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Resolving all-order method convergence problems for atomic physics applications

H. Gharibnejad,1 E. Eliav,2 M. S. Safronova,3 and A. Derevianko1

1Department of Physics, University of Nevada, Reno, Nevada 89557, USA
2Department of Chemistry, Tel Aviv University, Tel Aviv, Israel

3Department of Physics, University of Delaware, Newark, Delaware 19716, USA
(Received 28 February 2011; published 10 May 2011)

The development of the relativistic all-order method where all single, double, and partial triple excitations of the
Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results
for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as
well as provided recommended values of many atomic properties critically evaluated for their accuracy for a
large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster
equations leading to convergence issues in some cases where correlation corrections are particularly large or lead
to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction
(CI) + all-order method for many-particle systems. In this work, we have resolved most of the known convergence
problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct
inversion of iterative subspace. Examples are presented for B, Al, Zn+, and Yb+. Solving these convergence
problems greatly expands the number of atomic species that can be treated with the all-order methods and is
anticipated to facilitate many interesting future applications.
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I. INTRODUCTION

The coupled-cluster (CC) method has been successfully
applied to solve quantum many-body problems in quantum
chemistry [1,2] as well as computational atomic [3] and nuclear
physics [4]. A relativistic linearized variant of the coupled-
cluster method (which is numerically symmetric and is
generally referred to as the “all-order method”) was developed
for atomic physics applications in Refs. [5–7]. It is one of the
most accurate methods currently being used in atomic structure
calculations. This approach was extremely successful and
led to accurate predictions of energies, transition amplitudes,
hyperfine constants, polarizabilities, C3 and C6 coefficients,
isotope shifts, and other properties of monovalent atoms, as
well as the calculation of parity-nonconserving (PNC) ampli-
tudes in Cs, Fr, and Ra+ (see [8–13] and references therein).
Further development of the all-order approach that included
triple excitations and nonlinear terms yielded the most precise
evaluation of the PNC amplitude in Cs [14,15] and consequent
re-analysis of Cs experiments [16]. This work provided the
most accurate low-energy test of the electroweak sector of the
standard model (SM) to date, placed constraints on a variety
of new physics scenarios beyond the SM, and, when combined
with the results of high-energy collider experiments, confirmed
the energy dependence (or “running”) of the electroweak force
over an energy range spanning four orders of magnitude (from
∼10 MeV to ∼100 GeV). The all-order method was also used
for the development of ultraprecise atomic clocks [17–21],
ultracold atom and quantum information studies [22–26], and
many other applications. We refer the reader to review [12]
for details of the all-order method and its applications. The
all-order method is also used as a part of the configuration-
interaction (CI) + all-order approach for the study of more
complicated systems [27].

The all-order method requires iterative solutions of the
linearized coupled-cluster equations, leading to convergence

issues in some cases when correlation corrections are very
large or produce an oscillating iterative pattern. The initial
guess of the solution is based on the low-order perturbation
theory. Therefore, if high-order correlation corrections are
large, then the initial guess is very poor, leading to very slow
convergence or failure of the straightforward iterative scheme.
In addition, initial nonlinear CC equations may have more
than one solution, so a convergence to nonphysical solutions
may occur. Several such problems have been identified over the
years and have led to the failure to apply the all-order approach
for many important applications. For example, all or almost
all of the low-lying nd and nf states of B, Al, Zn+, Cd+, Hg+,
and Yb+ do not converge if the standard Jacobi-type iterative
procedure is applied. In the case of Yb+, even core equations
do not converge. Convergence problems also cause complete
failure of the all-order approach for super-heavy elements,
such as element 113 (eka-Tl).

All these convergence issues in monovalent systems lead to
the same problems in the application of the CI+all-order ap-
proach [27] to the corresponding divalent systems, such as Al+,
Hg, Yb, etc., since this method requires the prior solution of
linearized coupled-cluster single-double (LCCSD) equations
for one-particle orbitals. There are several interesting present
applications of these atoms and ions that require high-precision
calculations that are possible with all-order techniques. For
example, several of these systems are used or proposed for
optical clocks [17,28–31] requiring precise knowledge of the
blackbody radiation (BBR) shift, which is hard to accurately
measure. The BBR shift is a leading source of uncertainties
for many of the atomic clock schemes. Yb is used for an
ongoing parity nonconservation (PNC) experiment [32], as
well as studies of degenerate quantum gases [33,34], due to
a number of available isotopes. The best available Yb PNC
amplitude value is only accurate to 13% [35].

The convergence issues that arise in the solutions of
eigenvalue equations have a long history in general quantum
chemistry and several methods have been developed to address

052502-11050-2947/2011/83(5)/052502(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.052502


GHARIBNEJAD, ELIAV, SAFRONOVA, AND DEREVIANKO PHYSICAL REVIEW A 83, 052502 (2011)

them [36–42]. Most of these methods are based on the
fundamental idea of the effective reduction of the original
large functional space, and solution of the projected to the
reduced (Krylov) subspace of the simplified equations. This
idea was implemented in a quantum chemical application
by Lanczos [43], who facilitated a partial diagonalization of
a large matrix by transforming to a much smaller Krylov
subspace, followed by a matrix triangularization procedure.

