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Doppler cooling with coherent trains of laser pulses and a tunable velocity comb
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We explore the possibility of decelerating and Doppler cooling an ensemble of two-level atoms by a coherent
train of short, nonoverlapping laser pulses. We derive analytical expressions for mechanical force exerted by
the train. In frequency space the force pattern reflects the underlying frequency comb structure. The pattern
depends strongly on the ratio of the atomic lifetime to the repetition time between the pulses and pulse area. For
example, in the limit of short lifetimes, the frequency-space peaks of the optical force wash out. We propose to
tune the carrier-envelope offset frequency to follow the Doppler-shifted detuning as atoms decelerate; this leads
to compression of atomic velocity distribution about comb teeth and results in a “velocity comb”—a series of
narrow equidistant peaks in the velocity space.
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I. INTRODUCTION

Laser cooling is one of the key techniques of modern atomic
physics [1–3]. Radiative force originates from momentum
transfer to atoms from a laser field and subsequent spontaneous
emission in random directions. The Doppler effect makes the
force velocity dependent.

Here we develop a systematic theory of Doppler cooling by
a coherent train of short laser pulses (see Fig. 1). A qualitatively
new effect comes into play: atomic quantum-mechanical am-
plitudes induced by subsequent pulses interfere, resulting in a
periodically varying radiative force as a function of frequency.
This structure of the force reflects the comblike pattern of
the Fourier image of the pulse train, the so-called frequency
comb (FC) [4]. Here we derive the force and show that, for
sufficiently weak pulses and long atomic lifetimes, each tooth
acts as if it were an independent cw laser. In the opposite
limit of short lifetimes (short compared to the repetition time
between pulses), we recover the force due to an isolated laser
pulse. Earlier works on the mechanical effects of FCs include
a proposal involving two-photon transitions [5]. Following the
proposal in [6], pulse trains from mode-locked lasers were also
used in cooling experiments [7,8]. An analytical analysis of
the FC’s radiative force is presented here.

Notice that over the past few years the power and spectral
coverage of FCs have grown considerably. A fiber-laser-based
FC with 10 W average power was demonstrated [9] and the
authors argue that the technology is scalable above 10 kW
average power. The spectral coverage was expanded from
optical frequencies to ultraviolet and to IR spectral regions
[10]. These advances pave the road for new applications of
FCs, such as laser cooling.

As an application, we consider mapping the frequency
comb to a “velocity comb.” We demonstrate that, during
pulse-train cooling, continuous velocity distributions gravitate
toward a series of sharp peaks (of a typical Doppler width of
m/s for strong lines and mm/s for weak lines such as intercom-
bination transition in Sr) in the velocity space. Velocity combs
could be used for studying velocity-dependent (e.g., shape)
resonances where traditional beam techniques with their broad
velocity distributions would fail [11]. Moreover, since groups
of atoms with different velocities would arrive at the target at
different times, the experiment may be carried out “in parallel”

for many velocities (cf. molecular fingerprinting [12].) Notice
that the moniker “velocity comb” was used in a work [13] on
optical pumping with FCs; we retain this label here as a natural
visual for the resulting velocity distribution.

II. SETUP

In a typical FC setup, a train of phase-coherent pulses is
produced by multiple reflections of a single pulse injected
into an optical cavity. A short pulse is outcoupled every
round trip of the wave packet inside the cavity, determining a
repetition time T between subsequent pulses. At a fixed spatial
coordinate, the electric field of the train may be parametrized
as

E(t) = ε̂Ep

∑
m

cos(ωct − φm)g(t − mT ), (1)

where ε̂ is the polarization vector, Ep is the field amplitude, and
φm is the phase shift. The frequency ωc is the carrier frequency
and g(t) is the shape of the pulses. We normalize g(t) so that
max g(t) ≡ 1; then Ep has the meaning of the peak amplitude.
While typically pulses have identical shapes and φm = mφ,
one may want to install an active optical element at the output
of the cavity as in Fig. 1 that could vary the phase and the shape
of the pulses. Also repetition time and intensity of pulses could
be controlled by varying the reflectivity of the cavity mirror.

