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Off-diagonal hyperfine interaction between the §;,, and 6ps, levels in 13Cs
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The off-diagonal hyperfine interaction between thg,6and G/, states in'3%Cs is evaluated in third-order
MBPT giving 37.3 and 48.3 Hz, respectively, for second-order energies ofptheFe=3 andF=4 levels. This
result is a factor of 10 smaller than one obtained from an uncorrelated first-order Dirac—Hartree—Fock calcu-
lation and used in the analysis of a recent high-precigie2 kHz) measurement of thepg, hyperfine
structure[Gerginovet al. Phys. Rev. Lett91, 72301(2003]. The factor of 10 difference has negligible effect
on the conclusions of the recent experiment but will become important for experiments carried out at a
precision of better than 1 kHz.
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I. INTRODUCTION
th = E (_ 1))\T(_k}3M§\k)y
kn

In the recent study of the hyperfine structure of thg,6
state of'3%Cs by Gerginowet al. [1], intervals between hy- whereT(_';) is an irreducible tensor operator acting in the elec-
perfine levels were measured to an accuracy<@ kHz, tron sector ancu/lg\k) is an irreducible tensor operator acting in
which was sufficient to give, for the first time, a nonzerothe nuclear sector. The first-order hyperfine correction to the
value for thec hyperfine constant. The value of the nuclearenergy of a statél) is
octupole moment of!3Cs obtained fromc was ()
=0.8210)b uy, which is about a factor of 40 larger than \/\/(F1>=<1|th|1>
nuclear shell-model predictiof,, s ,=0.022 uy, motivat-
ing a reexamination of corrections to the hyperfine constants. => (- 1)I+J+F{
One such correction is the second-order hyperfine interaction k
between the 65, and f,,, states. An estimate of this cor-
rection, based on an independent particle model of the ceFhe nuclear matrix elements are given in terms of conven-
sium atom, was used in Refl]. In the present work, we tional nuclear moments through
carry out a detailed third-order MBPT calculation and obtain
corrections to the 8;, hyperfine levels that are a factor of 4l |M§)l)|ll>: M,
10 smaller than the values used in Réi. Revised values of
the hyperfine constanta, b, and ¢, obtained using the

J

| E}<J||T<k>||J><|||M<k>|||>.

: . @y=1
present results for the second-order hyperfine energies, agree Mgy =5Q,
with those reported in Refl] to within the error estimates.

However, for future experiments, especially experiments n |M(3)|II y=-Q
O - .

aimed at a precision of better than 1 kHz, it will be important
to use the correlated values of the corrections presented herlqere w is the nuclear magnetic dipole mome, is the

rather than the larger values given in Rff]. nuclear electric quadrupole moment, afidis the nuclear

magnetic octupole moment. With these definitions, we intro-
duce the conventional hyperfine constamtb, andc through

Il. PERTURBATION EXPANSION the relations
We write the hyperfine interaction in the form o @
a= ST, (1)
* H . .
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1 1 3K, — 43,1, TABLE |. MBPT contributions to the hyperfine constardsg,
W(F = EKa‘* 8121 - 1323 - 1) andag, (MHz) of the 6p,,, and 65/, States, respectively, and to the
off-diagonal matrix elemergTV=g(1/2|TV||3/2)(MHz) are pre-
5K2(K +4)-4K[3J,1,-J, - 1,-3]-203,1, sented. The resulting third-order hyperfine constants are are com-
c, . .
121 = 1)(21 - 2)3(23 - 1)(23 - 2) pared with experiment.
(4 Term ai as) gT®
WhereI::I(I+1), J,=JJ+1), F,=F(F+1), K=F,=-J,-1,, 1st 160.88 23.92 26.97
a”iﬁ*"K(Kerl)' deiin the hvberfine inferact . 2nd 40.66 18.84 ~34.15
e second-or giin the hyperfine interactionenergy o Brucké 84.40 16.08 112
a state is given by
St Rad 5.43 -7.51 24.85
W= <1|th|n><n|thI1>. Norm -1.20 -0.23 0.04
ntl E,-E, 3rd 88.62 8.33 23.77
Total 290.17 51.09 16.59

For the statd1)=|6ps,) of Cs, the second-order hyperfine
energy is dominated by the single stdt®=|2)=|6p,;»).  Expt. 291.89 50.29
Moreover, the largest contribution from this state is the on
associated with the magnetic dipole tekmk’=1. After an-
gular reduction, the second-order energy is

“Third-order Brueckner orbital and structural radiation corrections,
as defined in Refl5].

