
PHYSICAL REVIEW A 83, 013604 (2011)

Possibility of Stark-insensitive cotrapping of two atomic species in optical lattices
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Much effort has been devoted to removing differential Stark shifts for atoms trapped in specially tailored
“magic” optical lattices, but thus far work has focused on a single trapped atomic species. In this work, we
extend these ideas to include two atomic species sharing the same optical lattice. We show qualitatively that, in
particular, scalar J = 0 divalent atoms paired with nonscalar state atoms have the necessary characteristics to
achieve such Stark shift cancellation. We then present numerical results on “magic” trapping conditions for 27Al
paired with 87Sr, as well as several other divalent atoms.
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I. INTRODUCTION

Cold atoms and molecules have proven to be a useful
platform for a variety of precision measurement and quantum
information experiments. Optical lattices provide a method of
trapping cold atoms and molecules that minimizes Doppler
shifts and allows long measurement times. However, the
trapping field causes shifts in the internal energy levels via
the ac Stark effect, and these shifts depend on the intensity of
the trapping lasers. This problem has been considered in detail
in the context of optical lattice clocks (see, e.g., Refs. [1–4]).
The solution employed in these works is to use an optical
lattice operating at “magic” trapping conditions (e.g., magic
wavelength) for which the energy levels of interest experience
the same shift, even as the atom or molecule moves within
the lattice. This leaves the transition frequency of interest
unchanged, as long as higher-order effects are negligible.
In another recent work, the problem of removing Stark and
Zeeman shifts simultaneously was considered for alkali metals
[5]. In each of these works, cancellation of the Stark shift was
achieved for a specific clock or qubit transition in a single
atomic species.

In other experiments, simultaneous trapping of two atomic
species has been achieved using double magneto-optical traps
(MOTs) [6–8], combined with an optical dipole trap in
Ref. [8], with the primary goal of sympathetically cooling
atomic species that are difficult to cool directly. However, in
these experiments the internal states of the atoms are heavily
perturbed by the MOT, which is disadvantageous for precision
measurements. Comagnetometry experiments also utilize two
atomic species sharing the same volume. One such apparatus
was used to create a highly accurate nuclear spin gyroscope [9],
while other groups have used comagnetometers in searches
for physics beyond the standard model, such as setting upper
bounds on P,T-violating permanent electric dipole moment
[10] as well as bounds on Lorentz and CPT violation [11].

In the present work, we aim to merge these ideas by
considering two atomic species trapped in the same “magic”
optical lattice. Our goal is to achieve Stark-shift cancellation
simultaneously in both atomic species, for a single two-level
transition in each. We first introduce the equations underlying
the ac Stark effect. These equations guide our selection of
favorable atom pairs to analyze in detail. Finally, we present
results of numerical calculations on 27Al paired with Sr, Yb,

and other divalent atoms. Numerical methods are discussed in
the appendix.

II. STARK SHIFT

The derivation of the Stark shift follows closely the
treatment in Refs. [3] and [12], so only a summary of the
results will be given here. The ac Stark shift of an atomic state
|F,MF 〉 with total angular momentum F and projection MF

can be written as1
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where EL and ω are the amplitude and frequency of the
lattice light field. The frequency-dependent atomic-structure
prefactor αtot

FMF
(ω) is the total ac polarizability of the

state; it may be decomposed in terms of irreducible tensor
operators as
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Here A is the degree of circular polarization; αS
F , αa

F , and αT
F

are the scalar, vector, and tensor polarizabilities, respectively;
and the unit vectors are the lattice laser wave vector (k̂),
polarization (ε̂), and quantization axis (êz). Figure 1 depicts
the geometry.

The quantization axis is defined by an applied static
magnetic field, whose orientation relative to the optical lattice
may be arbitrary. This “quantizing magnetic field” ensures that
MF remains a “good” quantum number for the ac Stark-effect
perturbation formalism, from which Eq. (2) is derived; the
energy shifts due to the Stark effect must be small compared
with the Zeeman splitting of the magnetic sublevels. It is
important to note that the total polarizability depends not
only on the spatial orientation of k̂, ε̂, and êz but also on the
lattice frequency ω as well. Also useful is the total differential
polarizability �α between two states |F ′,M ′

F 〉 and |F,MF 〉,
given simply by

�α(ω) = αtot
F ′M ′

F
(ω) − αtot

FMF
(ω) . (3)

1We use atomic units except where otherwise noted.
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FIG. 1. (Color online) Relation of angles to unit vectors for
linearly polarized light. k̂, ε̂, and êz are the lattice wave vector,
lattice polarization, and quantization axis, respectively. For circular
polarization, we take ε̂ to be complex, following the Jones calculus
conventions. In this case θk is unchanged, while θp is no longer well
defined.