We focus on two-level systems as these are amendable
to analytic treatment and much insight may be gained from
analyzing the derived expressions. Technically, we solve the
optical Bloch equations (OBEs) for density matrix elements
(excited- and ground-state populations are ρee and ρgg and
coherences ρeg and ρge)

ρ̇ee = −γρee + i

2
(ρge�eg(z,t) − ρeg�ge(z,t)), (2)

ρ̇eg = −
(

γ

2
− iδeff

)
ρeg + i

2
�eg(z,t)(ρgg − ρee), (3)

where δeff = δ + kc · v is the Doppler-shifted detuning (δ =
ωc − ωeg , kc = 2π/ωc, and v is the atomic velocity). The
time- and space-dependent Rabi frequency is �ge(z,t) =
�p

∑N−1
m=0 g(t + z/c − mT )eiφm , with the peak Rabi fre-

quency �p = Ep

h̄
〈e|D · ε̂|g〉 expressed in terms of the dipole
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FIG. 1. (Color online) Schematic of a typical experimental setup.
An atomic beam is slowed and cooled by a train of laser pulses. The
phase and shape of pulses may be varied in time to attain optimal
cooling.

matrix element. Once the OBEs are solved, radiative force may
be determined in terms of the coherence

Fz = −pr Im[ρeg�
∗
eg], (4)

where pr = h̄kc is the photon recoil momentum.
We start by observing that, as long as the duration of the

pulse is much shorter than the repetition time, the atomic
system behaves as if it were subject to a perturbation by a
series of δ-function-like pulses. In this limit, the only relevant
parameter affecting the quantum-mechanical time evolution
is the effective area of the pulse, θ = �p

∫ ∞
−∞ g(t)dt. As an

illustration we use a Gaussian-shaped pulse, g(t) = e−t2/2τ 2
p ;

we assume that τp � T .
We distinguish between prepulse (left) and postpulse (right)

elements of the density matrix; e.g., (ρm
eg)l and (ρm

eg)r are
the values of coherences just before and just after the mth
pulse. Between the pulses the dynamics is determined by the
spontaneous decay

ρeg(t) = (
ρm

eg

)
r

exp

[
−

(
γ

2
− iδeff

)
(t − mT )

]
,

(5)
ρee(t) = (

ρm
ee

)
r

exp[−γ (t − mT )].

We neglect the spontaneous decay during the pulse, since for
femtosecond pulses τpγ � 1. Then

(ρm)r = eiθ/2σm (ρm)le
−iθ/2σm, (6)

with σm = cos φ σx − sin φ σy , where σx,y are the Pauli matri-
ces. Analogs of Eqs. (5) and (6) were derived earlier [14]. By
stacking single-pulse (6) and free-evolution (5) propagators,
one may evolve a given initial ρ over the duration of the entire
train. In Fig. 2 we show results of such a calculation for the
excited-state population (atom remains at rest).

III. RADIATIVE FORCE

Now we focus on the evaluation of the radiative force. The
laser field is present only during the pulse, so we deal with
a sum over instantaneous forces. The change in the atomic
momentum due to a single pulse is

−pm

pr

= [(
ρm

ee

)
r
− (

ρm
ee

)
l

]
k̂c; (7)

i.e., a laser pulse imparts a fractional momentum kick equal to
the difference of populations before and after the pulse. Since

T= 4 nsec

FIG. 2. Evolution of the excited-state population due to interac-
tion with a train of laser pulses. The atom is initially in the ground
state, and it is driven by a train of pulses separated by T = 4 ns and
of pulse area θ = π/10. Radiative lifetime is 16 ns.

0 � ρee � 1, the maximum momentum kick per pulse is equal
to the recoil momentum.

By combining Eqs. (5)–(7) we find the radiative force.
The time evolution of the population, Fig. 2, separates into
two regimes: an initial transient phase and the quasi-steady-
state (QSS) regime when the radiative-decay-induced drop
in the population following a given pulse is fully restored
by the subsequent pulse. Doppler cooling requires many
scattering cycles and we focus on the QSS (or the “coherent
accumulation” [14]) regime.