In the present work, we consider two such convergence
techniques, namely, reduced linear equation (RLE) [36,37]
and the direct inversion of iterative subspace (DIIS) [38,39].
Both methods use approximate solutions obtained from the
few last iterations as Krylov reduced functional subspace
onto which the linearized equations are projected and in
which the projected system of equations is solved. The
convergence of the methods is based on the construction of
error vectors. Different choices of the error vectors lead to
different implementation of the methods. Among the most
popular error vectors are (i) the difference of subsequent
iterations, and (ii) the “true” error vector (e.g., the difference
between the exact solution and its approximation). In our work,
both the convergence methods use the same best least-squares
approximation to the true error vector and thus are rather
relative. Moreover, our variant of the DIIS method can be
regarded as a “symmetric” version of the RLE method (see
below). However, while the DIIS method is chosen to minimize
the error vector in the least-squares sense, the RLE method
differs from it by requiring that this vector within the basis
vanishes.

We formulate here implementations of the RLE and DIIS
methods for our variant of the coupled-cluster equations, and
test these stabilizer methods on several specific examples in
which we are able to resolve the convergence problems listed
above. We also study the effectiveness of these two techniques
in solving specific types of the convergence problems as well
as accelerating convergence in all other cases. Acceleration of
convergence is particulary important for further CI + all-order
use, since it requires solving all-order equations for a large
number of one-particle orbitals.

Below, we briefly outline the essence of the convergence
stabilization procedures. In the coupled-cluster method, the
desired exact wave function |ψ〉 is obtained by applying
(a yet unknown operator) exp(T ) on some reference wave
function |φ〉, for example, the Dirac-Hartree-Fock (DHF)
wave function. For a closed-shell system with N electrons,
the cluster operator T = ∑

Tp (where p = 1,2,3, . . . ,N ) has
the form

Tp = 1/p!
∑

mn...ab...

ρmn...ab...a
†
ma†

n . . . aaab . . . . (1)

Here, orbitals m,n, . . . are single-particle excited states;
a,b, . . . are core states which are occupied in |φ〉; ρ’s are
cluster amplitudes (also called excitation coefficients); and a†

and a are creation and annihilation operators, respectively,
with respect to the quasivacuum state |φ〉. Finally, p is the
number of core electrons that are excited when applying Tp to
|φ〉. In the LCCSD method, only T1 and T2 are retained and
nonlinear terms in the expansion of exp(T ) are truncated. The
LCCSD equations are conventionally solved by an iterative

FIG. 1. (Color online) The failure of the LCCSD straightforward
iteration procedure for the 3s state in boron. The calculated correlation
energy is plotted as a function of the iteration number. The
dashed (red) line indicates the value of the experimental correlation
energy.

scheme, symbolically written as ρ(n+1) = F (ρ(n)), with F

being specified later in Sec. II. In this paper, this type
of straightforward iteration procedure is referred to as the
conventional iteration scheme (CIS).

Both RLE and DIIS convergence stabilization procedures
form the ρ(n+1) solution as the linear combination of cluster
amplitudes [ρ(n),ρ(n−1), . . . ,ρ(n−l)] accumulated from l previ-
ous CIS iterations. Further details of the LCCSD method and
RLE and DIIS schemes are discussed in Secs. II and III.

An example of a failed conventional iteration procedure is
shown in Fig. 1, where we plot the LCCSD correlation energy
δE as a function of a number of valence LCCSD iterations for
the 3s 2S1/2 state of boron. Here and below we treat atoms as
if they were monovalent systems. To streamline the notation,
we label many-electron states n�j

2S+1LJ simply as n�j (since
S = 1/2,L = �, and J = j ). For example, the 3s 2S1/2 state
of boron will be labeled as 3s. The experimental correlation
energy (−0.007 975 4 a.u.) is indicated by the horizontal
dashed line. It is computed by subtracting DHF energy from
the experimental result. The LCCSD 3s correlation energy
diverges from the experimental values dramatically and begins
to oscillate after a number of iterations. The convergence
criteria is set to terminate the iteration procedure when
the relative difference between two consecutive iterations is
reduced below 0.000 01. The convergence is not reached even
after 500 iterations. As demonstrated below, this problem
is completely resolved by the use of either RLE or DIIS
procedures and convergence to the above criteria is reached
within 30 iterations.

This paper is organized as follows. In Sec. II, we describe
the LCCSD method and the conventional iteration procedure
(CIS) for solving the LCCSD equations. In Sec. III, we
formulate RLE and DIIS schemes for LCCSD equations. In
Sec. IV, we analyze the performance of the RLE and DIIS
schemes for various cases. Finally, in Sec. V, we draw the
conclusions.
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II. LINEARIZED COUPLED-CLUSTER
SINGLE-DOUBLE METHOD

In the present implementation of the CC method, the exact
valence wave function |ψv〉 is obtained from the lowest-order
DHF state,

|φv〉 = a†
v|0c〉, (2)

by applying a wave operator � = N [exp(T )] [3],

|ψv〉 = �|φv〉, (3)

where |0c〉 is the core DHF state and N [· · · ] designates the
normal product of operators with respect to a closed-shell
core. Taking into account only the T1 and T2 terms in Eq. (1),
and truncating � past the linear terms in the expansion of the
exponential, leads to the LCCSD ansatz for the wave operator:

� � 1 +
∑
ma

ρmaa
†
maa + 1

2

∑
mnab

ρmnaba
†
ma†

nabaa

+
∑
m�=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma†

naaav

= 1 + Sc + Dc + Sv + Dv. (4)

Here, Sc and Dc (Sv , Dv) are the core (valence) single and
double terms, respectively.

