where hnuc includes the kinetic energy of an electron and
its interaction with the nucleus, UDHF is the DHF poten-
tial, and the last term represents the residual Coulomb in-
teraction between electrons. In MBPT the first part of the
Hamiltonian is treated as the lowest-order Hamiltonian H0

and the residual Coulomb interaction as a perturbation.
The perturbative expansion is built in powers of residual
interaction and the derivations typically involve methods
of second quantization and diagrammatic techniques.

One of the mainstays of practical applications of
MBPT is the assumption of the convergence of series in
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powers of the residual interaction. Sometimes the conver-
gence is poor and then one sums certain classes of dia-
grams to “all orders” using the iterative techniques. One of
the most popular all-order methods is the coupled-cluster
(CC) formalism [39,40]. It is widely employed in atomic
and nuclear physics, and quantum chemistry [41]. The rel-
ativistic atomic-structure CC-type calculations were car-
ried out, for example, in refs. [42–47].

The Hamiltonian in the second quantization (based on
the DHF basis) reads

H = H0 + G

=
∑

i

εi

{

a
†
iai

}

+
1

2

∑

ijkl

gijkl

{

a
†
ia

†
jalak

}

, (6)

where H0 is the lowest-order Hamiltonian and the resid-
ual Coulomb interaction G is treated as a perturbation.

The operators ai and a
†
i are annihilation and creation op-

erators, and {. . .} stands for a normal product of opera-
tors with respect to the core quasivacuum state |0c〉. In
the lowest order the atomic wave function with the va-
lence electron in an orbital v reads |Ψ (0)

v 〉 = a†
v|0c〉. For

example, v can represent the ground state 6s orbital of
the Cs atom. Formally, we can introduce a wave opera-
tor Ω that produces the exact many-body wave function,

|Ψv〉 = Ω |Ψ (0)
v 〉.

Central to the CC method is the realization that the
wave operator can be represented via the exponential
ansatz [48]

Ω = {exp(K)} = 1 + K +
1

2!
{K2} + . . . . (7)

The operator K can be compellingly separated into clus-
ter operators combining simultaneous excitations of core

and valence electrons from the reference state |Ψ (0)
v 〉 to all

orders of MBPT,

K = S + D + T + · · · , (8)

i.e., K is separated into single (S), double (D), triple (T ),
and higher-rank excitations. For the univalent systems it
is convenient to subdivide cluster operators into core and
valence classes

K = Kc + Kv . (9)

Clusters Kc involve excitations from the core orbitals only,
while Kv describe simultaneous excitations of the core and
valence electrons. Then S = Sc + Sv, D = Dc + Dv,
etc. The cluster operators satisfy so-called Bloch equa-
tions [48].

While the CC formulation is exact, in practice the full
cluster operator K is truncated at a certain level of exci-
tations. If we restrict it to single and double excitations,

K ≡ K(SD) ≈ Sc + Dc + Sv + Dv , (10)

we arrive at the widely employed coupled-cluster single-
double (CCSD) method.

The linearized version of the CCSD method was em-
ployed by the Notre Dame group for high-accuracy calcu-
lations of various atomic properties [42,43,46,47]. In this

approximation, one discards nonlinear terms in the expan-
sion of the exponent in eq. (7), Ω ≈ 1+K(SD). We will refer
to this approximation as the singles-doubles (SD) method.
The resulting SD equations are written out in ref. [42]. A
typical ab initio accuracy attained for properties of heavy
alkali-metal atoms is at the level of 1%.

Since the present goal is to reduce theoretical uncer-
tainties to the level of 0.1–0.2% we have to go beyond
the SD approach. A systematic step in improving the SD
method would be an additional inclusion of triple and
nonlinear double excitations. However, considering the
present state of available computational power, the full
incorporation of triples (specifically, core triples) seems to
be unmanageable for heavy atoms. For instance, for Cs
storing and manipulating core triple amplitudes would re-
quire ∼ 100Gb of memory.

To motivate next-generation formalism, we have ex-
plicitly computed 1648 fourth-order diagrams for matrix
elements that appear due to triple excitations and non-
linear terms (i.e., those omitted in the SD method) [49,
50]. We observe from numerical results for electric-dipole
matrix elements in Na [50] and Cs [51] that the contribu-
tions from valence triples Tv and nonlinear doubles Dnl

are much larger than those from core triples Tc. This
leads to our present level of approximation: we discard
core triples and core nonlinear terms and incorporate the
valence triples and valence nonlinear terms into the SD
formalism. The resulting approximation will be referred
to as CCSDvT method.

4.2 Driving equations in the CCSDvT approximation

Below we write down the CC equations for cluster am-
plitudes in the CCSDvT approximation. Here we present
the topological structure of the equations only. A detailed
tabulation of the formulas can be found in our paper [52].
The equations in the SD approximation are presented in
explicit form in ref. [42]. The CCSDvT equations for the
core cluster amplitudes Sc and Dc are the same as in the
SD approximation.

