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The off-diagonal hyperfine interaction between the 6p1/2 and 6p3/2 states in133Cs is evaluated in third-order
MBPT giving 37.3 and 48.3 Hz, respectively, for second-order energies of the 6p3/2 F=3 andF=4 levels. This
result is a factor of 10 smaller than one obtained from an uncorrelated first-order Dirac–Hartree–Fock calcu-
lation and used in the analysis of a recent high-precisionsø2 kHzd measurement of the 6p3/2 hyperfine
structure[Gerginovet al. Phys. Rev. Lett.91, 72301(2003)]. The factor of 10 difference has negligible effect
on the conclusions of the recent experiment but will become important for experiments carried out at a
precision of better than 1 kHz.
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I. INTRODUCTION

In the recent study of the hyperfine structure of the 6p3/2

state of133Cs by Gerginovet al. [1], intervals between hy-
perfine levels were measured to an accuracy ofø2 kHz,
which was sufficient to give, for the first time, a nonzero
value for thec hyperfine constant. The value of the nuclear
octupole moment of 133Cs obtained from c was V
=0.82s10db mN, which is about a factor of 40 larger than
nuclear shell-model predictionVn.s.m.=0.022b mN, motivat-
ing a reexamination of corrections to the hyperfine constants.
One such correction is the second-order hyperfine interaction
between the 6p3/2 and 6p1/2 states. An estimate of this cor-
rection, based on an independent particle model of the ce-
sium atom, was used in Ref.[1]. In the present work, we
carry out a detailed third-order MBPT calculation and obtain
corrections to the 6p3/2 hyperfine levels that are a factor of
10 smaller than the values used in Ref.[1]. Revised values of
the hyperfine constantsa, b, and c, obtained using the
present results for the second-order hyperfine energies, agree
with those reported in Ref.[1] to within the error estimates.
However, for future experiments, especially experiments
aimed at a precision of better than 1 kHz, it will be important
to use the correlated values of the corrections presented here,
rather than the larger values given in Ref.[1].

II. PERTURBATION EXPANSION

We write the hyperfine interaction in the form

Hhf = o
kl

s− 1dlT−l
skdMl

skd,

whereT−l
skd is an irreducible tensor operator acting in the elec-

tron sector andMl
skd is an irreducible tensor operator acting in

the nuclear sector. The first-order hyperfine correction to the
energy of a stateu1l is

WF
s1d = k1uHhfu1l

=o
k

s− 1dI+J+FHJ I F

I J k
JkJiTskdiJlkIiMskdiIl.

The nuclear matrix elements are given in terms of conven-
tional nuclear moments through

kII uM0
s1duII l = m,

kII uM0
s2duII l = 1

2Q,

kII uM0
s3duII l = − V.

Here, m is the nuclear magnetic dipole moment,Q is the
nuclear electric quadrupole moment, andV is the nuclear
magnetic octupole moment. With these definitions, we intro-
duce the conventional hyperfine constantsa, b, andc through
the relations

a =
m

IJ
kJJuT0

s1duJJl, s1d

b = 2QkJJuT0
s2duJJl, s2d

c = − VkJJuT0
s3duJJl, s3d

and write the first-order hyperfine energy as
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WF
s1d =

1

2
Ka +

3K+ − 4J+I+

8Is2I − 1dJs2J − 1d
b

+
5K2sK + 4d − 4Kf3J+I+ − J+ − I+ − 3g − 20J+I+

Is2I − 1ds2I − 2dJs2J − 1ds2J − 2d
c,

s4d

where I+= IsI +1d, J+=JsJ+1d, F+=FsF+1d, K=F+−J+− I+,
andK+=KsK+1d.

The second-order(in the hyperfine interaction) energy of
a state is given by

WF
s2d = o

nÞ1

k1uHhfunlknuHhfu1l
E1 − En

.

For the stateu1l= u6p3/2l of Cs, the second-order hyperfine
energy is dominated by the single stateunl= u2l= u6p1/2l.
Moreover, the largest contribution from this state is the one
associated with the magnetic dipole termk=k8=1. After an-
gular reduction, the second-order energy is

WF
s2d = HJ2 I F

I J1 1
J2ukJ2iTs1diJ1lu2ukIiMs1diIlu2

E1 − E2
. s5d

Contributions to the second-order energy from the nuclear
quadrupole moment have been evaluated in lowest order and
found to change the values obtained from Eq.(5) by less
than 1%. The fine-structure intervalE1−E2 in the denomina-
tor is determined as the difference betweenfD2 the centroid
of the 6s2S1/2→6p2P3/2 transition[2,3] and fD1 the centroid
of the 6s2S1/2→6p2P1/2 transition [4], both of which have
been measured to high precision. One obtainsE1−E2= fD2
− fD1=1.660 966 966 7s11d3107 MHz.