To find the cluster amplitudes (or excitation coefficients) ρ,
we need to specify the Hamiltonian. In our approach, we use
the Hamiltonian [7] H = H0 + G,

H =
∑

i

εiN [a†
i ai] + 1

2

∑
ijkl

gijklN [a†
i a

†
j alak], (5)

where H0 is the one-electron lowest-order DHF Hamiltonian
and G is the residual Coulomb interaction. Indices i, j , k,
and l range over all possible single-particle orbitals, and gijkl

are the two-body Coulomb matrix elements. A set of coupled
equations for the cluster operators (T )n, namely,

(Tc)1 = Sc, (Tv)1 = Sv, (Tc)2 = Dc, and (Tv)2 = Dv,

may be found from the Bloch equation [3]. For monovalent
systems [44],

(εv − H0)(Tc)n = {QG�}connected,n, (6)

(εv + δEv − H0)(Tv)n = {QG�}connected,n, (7)

where δEv = 〈φv|G�|φv〉 is the valence correlation energy
and Q = 1 − |φv〉〈φv| is the projection operator. Note that
Eq. (6) contains only the core cluster operators, while Eq. (7)
contains both core and valence cluster operators. The core
equations (6) are solved first, and the resulting CC core
amplitudes are subsequently frozen and used in the valence
equations (7).

The summations over the magnetic quantum numbers m in
Eqs. (6) and (7) are performed analytically. After the angular

reduction, the equation for the reduced, single, core cluster
amplitudes ρ(ma) takes the form [9,45]

(εa − εm)ρ(ma)

= δκmκa

{∑
nb

δκnκb

√
[jb]

[ja]
Z0(mban)ρ(nb)

−
∑

k

∑
ncb

(−1)ja+jb+jc+jn

[ja][k]
Zk(cbna)ρk(nmcb)

+
∑

k

∑
rnb

(−1)ja+jb+jr+jn

[ja][k]
Zk(mbrn)ρk(rnab)

}
. (8)

Here, [j ] = 2j + 1, κ is the relativistic angular momentum
quantum number, ρ(ma) and ρk(mnab) are reduced single and
double cluster amplitudes, Xk(mnab) are reduced two-body
Coulomb matrix elements, and

Zk(mnab) = Xk(mnab) +
∑
k′

[k]

(
jm ja k

jn jb k′

)
Xk′(mnba).

The equations for the reduced double core cluster ampli-
tudes ρk(mnab) are given by

(εab − εmn)ρk(mnab)

= Xk(mnab) +
∑
cd

∑
l,k′

A1Xl(cdab)ρk′ (mncd)

+
∑
rs

∑
l,k′

A2Xl(mnrs)ρk′(rsab)

+
[∑

r

Xk(mnrb)ρ(ra)δκrκa
+

∑
c

Xk(cnab)ρ(mc)δκmκc

−
∑
rc

(−1)jc+jr+k

[k]
Zk(cnrb)ρ̃k(mrac)

]
+

[
a ↔ b

m ↔ n

]
,

(9)

where Ai are angular coefficients given in [45] and εij = εi +
εj . The valence equations have exactly the same form as the
core equations with the replacement of index a by the valence
index v everywhere, and an addition of the valence correlation
energy δEv into the energy difference on the left-hand side,
i.e., (εa − εm)ρ(ma) −→ (εv − εm + δEv)ρ(mv).

Implementation of the RLE and DIIS procedures requires
rewriting the equations for the cluster amplitudes in a specific
vector form. We introduce the vector notation

t =
(

ρ(ma)
ρk(mnab)

)
,

where ρ(ma) and ρk(mnab) are to be understood as columns
composed of all amplitudes for single and double excitations,
respectively, i.e., for all possible values of m, n, a, b, and k

indexes. Then, the core equations given by Eqs. (8) and (9)
may be combined as

D · t = −a − 	 · t , (10)

where

a = −
(

0
Xk(mnab)

)
, D =

(
εa − εm

εab − εmn

)
,
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and 	 · t includes all terms on the right-hand sides of Eqs. (8)
and (9), except for Xk(mnab) which is included in a.

Valence equations may be written in the same way, with

t =
(

ρ(mv)
ρk(mnvb)

)
and

a = −
(

0
Xk(mnvb)

)
, D =

(
εv − εm + δEv

εvb − εmn + δEv

)
.

The main difference between the core and valence equations
for the implementation of the RLE and DIIS procedures is the
dependence of the valence array D on the iteration number,
since δEv is recalculated after every iteration. In the core case,
D remains constant.

Here it should be noted that in a matrix above, there are
additional terms that rise from solutions of cluster amplitudes
of the core orbitals. However, because such terms are much
smaller than Xk(mnvb) we chose to ignore such terms. Test
runs done with the said additional terms showed only minor
improvements and the additional terms are computationally
expensive.