For valence triple amplitudes we obtain symbolically

−[H0, Tv] + δEvTv ≈ Tv[Dc] + Tv[Dv]. (11)

Here [H0, Tv] is a commutator, and δEv is the correlation
valence energy defined as

δEv = δESD + δECC + δEvT , (12)

where the correction δESD is obtained within the SD ap-
proach, the correction δECC comes from nonlinear CC
contributions and δEvT is due to valence triples. Contri-
butions Tv[Dc] and Tv[Dv] denote the effect of core and
valence doubles on valence triples, respectively. At present
we include only these effects omitting the effect of valence
and core triples on valence triples (Tv[Tv] and Tv[Tc]) and
nonlinear CC contributions. These are higher-order effects
which computationally are much more demanding.
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The topological structure of the valence singles equa-
tion is

−[H0, Sv] + δEvSv ≈ SD

+Sv[Sc ⊗ Sv] + Sv[Sc ⊗ Sc]

+Sv[Sc ⊗ Dv] + Sv[Sv ⊗ Dc] + Sv[Tv]. (13)

Here Sv[Sc ⊗ Sv] stands for a contribution from the ex-
citations of core and valence electrons resulting from a
product of clusters Sc and Sv. All other terms are defined
in a similar fashion.

Finally, equation for valence doubles can be symboli-
cally represented as

−[H0,Dv] + δEvDv ≈ SD

+Dv[Sc ⊗ Sv] + Dv[Sc ⊗ Sc]

+Dv[Sc ⊗ Dv] + Dv[Sv ⊗ Dc] + Dv[Sc ⊗ Dc]

+Dv[Dc ⊗ Dv] + Dv[Sc ⊗ Tv]

+Dv[Sv ⊗ Tc] + Dv[Tv]. (14)

Solution of the above equations provides us with the
cluster amplitudes and correlation energies. Numerical re-
sults for the energies will be presented in sect. 4.4. At
this point, with the obtained wave functions we proceed
to evaluating matrix elements.

4.3 Matrix elements

The SD method has already proven to be successful in
calculations of various atomic properties. For heavy alkali-
metal atoms the attained level of agreement with experi-
mental data for the hyperfine constants is at 5% and the
accuracy of a similar calculation for the electric-dipole am-
plitudes is 0.5% (see, e.g., [47]). At the same time the
accuracy required for our goals should be at the level of
0.1–0.2%. In order to improve the overall accuracy we de-
velop the technique of relativistic calculations of matrix
elements beyond the SD approach.

Given two computed CCSDvT wave functions, we may
evaluate matrix elements of one-electron operator Z as

Zwv =
〈Ψw|

∑

ij zij a
†
iaj |Ψv〉

√

〈Ψw|Ψw〉〈Ψv|Ψv〉
. (15)

The explicit expressions are given in ref. [52]. Compared
to the SD approximation, we include contribution of va-
lence triples Tv. They contribute both directly via explicit
contributions to matrix element formula and indirectly
through the modification of the SD amplitudes.

It is worth pointing out, that the importance of the va-
lence triples has been realized earlier by the Notre Dame
group [43]. They have shown that at the SD level, the
error for the HFS constants is as large as 5% for Cs. To
rectify this problem, they proposed and implemented a
scheme that approximates the effect Sv[Tv], i.e., the ef-
fect of valence triples on valence singles. While improving
the agreement for the HFS constants, their approximation
leads to a poorer agreement (compared to SD method) for

the dipole matrix elements. The advantage of the Notre
Dame scheme is that it avoided expensive storing of triple
excitations. Due to improved computational resources, we
are able to store triples. Accounting for the triples in a rig-
orous fashion leads to a better agreement between theory
and experiment.

Compared to the Notre Dame approximation we also
include dressing of matrix elements based on the CC
ansatz. The idea of our method [51] is as follows. When
the CC exponent is expanded in eq. (15), we encounter
an infinite number of terms. We devised a method of
partial summation (dressing) of the resulting series. Our
formalism is built upon an expansion of the product of
cluster amplitudes into a sum of n-body insertions. We
considered two types of insertions: the particle (hole)
line insertion (line “dressing”) and the two-particle
(two-hole) random-phase-approximation-like insertion.
We demonstrated how to “dress” these insertions and
formulated iterative equations.

Another formal improvement over Notre Dame calcu-
lations comes from including the CC nonlinear terms in
the equations for valence singles (13) and doubles (14). We
also include the contribution of the core triples to matrix
elements from a direct fourth-order calculation.

4.4 Numerical results

Our developed numerical CCSDvT code is an extension
of the relativistic SD code [46] which employs a B-spline
basis set. This basis numerically approximates a complete
set of single-particle atomic states. Here we use 35 out of
40 positive-energy basis functions. Basis functions with
lmax ≤ 5 are used for singles and doubles. For triples
we employ a more limited set of basis functions with
lmax(Tv) ≤ 4. Excitations from core sub-shells [4s, . . . , 5p]
are included in the calculations of triples while excitations
from sub-shells [1s, . . . , 3d] are discarded.

