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We illuminate the importance of a self-consistent many-body treatment in calculations of vacuum polariza-
tion corrections to the energies of atomic orbitals in many-electron atoms. Including vacuum polarization in the
atomic Hamiltonian causes a readjustment(relaxation) of the electrostatic self-consistent field. The induced
change in the electrostatic energies is substantial for states with the orbital angular momentuml .0. For such
orbitals, the relaxation mechanism determines the sign and even the order of magnitude of the total vacuum
polarization correction. This relaxation mechanism is illustrated with numerical results for the Cs atom.
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Compared to hydrogenic one-electron systems, the calcu-
lation of radiative corrections formany-electronatoms brings
in an additional layer of complexity: a strong Coulomb re-
pulsion between the electrons. The problem is especially
challenging forneutral many-electron atoms, where the in-
teraction of an outer-shell electron with other electrons is
comparable to its interaction with the nucleus. At the same
time, a reliable calculation of radiative corrections for a
heavy neutral system is required in evaluation of the parity
nonconserving(PNC) amplitude in the 55-electron133Cs
atom. Here it has been only recently realized that the sizes of
radiative corrections[1–4] are comparable to the experimen-
tal error bar[5] of 0.35% and, together with the Breit cor-
rection [6], dramatically affect agreement(or disagreement
[7]) with the standard model of elementary particles.

A systematic approach to the problem of radiative correc-
tions in strongly correlated systems is to start from the Furry
representation based on a self-consistent electronic potential
[8]. This potential takes into account the fact that an electron
moves in an average field created by both the nucleus and
other electrons. Based on this idea, a program of calculating
radiative corrections to PNC amplitudes have been put forth
by Sapirsteinet al. [9]. Kuchiev and Flambaum[3] and Mil-
stein et al. [4] pursue a more qualitative approach using an
independent-electron approximation. We believe that the
question of an interplay between correlations and radiative
corrections is yet to be addressed. While here we do not
compute the PNC corrections, we illuminate a situation
where disregarding correlations would lead to a substantial
error in determining radiative correction: a radiative correc-
tion changes sign and even the order of magnitude when the
presence of other electrons is accounted for.

In particular, we consider vacuum polarization(VP) cor-
rections to energies of atomic states. To the leading order in
aZ the VP may be accounted for by introducing the Uehling

potentialUVPsrd into theatomicHamiltonian. This potential
is attractive, and for a hydrogenlike ion the resulting VP
corrections to the energies are alwaysnegative. For a com-
plex atom, we find by contrast that, for orbitals withl .0,
the total correction ispositive. Briefly, the reason for such a
counterintuitive effect is due to a readjustment of atomic
orbitals when theUVPsrd potential is added to the self-
consistent Dirac-Hartree-Fock(DHF) equations. The inner-
most 1s orbitals are “pulled in” by the short-ranged VP po-
tential, leading to a decrease of the effective nuclear charge
seen by the outer orbitals and thus to an increase of the
electrostatic energy of these orbitals. Since for orbitals with
l .0 overlap withUVPsrd and thus the lowest order correc-
tion are small, the resulting indirect “relaxation” contribution
dominates the total VP correction to the energies. In the fol-
lowing we will present numerical results supporting this re-
laxation mechanism. Atomic unitss"= ueu=me;1d are used
throughout.

Because of our interest in PNC in Cs, below we illustrate
the relaxation effect with numerical results for this atom;
however, the relaxation mechanism is also applicable in the
cases of other many-electron atoms. We also notice that the
relaxation mechanism described here is similar to that ob-
served in calculations of the Breit corrections[10,11].

The conventional many-electron Hamiltonian may be rep-
resented as

H = o
i

h0sid +
1

2o
iÞ j

1

r ij
, s1d

where the single-particle Dirac Hamiltonian is

h0sid = csai ·pid + bic
2 + Vnucsr id. s2d

The nuclear potentialVnucsrd is obtained from the nuclear
charge distributionrnucsrd, which is what we approximate by
the Fermi distribution
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rnucsrd =
r0

1 + expfsr − cd/ag
, s3d

wherer0 is the normalization constant andc and a are the
nuclear parameters. In our numerical example for133Cs, we
usec=5.6748 fm anda=0.52 fm.