Solving Eq. (10) for t gives

t = −D−1(a + 	 · t). (11)

The above equation can be solved iteratively as

t(m+1) = −D−1(a + 	 · t(m)). (12)

The iteration usually starts by inserting t(0) = 0 on the right-
hand side of Eq. (12) and finding t(1). As we demonstrated in
Fig. 1, convergence of this straightforward iterative scheme
is occasionally very slow or fails altogether. The convergence
methods that we develop in the next section will alleviate such
problems and lead to faster convergence rates.

III. RLE AND DIIS METHODS

In this section, we formulate the implementation of RLE
and DIIS methods for the LCCSD equations (11) discussed in
the previous section. Both methods are two-step procedures. In
the first step, a few iterative solutions t(i) of Eq. (12) are found
(same as the CIS). In the second step, a linear combination of
these t(i) is used to find the next-best solution of Eq. (12). The
new answer is then used for another initialization of the CIS
and the two steps are repeated until convergence to specified
criteria is reached. In this section, we present the general
RLE and DIIS formulas and derive their explicit form for
the LCCSD equations.

After accumulating m + 1 iteratively found solutions,
t(1),t(2), . . . ,t(m+1), the next-best approximation can be found
as their linear combination,

t[m+1] =
m∑

i=1

σit(i) = σ · T. (13)

The quantities σi are the weights that have to be determined
by solving a system of equations constructed from previously
found m + 1 CIS solutions. We note that t(m+1) is not
included in the linear combination (13), but is used to find

σi coefficients. Therefore, we use the notation t[m+1] instead
of t(m+1) to distinguish between the (m + 1)th solution found
through the use of RLE or DIIS methods, and the initial CIS
result, respectively.

Both the direct inversion of iterative space (DIIS) and
reduced linear equation (RLE) methods seek to minimize
the error between the iteratively found solutions of Eq. (11)
and the exact answer. The error minimization is the basis for
finding the appropriate σi to form the approximate solution
t[m+1]. Both methods also use a least-squares approach to
the error minimization. Since the exact answer is unknown,
approximations are used in the minimization process. The
approximate solution, as mentioned before, is constructed as
a linear combination of a series of iteratively found solutions.
The difference between the DIIS and the RLE methods is in
the assumptions they make in order to minimize the errors.
Further details of the difference between the two methods and
derivations of the DIIS or RLE formulas can be found in the
Appendix.

We rewrite Eq. (10) as

a + (	 + D)t = a + Bt = 0. (14)

The DIIS formula for determining σi is given by Eq. (A7),

TT BT a + TT BT BTσ = 0. (15)

The RLE formula for determining σi is given by Eq. (A9),

TT (a + BTσ ) = 0. (16)

Both Eqs. (15) and (16) can be written as a system of m

equations,

α + Rσ = 0. (17)

Solving the above system of equations for σ can be easily
done with standard linear algebra methods. The resulting
coefficients σi are substituted into Eq. (13) to obtain the best
new approximate solution t[m+1].

Next, we write R and α of Eq. (17) in their explicit forms
for the DIIS and RLE methods. Substituting 	 − D for B into
DIIS equation (15) yields, for the σi ,

t
T (i)(	 + D)T a + t

T (i)(	 + D)T (	 + D)t(i)σi = 0.

Using Eq. (12), we find that 	 · t(i) = −(D · t(i+1) + a). The
replacement of the dot products involving 	 with ones
involving D yields an explicit form of the DIIS matrix for
core orbitals,

Rij =
∑

k

Dkkak

(
t

(i+1)
k + t

(j+1)
k − t

(i)
k − t

(j )
k

) +
∑

k

(ak)2

+
∑

k

D2
kk

(
t

(i)
k t

(j )
k + t

(i+1)
k t

(j+1)
k − t

(i+1)
k t

(j )
k − t

(i)
k t

(j+1)
k

)
,

αi =
∑

k

akDkk

(
t

(i)
k − t

(i+1)
k

) −
∑

k

(ak)2. (18)
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The RLE equations for core orbitals are obtained by
repeating the same steps as for the DIIS approach, but starting
from Eq. (16). The resulting RLE equations for R and α are

Rij =
∑
kl

t
(i)
k (	kl + Dkl)t

(j )
l

=
∑

k

[
t

(i)
k Dkkt

(j )
k − t

(i)
k Dkkt

(j+1)
k − akt

(j )
k

]
,

αi =
∑

k

t
(i)
k ak. (19)

We noted in the previous section that D depends on the
correlation energy δEv in the case of the valence equations
leading to the dependence of D on the iteration number.
Therefore, the substitution D → D(i) must be made to rewrite
the DIIS and RLE equations above for the valence orbitals. To
derive the final form of the equations, we have to introduce a
somewhat arbitrary dot product and normalization definitions.
The explicit form of the core RLE equations is obtained by
substituting the expressions for D, a, and t from the previous
section into Eq. (19):

Rij =
∑
ma

(εa − εm)ρ(i)(ma)[ρ(j )(ma) − ρ(j+1)(ma)]

+
∑

L

∑
mnab

1

[L]
(εab − εmn)ρ(i)

L (mnab)

× [
ρ

(j )
L (mnab) − ρ

(j+1)
L (mnab)

] − αi,

αi = −
∑

L

∑
mnab

1

[L]
XL(mnab)ρ(i)

L (mnab). (20)

RLE equations for the valence case are given by

Rij =
∑
m

(
εv − εm + δE(j )

v

)
ρ(i)(mv)[ρ(j )(mv) − ρ(j+1)(mv)]