Computed removal energies of 6s, 6p1/2, and 6p3/2

states of atomic cesium are presented in table 2. The dom-

Table 2. Contributions to removal energies of 6s, 6p1/2,
and 6p3/2 states for Cs in cm−1 in various approximations.
δEtot

extrapolated correction is obtained by computing SD proper-
ties with increasingly larger basis sets and interpolating them
to l = ∞ [53]. A comparison with experimental values is pre-
sented in the lower panel.

6s 6p1/2 6p3/2

EDHF 27954 18790 18389

δESD 3869 1611 1623

δECCSDvT 3350 1387 1220

Etot
CCSDvT 31304 20178 19608

QED1 18 −0.4 0

δEtot
extrapolated 30 20 20

Etot
final 31352 20198 19628

Eexperim
2 31407 20228 19675

1
Reference [54].

2
Reference [55].
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Table 3. Magnetic-dipole hyperfine structure constants A (in MHz) and matrix elements of the electric-dipole moment (in
a.u.) for 133Cs. Results of calculations and comparison with experimental values are presented. See text for the explanation of
entries.

A(6s) A(6p1/2) 〈6p1/2‖D‖6s〉 〈6p3/2‖D‖6s〉

DHF 1425.4 160.94 5.2777 7.4264

SD 2438.0 310.71 4.4829 6.3075

∆(CCSDvT) −136.9 −20.92 0.0256 0.0363

Complementary corrections

Line dressing −12.5 −2.16 0.0094 0.0107

Vertex dressing 4.3 0.29 −0.0067 −0.0088

MBPT-IV (core triples, . . . ) 7.8 1.14 0.0001 0.0001

Breit + QED −6.51 0.00242

Extrapolation for l = ∞3 5.0 0.37 −0.004 −0.006

Final CCSDvT + corrections 2299.2 289.43 4.5097 6.3398

Experiment 2298.2 291.89(8)4 4.5049(17)5 6.3404(3)6

1
Reference [56].

2
References [20,54].

3
Reference [53].

4
Reference [57].

5
References [58,38].

6
Reference [38].

inant contribution to the energies comes from the DHF
values. The remaining (correlation) contribution is given
by eq. (12). We computed this correlation correction in
SD and CCSDvT approximations. As it follows from the
table the agreement with experiment is at the level of
0.1–0.2% for all considered states. We anticipate that in-
cluding other corrections missed at this stage (e.g., non-
linear corrections to core amplitudes and core triples) can
further improve the agreement with the experimental re-
sults.

With the computed wave functions of the 6s, 6p1/2

and 6p3/2 states we determine matrix elements. Numerical
results for magnetic-dipole hyperfine-structure constants
A and electric-dipole transition amplitudes are presented
in table 3. This table is organized as follows. First we
list the DHF and SD values, and the differences between
CCSDvT and SD values, ∆(CCSDvT) = CCSDvT − SD.
We base our final ab initio results on the most sophisti-
cated CCSDvT values. These values also include all-order
dressing, and corrections due to core triples, computed in
the the fourth order of MBPT. QED corrections are in-
cluded where available. The results for the HFS constants
include finite nuclear size (Born-Weisskopf) effect.

We find an excellent, 0.1% level, agreement for dipole
matrix elements and the HFS constant of the ground state.
The agreement for the the HFS constant of the 6p1/2 is
only at 1% level. We are presently working on testing the
sensitivity of this constant to higher-order effects.

We would like to emphasize that presently the correla-
tion corrections at the level of a few 0.1% are comparable
to radiative corrections. In this regard it would be use-
ful to carefully compute them to unmask the remaining
many-body effects.

5 Summary and outlook

Atomic parity violation plays an important role in testing
the low-energy electroweak sector of the standard model.
The interpretation of experiments in terms of nuclear weak
charge requires calculations challenging the capabilities
of modern atomic theory. Over the last few years, we
have witnessed a substantial advance in evaluating correc-
tions to parity-violating amplitudes in heavy atoms. These
small (sub-1%), but important corrections include Breit,
radiative (vacuum polarization, self-energy, and vertex)
and neutron skin corrections. As a result of this progress,
the most accurate-to-date measurement of atomic parity
violation in Cs has been brought into substantial agree-
ment with the prediction of the standard model.

Presently, the theoretical interpretation is clouded by
uncertainties in solving the basic correlation problem of
the atomic structure. In this paper we outlined our next-
generation many-body formalism for solving this problem.
We tested our coupled-cluster-inspired method by com-
puting basic atomic properties of the Cs atom. All the
computed properties are important for quantifying the ac-
curacy of the calculations of parity-violating amplitudes.
We find an agreement at 0.1% for the ground-state hy-
perfine structure constant, E1 transition amplitudes, and
energies. However, a relatively poor 1% agreement of the
HFS constant A for the 6P1/2 state with experiment re-
quires further improvements of the method. The advan-
tage of the employed coupled-cluster method is that it
allows for such systematic improvements. It is anticipated
that the further theoretical progress will refine constraints
on new physics beyond the standard model and enable the
next round of experimental studies.
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