Analogously, we will use the scalar differential polarizability,
defined as

�αS(ω) = αS
F ′M ′

F
(ω) − αS

FMF
(ω) (4)

and also the vector and tensor differential polarizabilities,
defined similarly.

For linearly polarized light, the vector contribution vanishes
(A = 0), and ε̂ · êz = cos θp, where θp is the angle between
the polarization and quantization unit vectors. Then the total
polarizability becomes

αFMF
(ω) = αS

F (ω) + 1

2
(3 cos2 θp−1)

3MF
2−F (F + 1)

F (2F − 1)
αT

F (ω).

(5)

In the case of circularly polarized light, k̂ · êz = cos θk and |ε̂ ·
êz|2 = 1

2 sin2 θk , where θk is the angle between the wave vector
and quantization unit vectors. ε̂ is taken to be complex and
constant in time rather than real and time varying. This means
that, although counterintuitive, |ε̂ · êz|2 is time independent
even for circular polarization. The total polarizability is then

αFMF
(ω)

= αS
F (ω) +A(cos θk)

MF

2F
αa

F (ω)

+ 1

2

(
3

2
sin2 θk − 1

)
3MF

2−F (F + 1)

F (2F − 1)
αT

F (ω). (6)

It should be noted that in both cases, the Stark shift depends
on only one angle (either θp or θk , but not both). This means
that for purely circularly or linearly polarized light, we have
only two “handles,” not three, with which to achieve “magic”
conditions: a single angle and the lattice frequency ω.

It should be noted that the tabulated formulas are valid only
for a sufficiently weak magnetic field. For finite B fields, the
Stark shift acquires an additional cross-term formed as a prod-
uct of the Zeeman and vector light shifts; this provides an ad-
ditional knob for tuning magic conditions (see Refs. [13,14]);
we will comment on this in Sec. V.

III. SELECTING ATOMS FOR TRAPPING

Guided by the above equations, we state some general
guidelines in selecting two atomic species to trap. Consider
first the vector and tensor polarizabilities. These are rank 1 and
rank 2 irreducible tensor operators, respectively. Triangular
selection rules dictate that αT

F must vanish for F = 1/2
states and that both αT

F and αa
F must vanish for F = 0

states. Alternately, the polarizabilities of F = 0 states have
no dependence on the angles θp or θk .

This leads us to consider divalent atoms, such as Sr or
Yb, which have 1S0 ground states. The bosonic isotopes
have nuclear spin I = 0, so F = J = 0: due to the angular
selection rules αT

F and αa
F must vanish. The fermionic isotopes

have I �= 0, and so (for I > 1/2), αT
F and αa

F do not vanish
identically. However, αT

F and αa
F are nonzero only due to a

highly suppressed contribution from the hyperfine interaction
(HFI), and so αS

F dominates. For optical transitions between
J = 0 electronic states, the differential polarizability is almost
entirely due to the scalar polarizability. Therefore the light
shift, being of scalar nature, does not depend on atomic spatial
orientation. We conclude that for 0-0 clock transitions in
divalent atoms, the dependence on geometry is negligible and
“magic” conditions are set entirely by the lattice frequency.
If one of our two trapped atomic species is a scalar atom, we
must use a “magic” lattice frequency for that atom. Since the
frequency becomes fixed, we have to achieve magic conditions
for the second species solely by manipulating one angle, θp or
θk (for fixed circular or linear polarization).

While the discussion so far has been of a general nature,
for illustration let us consider microwave hyperfine transitions
attached to a J = 1/2 electronic state in our second atomic
species. The relevant atoms may include the ground-state
alkali-metal atoms (s1/2 ground states) or group III atoms
(p1/2 ground states). To minimize Zeeman shifts, we will work
with MF = 0 states exclusively, which also eliminates the
vector term in Eq. (6). There are some technical but important
peculiarities associated with computing Stark shifts between
levels of the same hyperfine manifold: we are considering the
Stark shift of hyperfine levels attached to the same electronic
state. To the leading order, the shift is determined by the
properties of the underlying electronic state. However, because
the electronic state for both hyperfine levels is the same, the
scalar Stark shift of both levels is the same. An apparent
difference between the two clock levels is caused by the
hyperfine interaction (HFI), and the rigorous analysis involves
so-called HFI-mediated polarizabilities [3]. Similarly, when
neglecting the HFI, the tensor shift for the J = 1/2 state
vanishes due to the angular selection rules; we are also led
to a necessity to treat the tensor shift using the HFI-mediated
polarizabilities.