+
∑
L

∑
mnb

1

[L]

1

[jv]

(
εvb − εmn + δE(j )

v

)
ρ

(i)
L (mnvb)

× [
ρ

(j )
L (mnvb) − ρ

(j+1)
L (mnvb)

] − αi,

αi = −
∑
L

∑
mnb

1

[L]

1

[jv]
XL(mnvb)ρ(i)

L (mnvb), (21)

where [L] = 2L + 1.
The implementation of the RLE and DIIS methods proceeds

as follows. In step one, our code makes a limited number, m +
1, of LCCSD iterations using the CIS. This is done to find the
m + 1 series of single and double cluster amplitudes, ρ(i)(ma)
and ρ

(i)
L (mnab), that are then saved. In step two, a separate

subroutine applies the DIIS or RLE equations to these stored
cluster amplitudes to find the appropriate R and α matrices.
The m-dimensional linear equation (17) is solved for σ . The
next-best solution of the LCCSD equations is then found by
substituting σ into Eq. (13). These two steps are repeated until
convergence is reached in accordance with a specified criteria.
In the next section, we discuss the results of the application of
the DIIS and RLE procedures to the solution of the LCCSD
equations in the cases that do not converge or converge to
nonphysical answers with the conventional iteration scheme.

IV. RESULTS AND DISCUSSION

In this section, we study and compare the convergence
characteristics of the DIIS and the RLE methods. We include a
number of test cases in four different systems, B, Al, Zn+, and
Yb+, which have a large number of states that do not converge
with the conventional iterative scheme (CIS). We also test
the ability of the RLE and the DIIS methods to accelerate
convergence in the cases where the CIS does converge. The
main purpose of these tests is to provide general guidelines of
how to accelerate or to achieve convergence using the RLE and
the DIIS methods. The conclusions and observations of this
section may be extrapolated to other systems for both all-order
and CI + all-order approaches.

The summary of B and Al convergence tests is given
in Table I. We find that convergence patterns for two fine-
structure multiplet states, for example 3p1/2 and 3p3/2 states,
are generally very similar. Therefore, we list only np1/2 and
nd3/2 states, with the exception of the 4d states of Al. Tests
were performed for both states of the multiplet as an additional
check, since similar results are expected. The results are given
for the 2p1/2, 3s, 3p1/2, and 3d3/2 states of B and the 3p1/2,
4s, 3d3/2, 4d3/2, and 4d5/2 states of Al. The resulting LCCSD
correlation energy is listed in the last column of the table
in atomic units. The convergence method is specified in the
third column. CIS refers to the initial straightforward iteration
scheme. RLE5 designates the RLE convergence method
with 5 prestored CIS iterations. Similarly, DIIS8 refers to
the DIIS convergence scheme with 8 prestored iterations. The
fourth column indicates the iteration number at the end of the
run. Cases where the maximum number of iterations allowed
during the run was reached are marked with an asterisk. In these
cases, convergence did not occur. The convergence criteria
was set to terminate the iteration procedure when the relative
difference between two consecutive iterations is reduced below
0.000 01. The same convergence criteria is used in all valence
test runs. Only the core and the 2p states of B converge with
the CIS. In the case of Al, all nd states do not converge with
the CIS. All of the cases in Table I converge with the DIIS8.
We note that we did not list the RLE5 and the DIIS5 results for
many of the nd states because convergence was not achieved.
In the cases where all methods lead to convergence, both the
RLE and the DIIS methods have accelerated convergence rates
relative to the CIS.

We may draw two general conclusions from our tests as
follows:

(1) If a particular LCCSD run converges with the CIS, then
the RLE5 appears to be the most efficient method to accelerate
the convergence.

(2) If a particular LCCSD run does not converge with the
CIS, then the DIIS8 or the DIIS9 appear to be the most efficient
method to attain and accelerate the convergence.

We note that these two rules are not absolute, but they
serve as good initial guidelines. Our further tests on other
(much heavier) systems confirmed these guidelines. We note
that the RLE5 method is not sufficient to achieve convergence
for most of the divergent cases. The only exception in Table I
is the 3s state of B. However, while the CIS never converges
to our standard criteria for the 3s state, it nearly converges
to the correct result before exhibiting the diverging and
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TABLE I. Convergence tests of the LCCSD equations with CIS,
RLE, and DIIS methods for B and Al. CIS is the conventional
iterations scheme (no convergence stabilizer). RLE5 designates the
RLE convergence method with 5 prestored iterations. The last column
gives the resulting correlation energy in atomic units.

Atom State Method No. of iterations Converged? δEv(a.u.)