J, | F}2|<J2||T(1)||Jl>|2|<l||M(1)||I>|2 IV. CORRELATION CORRECTIONS

e :{ 13 1 E,-E ®)
! v The estimates made in the previous section depend on the

Contributions to the second-order energy from the nucleathe assumption that correlation corrections to reduced matrix
quadrupole moment have been evaluated in lowest order arglements of the hyperfine operatgfT™?||j’) are independent
found to change the values obtained from E%). by 1ess  of the total angular momentuinof the @p; state. To test that
than 1%. The fine-structure intervié| ~E; in the denomina-  assumption, we carried out correlated third-order MBPT cal-
tor is determined as the difference betwdgp the centroid  ¢ylations of the three§ matrix elements.
of the 6°S;,— 6p°Py, transition[2,3] and fp, the centroid In Table I, we give a detailed breakdown of contributions
of the 6°Sy,,— 6p°Py, transition [4], both of which have tg the third-order matrix elements. Formulas for the first-,
been measured to high precision. One obtdinsE,=fp,  second-, and third-order matrix element are given in FEf.
—fp;=1.660 966 966 @1) X 10" MHz. We use a modified version of these formulas in whihthe
sum of the second-order matrix element and the third-order
contribution to the random-phase approximatiRrA) is re-

Correlation corrections to hyperfine matrix elements inplaced by the exact solution to the RPA equations, (@pdll
alkali-metal atoms are large. Thus, for example, a lowestone-electron matrix elements in third-order are replaced by
order Dirac—Hartree—Fock calculation of the hyperfine contheir RPA counterparts. These modifications give dipole tran-
stantas, for the 6ps, state of Cgwhich is proportional to ~ Sition matrix elements that are gauge invariant in second-
the diagonal matrix elemex8/2|T™V|3/2)) leads to a result and third-order{6]. The third-order hyperfine constants for
that is a factor of 2 smaller than the experimental value. Ond€ @12 and &g, states evaluated in this way are within a
expects(and indeed findscorrections of a similar size for few percent of experiment. Since we use the same method to
the off-diagonal matrix elemenil/2|T%||3/2) appearing in  €valuate diagonal and off-diagonal matrix elements, we ex-

the numerator of the expression for the second-order hypeF2eCt the third-order off-diagonal matrix element to be accu-

fine energy. If we assume that the relative size of the corre™@t€ t0 @ few percent. . .
lation corrections to the two matrix elements mentioned SuPstituting the third-order off-diagonal matrix element

above are the same, then we can determine the rati@’sh I Table I into Eq.(5), we find W_é.z)_=37-3 Hz and
(1/2|T9|3/2)/(3/2|TV]3/2) by means of a lowest-order Wi =48.3 Hz for the @5, state. Combining the second-
calculation and, using that ratio together with the experimenorder corrections with the observeg@ hyperfine intervals
tal value ofag,, Obtain an accurate value fat/2|T®|3/2).  (MH2z) from [1],

That was the strategy used to obtain the val

=401 Hz andW?=520 Hz for the @g, state of *Cs Ws - W, = 251.091620),

quoted in Ref[1]. (The ratio of matrix elements was deter-
mined in the nonrelativistic approximation and did not de-
pend on details of thewave function. The nonrelativistic
approximation is not a serious problem, however, since the
ratio obtained using relativistic Dirac—Hartree—Fock wave
functions differs from the nonrelativistic ratio by less than
5%.) W; - W, =151.224716),

I1l. NUMERICAL ESTIMATES

W, — W5 = 201.287111),
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