A common starting point for describing a multielectron
atom is the self-consistent-field method. Here the many-body
wave function is approximated by a Slater determinant con-
structed from single-particle orbitals(bispinors) uksrd. The
orbitals are obtained by solving self-consistently the eigen-
value equations

sh0 + UDHFduksrd = «kuksrd, s4d

whereUDHF is the traditional DHF potential which depends
on the orbitals occupied in the Slater determinant. The DHF
energies for the core and several valence orbitals of Cs are
listed in Table I.

The polarization of the vacuum by the nucleus modifies
the nuclear electric field seen by the electrons. To the leading
order inaZ, the VP may be conveniently described with the
Uehling potential, which for a pointlike nucleus of chargeZ
reads(p.c. stands for point charge)

UVP
p.c.srd =

2

3p

aZ

r
E

1

`

dtÎt2 − 1S 1

t2
+

1

2t4
DexpF−

2r

a
tG .

s5d

This potential must be folded with the nuclear charge distri-
bution,

UVPsrd =E dr8rnucsur − r8udUVP
p.c.sr8d.

We approximatedrnucsrd with the Fermi distribution, Eq.(3).
In the numerical evaluation of the extended-nucleus Uehling
potential, we employed the routine from Ref.[12]. The Ue-
hling potentialUVPsrd generated by the Cs nucleus is shown
in Fig. 1. Notice that the actual range of this potential is a
few nuclear radii (instead of Compton wavelengthÂe
<384 fm), because the potential for a pointlike charge, Eq.
(5), diverges logarithmically asr →0; therefore the folded
potentialUVP is dominated by the contributions accumulated
inside the nucleus.

How does one compute the VP correctionsd«k to the
energies of the atomic orbitals? Below we consider two pos-
sibilities: (i) the lowest-order perturbative treatment,

d«k
s1d = kukuUVPuukl, s6d

and (ii ) the self-consistent approach. Indeed, as in Ref.[2],
the VP potential may be introduced into the DHF equations,

sh0 + UVP + UDHF8 duk8srd = «k8uk8srd, s7d

and a set of new energies«k8 and orbitalsuk8srd is obtained.
Notice that the DHF potential is modified as well, since it
depends on the new set of the occupied orbitalsuk8srd. The
correlated VP correction to the energy of the orbitalk is
simply

TABLE I. Vacuum polarization corrections to binding energies
in neutral CssZ=55d. Here«nlj

are the DHF energies,d«nlj

s1d are the
expectation values of the Uehling potential[Eq. (6)], andd«nlj

DHF are
the VP corrections with the correlations included[Eq. (8)]. All
quantities are given in atomic units, 1a.u. =27.211 38 eV, and the
notationxfyg stands forx310y.

Orbital «nlj
d«nlj

s1d d«nlj
DHF

Core orbitals

1s1/2 −1330.396958 −2.853f−1g −2.782f−1g
2s1/2 −212.597116 −3.392f−2g −3.267f−2g
2p1/2 −199.428898 −1.510f−3g 5.406f−4g
2p3/2 −186.434858 −1.650f−4g 1.690f−3g
3s1/2 −45.976320 −6.868f−3g −6.581f−3g
3p1/2 −40.448097 −3.339f−4g 1.987f−4g
3p3/2 −37.893840 −3.719f−5g 4.609f−4g
3d3/2 −28.309043 −1.839f−7g 4.531f−4g
3d5/2 −27.774710 −4.370f−8g 4.425f−4g
4s1/2 −9.514218 −1.457f−3g −1.397f−3g
4p1/2 −7.446203 −6.726f−5g 8.097f−5g
4p3/2 −6.920865 −7.506f−6g 1.355f−4g
4d3/2 −3.485503 −3.440f−8g 1.153f−4g
4d5/2 −3.396788 −8.100f−9g 1.129f−4g
5s1/2 −1.490011 −2.057f−4g −2.050f−4g
5p1/2 −0.907878 −7.773f−6g 2.035f−5g
5p3/2 −0.840312 −8.395f−7g 2.757f−5g

Valence states

6s1/2 −0.127380 −1.054f−5g −1.159f−5g
6p1/2 −0.085616 −1.942f−7g 2.284f−7g
6p3/2 −0.083785 −2.180f−8g 4.513f−7g
7s1/2 −0.055190 −2.896f−6g −3.143f−6g
7p1/2 −0.042021 −6.957f−8g 8.150f−8g
7p3/2 −0.041368 −7.873f−9g 1.606f−7g

FIG. 1. Uehling potential for133Cs. Notice that the radius of the
innermost 1s orbital is about 103 fm, much larger than the effective
range of the VP potential.
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d«k
DHF = «k8 − «k. s8d

Additionally, we carried out an independent correlated calcu-
lation in the framework of the linearized coupled DHF ap-
proximation [13], which is equivalent to the random-phase
approximation(RPA). This approximation describes a linear
response of the atomic orbitals to the perturbing interaction,
i.e., the VP potential. Numerical values obtained from the
linearized coupled DHF calculations were in close agreement
with the full DHF results.