B Core CIS 21 Yes
RLE5 9 Yes
DIIS5 15 Yes

B 2p1/2 CIS 18 Yes −0.0293907
RLE5 13 Yes −0.0293906
DIIS5 13 Yes −0.0293908

B 3s CIS 70a No −0.0091643
RLE4 70a No −0.0070438
DIIS4 70a No −0.0089454
RLE5 30 Yes −0.0089491
DIIS5 22 Yes −0.0089472
DIIS7 31 Yes −0.0089488

B 3p1/2 CIS 44 Yes −0.0056292
RLE5 23 Yes −0.0056294
DIIS5 19 Yes −0.0056284
RLE8 25 Yes −0.0056295
DIIS8 24 Yes −0.0056293

B 3d3/2 CIS 85a No −0.0884489
DIIS7 71 Yes −0.0007535
RLE8 66 Yes −0.0007536
DIIS8 51 Yes −0.0007533

Al Core CIS 13 Yes
RLE5 8 Yes

Al 3p1/2 CIS 16 Yes −0.0245810
RLE5 11 Yes −0.0245798
DIIS5 14 Yes −0.0245811

Al 4s CIS 20 Yes −0.0079907
RLE5 13 Yes −0.0079906
DIIS5 18 Yes −0.0079905

Al 3d3/2 CIS 70a No −0.0209573
DIIS6 89 Yes −0.0208637
RLE8 86 Yes −0.0208662
DIIS8 49 Yes −0.0208662

Al 4d3/2 CIS 70a No −0.0213727
RLE8 300a No 0.0022280
DIIS8 81 Yes 0.0022478
DIIS9 91 Yes 0.0022477

Al 4d5/2 CIS 70a No −1.3775005
RLE8 165 Yes 0.0022737
DIIS8 97 Yes 0.0022710
DIIS9 73 Yes 0.0022712

aCases where maximum number of iterations allowed during run was
reached.

oscillating pattern of Fig. 1. In this case, accumulation of
only five iterations is sufficient. However, in the case of the
nd states, the CIS is never close to converging to a correct
number and, subsequently, the RLE5 method does not work.
Occasionally, the DIIS9 method may achieve convergence
where the DIIS8 method would not. The use of an even larger
number of stored iterations does not improve convergence or
efficiency. DIIS10-DIIS12 runs for the 4d states converged to
nonphysical answers in two instances, but to correct results in
all other cases. The number of iterations varied significantly

−

−

−

−

−

−

−

−

−

FIG. 2. (Color online) Comparison of the RLE5, DIIS5, and
DIIS7 schemes for the 3s state of boron. The correlation energy
is given in atomic units.

from case to case. The results of all converged runs listed
in Table I are consistent within the convergence criteria, as
expected.

We implemented the DIIS or RLE strategies for two
separately developed LCCSD codes. The calculations were
carried out using two different finite basis sets: the B-splines
of Ref. [46] and the dual-kinetic-basis sets of Ref. [47].
Even though the basis sets and the convergence criteria used
for each code made slight differences in the values, the
general observations on the convergence patterns remain the
same.

We illustrate the different convergence patterns of the RLE
and the DIIS methods for the 3s and 3d3/2 states of boron in
Figs. 2 and 3. In Fig. 2, the values of the correlation energies
for the 3s states of boron are obtained from different schemes
that are listed on the graph. RLE5, DIIS5, and DIIS7 results
after N = 20 interactions are indistinguishable at this plot
scale and are not shown. These schemes converge after 30, 22,
and 31 iterations, respectively. While the CIS results appear

no

−

−

−

−

−

−

FIG. 3. (Color online) Comparison of the DIIS5, RLE8, and
DIIS8 schemes for the 3d3/2 state of boron. The correlation energy is
given in atomic units.
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close to the converged value, convergence was never reached
and the correlation energy began to oscillate, as illustrated in
Fig. 1. The RLE5 and the DIIS5 results are identical to the CIS
ones for the first four iterations. The fifth value is different for
three of the schemes, as this (m + 1)th value [see Eq. (13)]
is replaced by the RLE or the DIIS predictions for the RLE5
and DIIS5 schemes. We observe that these predictions are
significantly closer to the converged result than the fifth CIS
iteration. After that, the RLE5 and DIIS5 results are sharply
adjusted at N = 10 when the second call to the RLE or DIIS
stabilizer codes is made. The DIIS7 behavior is similar to the
one just described, except that it accumulates seven iterations
before the DIIS procedure is invoked, and now the seventh
value gets much closer to the final answer.

In Fig. 3, the values of the correlation energies obtained
from the CIS, DIIS5, RLE8, and DIIS8 methods are plotted
for the 3d3/2 states of boron. The RLE8 and the DIIS8 results
after N = 35 appear identical on the graph at this scale and
are not shown. The RLE8 and the DIIS8 results converge
to our criteria after 66 and 51 iterations, respectively. Very
similar behavior of the RLE8 and the DIIS8 results is observed,
with the RLE8 energy oscillations being slightly larger after
the RLE subroutine pass. However, other tests show that the
RLE8 results, in general, converge more slowly, sometimes
dramatically so, compared to the DIIS8 results. The CIS values
diverge completely and increase rapidly. The DIIS5 results
seem to be converging at N = 35, but do not in fact reach the
selected criteria even after 100 iterations.

The summary of the selected Zn+ and Yb+ convergence
tests is presented in Table II. The results are given for the
5p1/2, 4d3/2, 4d5/2, and 5d3/2, 4f5/2, and 4f7/2 states of Zn+,
and the Yb+ core. The 4s and 4pj states of Zn+ and the 6s, 6pj ,
7s, and 5dj states of Yb+ converge with the CIS results, so we
have omitted these results from the table. However, it is worth
pointing out that the RLE5 method accelerates convergence for
all these states compared to the CIS. Table II demonstrates that
the DIIS method reduces the number of iterations for the 5p1/2

states by a factor of 3 or better. Zn+ and Yb+ tests confirm
our conclusions (1) and (2), presented earlier in this section.
We were unable to achieve convergence for higher 7pj states
in Yb+. This problem is not present in Zn+, where LCCSD
results for the 5p states converge even with CIS, as shown in
Table II. Perhaps other convergence approaches are needed to
resolve this issue.