In the QSS regime, ρee(t) = ρee(t + nT ) and pre- and
postpulse values (ρm

ee)l,r do not depend on the pulse number
m; we simply denote these values as (ρs

ee)l,r . Then Eq. (7)
becomes −ps/pr = (ρs

ee)r (1 − e−γ T ). We find (ρs
ee) using

nonperturbative propagators Eqs. (5) and (6) and arrive at the
fractional momentum kick per pulse,

−ps

pr

= sin2(θ/2) sinh(γ T /2)

cosh(γ T /2) − cos2(θ/2) cos η
k̂c. (8)

Here the Doppler-shifted phase η is

η = (δ + kc · v)T − φ. (9)

Finally, the radiative force is Ftrain = ps/T .
As a function of phase η (or frequency or velocity), the

force spikes at the positions of the Doppler-shifted frequency
comb teeth, ηn = 2πn, with n being integer numbers (see
Fig. 3). In Fig. 3 we also investigate the dependence on the
values of the parameter γ T . Let us focus on one of the teeth
(e.g., η = 0). As γ T is increased the momentum kick grows,
reaches a maximum, and then declines; apparently for a given
θ there is an optimal value of γ T . By analyzing Eq. (8), we
find this optimal value to be (γ T )Fopt = 2 cosh−1[1/ cos2(θ/2)].
For example, for θ = π/10, the optimal value is (γ T )Fopt ≈
0.447; i.e., the radiative lifetime is roughly twice the repetition
period.

Equation (8) is nonperturbative. It remains valid even for
strong laser pulses, as long as the pulses do not overlap. For
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FIG. 3. (Color online) Frequency dependence of the fractional
momentum for a pulse area θ = π/10. The three curves differ by the
values of the parameter γ T (solid curve, γ T = 0.1; dashed, γ T =
0.447; and dot-dashed, γ T = 2.5). The spikes reflect the underlying
frequency-comb teeth structure of the pulse train in the frequency
domain. Inset: friction coefficient β as a function of phase for the
dashed curve of the main graph.

θ = 2π the force vanishes since the 2π pulse does not
redistribute the population. For π pulses, the right-hand side of
Eq. (8) reduces to a frequency-independent value, tanh(γ T /2).

In the limiting case of weak pulses (θ � 1) and fast
repetition rates (γ T � 1), Eq. (8) reduces to

Ftrain|γ T �1,θ�1

≈ pr�
2
p

(√
πτp

T

)2

×
∑

n

γ /2

(γ /2)2 + [δ + kc · v0 − (φ + 2πn)/T ]2
. (10)

By comparing Eq. (10) with relevant cw expressions (see,
e.g., Ref. [3]), we arrive at the qualitative picture where each
tooth acts as an independent cw laser, the intensity of which has
been reduced by a factor of

√
πτp/T . This factor is roughly

equal to the number of teeth fitting inside the overall frequency
envelope of the FC.

Does a single tooth have enough power for cooling? The
relevant parameter is the saturation intensity, Is . Its typical
value (sodium atom) is 6.4 mW/cm2. Typical FC parameters
(τp = 100 fs, T = 1 ns, and average power 1 W) translate into
the power per tooth of 0.1 mW; thereby Is can be attained by
focusing the laser output to a spot of 1.4 mm diameter. Notice
that a fiber-laser-based FC with 10 W average power has been
demonstrated [9] and the authors argue that the demonstrated
technology is scalable to 10 kW average power. With this new
generation of combs the cross section of the interaction region
may be increased dramatically.

IV. COOLING DYNAMICS AND VELOCITY COMB

Now we turn to the dynamics of slowing down and cooling
an entire atomic ensemble, characterized by some velocity
distribution f (v,t) (time dependence is caused by radiative
force). To be specific, consider a typical use of radiative force
for slowing down an atomic beam. The laser pulses would

impinge on the atoms (see Fig. 1), countering their motion.
The radiative force (8) depends on the atomic velocity via
Doppler shift. As velocity is varied across the ensemble, the
maxima of the force occur at discrete values of velocities (n
are integers)

vn = (2π n − T δ + φ)/(kcT ). (11)

The force peaks are separated by vn+1 − vn = λc/T in the
velocity space. The comb may have multiple teeth effectively
interacting with the ensemble.

Cooling can be characterized by introducing the friction
coefficient β, where Ftrain(v + v) ≈ Ftrain(v) − β(v)v . If
β > 0, there is a compression of velocity distribution around
v. In the limiting case of γ T 
 1 or θ = π the force does not
depend on velocity; thereby β = 0 and, while the ensemble
slows down, there is no cooling. The friction coefficient may be
derived analytically from the force (8). We plot the dependence
of β on η in Fig. 3. It acquires the maximum value at η = η̄,

cos η̄ = 1
2 sec2(θ/2)

× (
√

8 cos4(θ/2) + cosh2(γ T /2) − cosh(γ T /2)).

(12)

In the cw limit, this expression leads to detuning of γ /2 below
the atomic resonance as expected. One could optimize β by
varying θ or γ T .