As demonstrated in Ref. [4], for MF = 0 clock or qubit
states and fixed B‖k̂ or B ⊥ k̂ geometry neither Rb nor Cs
can be magically trapped. However, the magic trapping can
be achieved for Al and Ga. Our consideration here is more
general, as we also consider varying rotation angles. Still,
even in our more general setup, we do not find magic angles
for the MF = 0 clock or qubit states in Cs and Rb (again, this
statement is limited only to the weak B-field regime). We focus
below on Al, where the required magic angles can be found.

013604-2



POSSIBILITY OF STARK-INSENSITIVE CO-TRAPPING . . . PHYSICAL REVIEW A 83, 013604 (2011)

To summarize, we choose a scalar divalent atom and a
nonscalar valence state atom to trap simultaneously. We choose
for our optical lattice a “magic” frequency for the divalent
atom, so the differential polarizability for its optical transition
of interest is zero. At this lattice frequency, the differential
polarizability for the microwave transition in the nonscalar
atom is nonvanishing, in general. But by tuning θp or θk

(depending on lattice polarization), we aim to create “magic”
conditions in the nonscalar atom as well.

We perform numerical calculations to find “magic” con-
ditions for particular pairs of atoms. Utilizing a variety
of relativistic many-body techniques, as described in the
appendix, we calculate the atomic polarizabilities in Eqs. (5)
and (6). We then numerically search for values of θk or θp

that will make �α vanish in the nonscalar atom. We focus our
attention on 87Sr paired with 27Al, although we also present
results for 27Al paired with other divalent atoms. In 87Sr, the
transition of interest is between the 5s2 1S0 ground state and
the 5s5p 3P0 metastable state [15]. In 27Al, the transition of
interest is between the |F = 2,MF = 0〉 and |F = 3,MF = 0〉
hyperfine states, both in the 3p1/2 electronic ground state. We
work with MF = 0 states exclusively in Al so (to first order)
Zeeman shifts vanish.

IV. RESULTS

In Fig. 2 we plot results representative of our numerical
calculations. We graph the differential polarizability between
the two hyperfine states in 27Al as a function of angle, for
linear and circular lattice polarizations.
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FIG. 2. (Color online) Differential polarizability [Eq. (3)] be-
tween |F = 3,MF = 0〉 and |F = 2,MF = 0〉 states in 27Al as a
function of angle. The top graph is for a linearly polarized lattice,
while the bottom graph is for a circularly polarized lattice. Note that
θp is the angle between the polarization and quantization axis, while
θk is the angle between the wave vector and quantization axis, as
shown in Fig. 1. The magic angle is the value of θ for which �α = 0,
highlighted with red triangles. This is for a lattice at 813.42 nm, the
“magic” wavelength for the optical clock transition in 87Sr.

TABLE I. Values of 27Al “magic” angles at “magic” wavelengths
for divalent atoms. Values for λmagic from Ref. [16].

λmagic (nm) θp (linear pol.) θk (circ. pol.)

Hg 362 58.89◦ 46.95◦

Zn 416 48.10◦ 70.82◦

Cd 419 48.82◦ 68.62◦

Mg 466 51.91◦ 60.73◦

Ca 739 52.90◦ 58.54◦

Yb 759 52.91◦ 58.52◦

Sr 813 52.93◦ 58.47◦

While Sec. III suggests that Stark-shift cancellation may
be possible for 27Al at arbitrary lattice frequencies, it is not
obvious if “magic” angles for 27Al actually exist at the “magic”
wavelengths for the divalent atoms of interest. Considering
Eqs. (5) and (6), we note that the prefactor on the tensor term
varies from approximately 1 to − 1

2 for linear polarization and
from 1

4 to − 1
2 for circular polarization. This means it is highly

probable a “magic” angle exists if αT
F ′ and αT

F are at least a
few times greater than αS

F ′ and αS
F (barring a happenstance

cancellation of αT
F ′ and αT

F ). Our calculations reveal that, over
the range of wavelengths studied (see Table I), αT

F ′ and αT
F vary

from two orders of magnitude larger than αS
F ′ and αS

F to roughly
the same order of magnitude. Only near the Al resonance at
394 nm does the scalar polarizability dominate. This suggests
that “magic” angles should exist for many pairings of Al with
scalar divalent atoms.

Table I shows results of our numerical calculations, con-
firming the above assertions. We tabulate the lattice frequency
for which the Stark shift vanishes in each divalent species and
“magic” angles for which the Stark shift in 27Al also vanishes
for linearly and circularly polarized lattices. The angles θp and
θk are as depicted in Fig. 1 and defined in Eqs. (5) and (6),
respectively.