The case of the Yb+ core is particularly interesting, since
core iterations generally converge well with the CIS. The Yb+
core is an exception, however, most likely due to very large
4f shell contributions that lead to oscillation of the correlation
energy. We plot the CIS, the RLE5, and the DIIS5 results for
the Yb+ core correlation energy in Fig. 4. The RLE5 and the
DIIS5 results appear identical at this scale and are shown as
a single curve. Both methods are successful at fixing the CIS
oscillation problem.

The comparison of the B, Al, Zn+, and Yb+ removal
energies with the experiment from Ref. [48] is given in
Table III. The rows labeled “Dif.” give the relative difference
with experimental values as a percentage. The energies here
are given in cm−1. Most of these states did not converge with
the CIS, so it is important to establish the accuracy of this
approach for such cases. Breit interactions and contributions

TABLE II. Convergence tests of the LCCSD equations with CIS,
RLE, and DIIS methods for Zn+ and Yb+. CIS is the conventional
iterative scheme (no convergence stabilizer). DIIS8 designates the
DIIS convergence method with 8 prestored iterations. The last column
gives resulting correlation energy in atomic units.

Atom State Method No. of iterations Converged? δEv(a.u.)

Zn+ 5p1/2 CIS 39 Yes −0.0066119
DIIS9 12 Yes −0.0066088

Zn+ 4d3/2 CIS 70a No −0.0977215
RLE5 67 Yes −0.0045508
DIIS8 18 Yes −0.0045511

Zn+ 4d5/2 CIS 70a No −0.1149058
RLE5 93 Yes −0.0045266
DIIS8 18 Yes −0.0045267

Zn+ 5d3/2 CIS 70a No −0.1936330
RLE5 28 Yes −0.0018929
DIIS8 18 Yes −0.0018942

Zn+ 4f5/2 CIS 200a No −0.0008697
DIIS8 200a No −0.0007949
DIIS9 153 Yes −0.0007948

Zn+ 4f7/2 CIS 70a No −0.0007970
DIIS8 173 Yes −0.0007891
DIIS9 195 Yes −0.0007891

Yb+ Core CIS No
RLE5 12 Yes
DIIS5 12 Yes

aCases where maximum number of iterations allowed during run was
reached.

from higher partial waves are also included. The B and
Al ionization potentials, B 2p3/2 and Al 4s single-double
(SD) energies, are in agreement with the experiment. We
consider only monovalent states for all of these systems.
The SD approximation does not account for mixing with the
core-excited states, such as 3s3p2 in Al. Therefore, larger
disagreement with the experiment is expected in the cases

−

−

−

−

−

−

−

FIG. 4. (Color online) Comparison of the CIS, RLE5, and DIIS5
schemes for the Yb+ core. The correlation energy is given in atomic
units. RLE5 and DIIS5 data appear identical at this scale and are
shown as a single curve.

052502-7



GHARIBNEJAD, ELIAV, SAFRONOVA, AND DEREVIANKO PHYSICAL REVIEW A 83, 052502 (2011)

TABLE III. Comparison of B, Al, Zn+, and Yb+ removal energies (in cm−1) with experiment [48]. Rows labeled “Dif.” give the relative
difference with experimental values in percentages (%).

B 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2

Expt. −66928 −66913 −26888 −18316 −18314 −12160 −12160
SD −67049 −67035 −27105 −18497 −18495 −12494 −12494
Dif. −0.18% −0.18% −0.81% −0.99% −0.99% −2.7% −2.7%

Al 3p1/2 4s 3d3/2 3d5/2 4d3/2 4d5/2

Expt. −48278 −22931 −15843 −15842 −6045 −6041
SD −48271 −23069 −17295 −17289 −6652 −6647
Dif. 0.02% −0.60% −8.4% −8.4% −9.1% −9.1%

Zn+ 4s 4p1/2 4p3/2 5p1/2 4d3/2 4d5/2 5d3/2 4f7/2

Expt. −144691 −96027 −95157 −43360 −47950 −47902 −26913 −27606
SD −144684 −96221 −95352 −43421 −47929 −47880 −26898 −27633
SDpT −145232 −96559 −95679 −43492 −47994 −47946 −26929 −27633
Dif. (SD) 0.14% 0.20% 0.19% 0.24% 0.11% 0.11% 0.09% −0.02%
Dif. (SDpT) −0.23% −0.15% −0.15% 0.08% −0.02% −0.03% −0.02% −0.01%

Yb+ 6s 6p1/2 6p3/2 7s 5d3/2 5d5/2 5f5/2 5f7/2

Expt. −98207 −71145 −67815 −43903 −75246 −73874 −27704 −27627
SD −98961 −71016 −67480 −44060 −76141 −74700 −28080 −28062
SDpT −99107 −71084 −67592 −44115 −77764 −76317
Dif. (SD) −0.77% 0.18% 0.49% −0.36% −1.19% −1.12% −1.36% −1.57%
Dif. (SDpT) −0.91% 0.09% 0.33% −0.48% −3.2% −3.2%

where mixing with these one-hole–two-particle states is large.
A particular example is the 3d and 4d states of Al. The lower
3s2nd levels heavily mix with the 3s3p2 2D levels. However,
the mixing coefficient for this configuration never exceeds
30%. As a result, these levels are distributed over several
lower nd levels, resulting in two sets of levels being listed as
3s24d 2D [48,49], ([y 2D] and [2D]). In Table III, we compare
the 4d results with the second sets of levels ([2D]).