III. NUMERICAL ESTIMATES

Correlation corrections to hyperfine matrix elements in
alkali-metal atoms are large. Thus, for example, a lowest-
order Dirac–Hartree–Fock calculation of the hyperfine con-
stanta3/2 for the 6p3/2 state of Cs(which is proportional to
the diagonal matrix elementk3/2iTs1di3/2l) leads to a result
that is a factor of 2 smaller than the experimental value. One
expects(and indeed finds) corrections of a similar size for
the off-diagonal matrix elementk1/2iTs1di3/2l appearing in
the numerator of the expression for the second-order hyper-
fine energy. If we assume that the relative size of the corre-
lation corrections to the two matrix elements mentioned
above are the same, then we can determine the ratio
k1/2iTs1di3/2l / k3/2iTs1di3/2l by means of a lowest-order
calculation and, using that ratio together with the experimen-
tal value ofa3/2, obtain an accurate value fork1/2iTs1di3/2l.
That was the strategy used to obtain the valuesW3

s2d

=401 Hz andW4
s2d=520 Hz for the 6p3/2 state of 133Cs

quoted in Ref.[1]. (The ratio of matrix elements was deter-
mined in the nonrelativistic approximation and did not de-
pend on details of the 6p wave function. The nonrelativistic
approximation is not a serious problem, however, since the
ratio obtained using relativistic Dirac–Hartree–Fock wave
functions differs from the nonrelativistic ratio by less than
5%.)

IV. CORRELATION CORRECTIONS

The estimates made in the previous section depend on the
the assumption that correlation corrections to reduced matrix
elements of the hyperfine operatork jiTs1di j8l are independent
of the total angular momentumj of the 6pj state. To test that
assumption, we carried out correlated third-order MBPT cal-
culations of the three 6pj matrix elements.

In Table I, we give a detailed breakdown of contributions
to the third-order matrix elements. Formulas for the first-,
second-, and third-order matrix element are given in Ref.[5].
We use a modified version of these formulas in which(a) the
sum of the second-order matrix element and the third-order
contribution to the random-phase approximation(RPA) is re-
placed by the exact solution to the RPA equations, and(b) all
one-electron matrix elements in third-order are replaced by
their RPA counterparts. These modifications give dipole tran-
sition matrix elements that are gauge invariant in second-
and third-order[6]. The third-order hyperfine constants for
the 6p1/2 and 6p3/2 states evaluated in this way are within a
few percent of experiment. Since we use the same method to
evaluate diagonal and off-diagonal matrix elements, we ex-
pect the third-order off-diagonal matrix element to be accu-
rate to a few percent.

Substituting the third-order off-diagonal matrix element
given in Table I into Eq.(5), we find W3

s2d=37.3 Hz and
W4

s2d=48.3 Hz for the 6p3/2 state. Combining the second-
order corrections with the observed 6p3/2 hyperfine intervals
sMHzd from [1],

W5 − W4 = 251.0916s20d,

W4 − W3 = 201.2871s11d,

W3 − W2 = 151.2247s16d,

TABLE I. MBPT contributions to the hyperfine constantsa1/2

anda3/2 (MHz) of the 6p1/2 and 6p3/2 states, respectively, and to the
off-diagonal matrix elementgTs1d=gIk1/2iTs1di3/2lsMHzd are pre-
sented. The resulting third-order hyperfine constants are are com-
pared with experiment.

Term a1/2 a3/2 gTs1d

1st 160.88 23.92 26.97

2nd 40.66 18.84 −34.15

Brucka 84.40 16.08 −1.12

St Rada 5.43 −7.51 24.85

Norm −1.20 −0.23 0.04

3rd 88.62 8.33 23.77

Total 290.17 51.09 16.59

Expt. 291.89 50.29

aThird-order Brueckner orbital and structural radiation corrections,
as defined in Ref.[5].
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we obtain the following values for the hyperfine constants
sMHzd:

a = 50.288 25s23d,

b = − 0.4940s17d,

c = 0.000 56s7d.

These values agree within error limits with those found in
Ref. [1].
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