The numerical results of our calculations are presented in
Table I. While analyzing this table, we observe that the low-
est order corrections,d«k

s1d, are always negative, reflecting
the fact that the Uehling potential is attractive(see Fig. 1).
Owing to the short-ranged nature of VP, and the fact that
only the s orbitals have a significant overlap with the
nucleus, the corrections to the energies ofl =0 orbitals are
much larger than those forl .0 orbitals. As to the correlated
corrections, they differ quite substantially from the lowest
order corrections. A comparison of Eq.(7) and Eq.(4) re-
veals the origin of this discrepancy: the perturbation, in ad-
dition to the Uehling potential, contains a difference between
the two DHF potentials

dU = UVP + sUDHF8 − UDHFd. s9d

For orbitals withl .0, where the first term above is small,
the modification of the DHF potential contributes signifi-
cantly to the VP energy corrections.

The modification of the DHF potential induced by the
vacuum polarization is clearly a many-body effect, not
present in a hydrogenlike system. Such an effect has been
explored before, for example in calculations of the Breit cor-
rections[10,11], and it is commonly referred to as a relax-
ation mechanism. Let us illustrate this relaxation mechanism.
Denoting the correction to the occupied orbital wave func-
tions asxasrd=ua8srd−uasrd, we write

sUDHF8 − UDHFdsrd < o
a
E xa

†sr8d
1

ur − r8u
uasr8ddr8

+ o
a
E ua

†sr8d
1

ur − r8u
xasr8ddr8

− sexchanged,

where we discarded contributions nonlinear inxasrd, and
“exchange” denotes a nonlocal part of the perturbation. The
first two (direct) terms can be interpreted as an electrostatic
potential produced by a perturbationdrelsrd in the radial
electronic density

relsrd = −
1

4pr2o
a

ua
†srduasrd.

We plot both the electronic densityrelsrd and the VP-induced
perturbationdrelsrd in Fig. 2. The minima ofrelsrd corre-
spond to positions of the electronic shells, marked on the plot
by their values of principal quantum numbern.

Figure 2 may be interpreted in the following way: thes
orbitals are “pulled in” by the attractive Uehling potential
closer to the nucleus. As a result, screening of the nuclear
charge by the inner orbitals becomes more efficient. For ex-
ample, the modification of the effective charge felt by the
n=2 electrons is simply the area under thedrelsrd curve,
accumulated betweenr =0 and the radius of the shellsr
<0.08a0d; from Fig. 2 it is clear that the induced modifica-
tion of the effective charge for then=2 shell has a negative
sign. Such an enhanced screening leads to a reduced attrac-
tion of the electrons by the nucleus and to theincreasein the
energy of the outer electrons. From Table I we see that this
indirect relaxation contribution to the energy may be well
comparable to the direct VP correction,d«k

s1d. While for l
=0 orbitals the direct correction gives a reasonable estimate,
for all orbitals withl .0, the neglect of the relaxation would
lead to an even qualitatively incorrect result. Moreover, the
higher the orbital angular momentum, the smaller the direct
correction, and the more important the relaxation mechanism
is. For example, for 4d orbitals the VP correction in the
lowest order is four orders of magnitude smaller than the
correlated result.

To summarize, here we illuminated the importance of the
self-consistent many-body treatment in calculations of
vacuum polarization corrections. Including the VP Uehling
potential into the atomic Hamiltonian causes a readjustment
(relaxation) of the electrostatic self-consistent field. The in-
duced change in the electrostatic energies is substantial for
states with the orbital angular momentuml .0. As illustrated
in our numerical results for Cs, the relaxation mechanism
determines the sign and even the order of magnitude of the
total VP correction for orbitals withl .0.
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FIG. 2. Perturbation of the electronic radial charge distribution
drelsrd (solid line) for the Cs atom due to vacuum polarization by
the nucleus. We also show the unperturbed densityrelsrd multiplied
by a factor of 10−3 (dashed line). The minima ofrelsrd correspond
to positions of the electronic shells, marked on the plot by their
values of the principal quantum numbern.
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