We also included partial valence triples perturbatively
(LCCSDpT) to investigate if the LCCSDpT method would
improve the theory-experiment agreement for Zn+ and Yb+.
This method is described in detail in [9]. Since triple equations
are not explicitly iterated in this approach, implementation
of the RLE and the DIIS method is exactly the same as in
the SD code. Convergence tests of the LCCSDpT method
exhibit essentially the same pattern as the tests of the LCCSD
method discussed above, and a similar number of iterations
was generally required for LCCSD and LCCSDpT calculations
for the same states run with the same parameters.

As shown in Table III, we find an excellent agreement of all
Zn+ data with the experiment. The inclusion of perturbative
triples somewhat improves the agreement with the experiment
for most states. The accuracy decreases for Yb+, as expected,
due to a much softer and heavier core and the strong mixing
of monovalent states with one-hole–two-particle states in
this system. Nevertheless, for Yb+, the average accuracy for
removal energies is at the level of 1% (see Table III).

V. CONCLUSION

We have successfully implemented the RLE and DIIS con-
vergence techniques in the LCCSD and LCCSDpT methods
for high-precision atomic many-body calculations. Most of the
convergence problems were resolved using these methods. The

acceleration of convergence was demonstrated for all cases
where all-order equations converge with the straightforward
iteration scheme. Numerous tests were performed to establish
general recommendations for the use of the RLE or DIIS
methods for various purposes. We find that if a particular case
converges with CIS, then the RLE5 method appears to be the
most efficient in achieving and accelerating convergence. If a
particular case does not converge with CIS, then the DIIS8 or
DIIS9 methods appear to be the most efficient in accelerating
convergence. Solving these convergence problems greatly
expands the number of atomic species that can be treated
with the all-order methods and is anticipated to facilitate
many interesting future applications for studies of fundamental
symmetries, as well as atomic clock and ultracold atom
research.
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APPENDIX

Derivations of general formulas in this appendix mainly
follows the appendix of Ref. [36]. Consider solving a general
linear equation of the form

a + Bt = 0, (A1)

which is a system of linear equations of dimension k, with
vector t being the exact solution that we would like to find.
We make the best approximation to the exact solution by
using m(< k) nonorthogonal and linearly independent vectors
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T = (t(1),t(2), . . . ,t(m)), where each t(i) is a k-dimensional
vector. We find this best approximation as a linear combination
of t(i)’s:

t[m+1] =
m∑

i=1

σit(i) = σ · T. (A2)

Here, σi are the weights of the optimized solution that needs to
be determined. We note that t(m+1) is not included in the linear
combination (A2), but is used to construct matrices such as
those shown in Eqs. (20) and (21). Therefore, t(m+1) needs to
be also found through the CIS. Therefore, we use the notation
t[m+1] instead of t(m+1) to distinguish between the (m + 1)th
solution found through the use of the RLE or DIIS methods,
and the CIS result, respectively.

First, we try to derive an ideal equation to find σi’s as
if we know the exact solution to Eq. (A1). To find the
best approximation, we need to minimize the error between
the approximate and the exact answers. To this end, we
use the least-squares optimization approach. The error is
e = t − t[m+1]. The least-squares optimization of E = eT e
with respect to σ then yields

∂E

∂σ
= −2TT (t − T · σ ) = 0. (A3)

After solving for σ and substituting it into Eq. (A2), we get

t[m+1] = T(TT T)−1TT t. (A4)

However, not knowing what the exact solution t is, the
above formula is of little use. The DIIS and RLE methods are

based on replacing t with approximations. Substituting t[m+1]

instead of t in Eq. (A1) will make Eq. (A1) inhomogeneous:

a + Bt[m+1] = a + BT · σ = ε, (A5)

where ε is a vector with constant elements.
The difference between the RLE and DIIS methods is in

their choice of error to minimize, e. The DIIS method takes the
error to be ε of Eq. (A5). Then to get the best approximation,
we need to minimize E = εT ε with respect to σ , as

∂E

∂σ
= 2(−BT)T (a + BTσ ) = 0. (A6)

Therefore, the coefficients σ that lead to the best approxima-
tion satisfy the DIIS equation,

TT BT a + TT BT BTσ = 0 . (A7)

The RLE method requires that the best least-squares
approximation ε[m+1] to ε vanishes in the space of T . Following
the structure of Eq. (A4),

ε[m+1] = T(TT T)−1TT ε

= T(TT T)−1TT (a + BTσ ) = 0. (A8)

Since T is made of linearly independent vectors, ε[m+1] is only
zero if

TT (a + BTσ ) = 0. (A9)

Equations (A7) and (A9), for the DIIS and RLE methods,
respectively, correspond to Eqs. (15) and (16) in the paper.
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