As the atoms slow down, they come in and out of resonance
with the FC teeth, leading to periodic variation in the sign of β;
no cooling results due to this variation. By analyzing Eq. (11)
we see that this problem may be solved [1–3] by modulating
the atomic resonance frequency (e.g., by spatially varying B

fields as in the Zeeman slowers) or by employing chirped
pulses (which would modulate the carrier frequency). Both
approaches affect the detuning δ = ω0 − ωc. The velocities at
the resonance, Eq. (11), depend also on the carrier-envelope
phase offset φ. Based on this observation, here we alternatively
propose to vary φ by a laser field control element (see Fig. 1).
As the atoms slow down, one would decrease the phase,
keeping the Doppler-shifted atomic frequency in resonance
with one of the FC teeth.

If for a given velocity group initially centered at vmp(t = 0),
the phase detuning is kept at η̄, and there is a compression
of the velocity distribution around vmp(t). We may satisfy
this requirement by tuning the phase according to φ(t) = [δ +
kcvmp(t)]T − η̄. As vmp(t) becomes smaller due to radiative
force, the offset phase needs to be reduced. Using Eq. (8) we
find the required pulse-to-pulse decrement of the phase

φT = p2
r T

h̄Ma

sin2(θ/2) sinh(γ T /2)

cos η̄ cos2(θ/2) − cosh(γ T /2)
. (13)

When the phase offset is driven according to Eq. (13),
the entire frequency-comb structure shifts toward lower
frequencies. As the teeth sweep through the velocity space,
atomic v(t) trajectories are “snow-plowed” by teeth, ul-
timately leading to narrow velocity spikes collected on
the teeth. Formally, we may separate initial velocities into
groups vmp(t = 0) + (η̄ + 2πn)/kcT < v(t = 0) < vmp(t =
0) + [η̄ + 2π (n + 1)]/kcT ,n = 0,±1, . . . . The width of each
velocity group is equal to the distance between neighboring
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FIG. 4. (Color online) Time evolution of the velocity distribution
for a thermal beam subjected to a coherent train of laser pulses.
The pulse-to-pulse phase offset of the train is varied linearly in time
as prescribed by Eq. (13). Atomic and pulse train parameters are
γ T = 0.0026, θ = 0.0019. The optimal phase detuning is η̄ = 0.001.
The characteristic initial temperature of the ensemble is 293 K.

teeth in velocity space, λc/T . As a result of snow-plowing,
the nth group will be piled up at vn(t) = vmp(t) + nλc/T .
The final velocity spread of individual velocity groups will be
limited by the Doppler temperature, TD = h̄γ /2kB .

The formation of a velocity comb is illustrated in Fig. 4,
where we consider cooling and slowing a one-dimensional
thermal beam of 88Sr by a pulse train. The initial velocity dis-
tribution is characterized by f (v,t = 0) = 9

2
v3

v4
mp

exp(− 3v2

2v2
mp

),

where vmp is the most probable velocity at t = 0. In this
example we use the weak 5s2 1S0 → 5s5p 3P1 transition with

γ = 5.3 × 104 1/s. Parameters of the train are T = 50 ns and
θ = 0.0019. The simulation was carried out by solving the
OBEs numerically using the standard Runge-Kutta techniques
for finite-duration pulses and also using analytical propagators
for δ-function-like pulses; results from both techniques were
in close agreement. During the time evolution, atoms followed
classical trajectories and photon recoil effects were neglected.
The phase offset was driven according to Eq. (13). At the end
of the process we ended up with a velocity comb separated by
13.8 m/s and of Doppler-limited width of 7.6 mm/s (this is
comparable to the recoil limit). About 14% of the total number
of atoms are snow-plowed into the teeth within 125 μs. Notice
that by shining two counterpropagating pulse trains on the
atoms, one could control the positions of the velocity teeth
at will, as shifting the phase of one train with respect to the
other would change the balance of two counteracting radiative
forces exerted by the trains.

V. SUMMARY

We demonstrated that radiative force exerted by laser
pulse trains has unique features and expands the toolbox of
laser cooling techniques. For example, one may engineer
velocity combs that may be used for studies of narrow
collision resonances and thresholds [11,15]. In some cases,
the frequency comb may be already a part of experimental
setup, e.g., in optical atomic clocks [16]. Using it for cooling
would reduce the number of lasers. Also the setup does not
require Zeeman slowers, whose fields may be detrimental for
precision measurements [17].
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