An important consideration is the sensitivity of transition
frequency to experimental error in the magic angle. We can
write the fractional clock shift as

�ν

ν
= − IL

cν
�α, (7)

where IL is the laser intensity and �α denotes the differential
polarizability between the upper and lower clock levels, as
defined in Eq. (4). For Al in a lattice with Sr (λ = 813 nm),
a misalignment of 0.1◦ corresponds to �α ≈ 10−5 a.u.. If we
assume a lattice intensity on the order of 10 kW/cm2, we are
lead to a fractional clock shift of the microwave transition
δν
ν

≈ 10−15. This effect would be somewhat worse for shorter
wavelength lattices, since the polarizabilities tend to increase
faster than ν.

V. RUBIDIUM AND CESIUM

So far we focused our attention on the weak-field regime to
reduce Zeeman sensitivity of the M ′

F − MF = 0 transition.
If we relax the weak-field requirement, magic conditions
for such transitions can be found by varying the strength
of the B field. Magic trapping conditions then exist for all
trapping wavelengths (barring atomic resonances); see Fig. 2
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of Ref. [14]. The required B-field strengths are of a few gauss.
For example, one could read off Fig. 2 of Ref. [14] that at the
magic 813-nm wavelength for Yb, trapping of 133Cs is magic
for B = 2.9 G.

In another approach one may choose to operate on mul-
tiphoton MF → −MF transitions [5]; such transitions have
“magic” values of B fields, where the Zeeman sensitivity is
removed at points where dν/dB = 0. Again there is a range
of lattice wavelengths where the trapping may be made magic
by varying the angle between the lattice wave vector and the
quantizing B field. For example, for the 133Cs |4,3〉 → |3, − 3〉
transition, the acceptable ranges of magic wavelengths in nm
are 898–1591, 863–880, and 512–796 (see Table I of Ref. [5]).
Since the magic wavelengths of Ca and Yb fall within these
ranges, these species can be cotrapped with Cs.

VI. CONCLUSION

We have presented a method to simultaneously remove
Stark shifts for two atomic species trapped in a shared optical
lattice. One transition in each atom may be made insensitive
to the intensity of the trapping laser fields. This method
could prove useful for quantum information and precision
measurement experiments. For example, two different atomic
species may be used for executing quantum multiparticle
gates and state-dependent transport (see, e.g., Ref. [17]).
Operating the common lattice at the simultaneous magic
trapping conditions would remove detrimental Stark-induced
decoherences for both types of qubits.

APPENDIX: NUMERICAL EVALUATION

Numerical calculations are needed for aluminium only. For
other atoms we use previously computed values of magic
wavelengths and B fields; these are tabulated in Refs. [5,14,16]
(see the main body of text for a more detailed discussion). We
carried out two independent calculations for Al with relativistic
many-body codes described in Refs. [18,19]. We find generally
good agreement between results of the two codes; this
increases our confidence in validity of our theoretical analysis.

Aluminium has 13 electrons. For the goals of this article, it
may be considered as a monovalent atom with the valence
2p1/2 electron outside a closed-shell 1s22s22p63s2 core.
Calculations start from the relativistic Hartree-Fock (RHF)
method in the V N−1 approximation. This means that the initial
RHF procedure is done for a closed-shell atomic core with
the valence electron removed. After that, the states of the
external electron are calculated in the field of the frozen core.

Correlations are included by means of the correlation potential
method [20]. We use the second-order correlation potential 	̂.

To calculate 	̂ we need a complete set of single-electron
orbitals. We use the B-spline technique [21] to construct
the basis. The orbitals are built as linear combinations of
40 B-splines of order 9 in a cavity of radius 40aB . The
coefficients are chosen from the condition that the orbitals are
the eigenstates of the RHF Hamiltonian Ĥ0 of the closed-shell
core. The 	̂ operator is computed by a direct summation over
complete set of single-electron states.

The correlation potential 	̂ is then used to build a new set
of single-electron states, the so-called Brueckner orbitals, the
eigenstates of the Ĥ0 + 	̂ Hamiltonian. This set is employed
for evaluating the atomic polarizabilites.

Low-lying Brueckner orbitals are good approximations to
the physical states; their energies are close to experimental
energies. Moreover, their quality can be further improved by
rescaling the correlation potential 	̂ to fit the experimental
energies exactly. We do this by replacing the Ĥ0 + 	̂ with
the Ĥ0 + λ	̂ Hamiltonian in which the rescaling parameter λ

is chosen for each partial wave to fit the energy of the first
valence state. The values of λ are λs = 1.03, λp = 0.9, and
λd = 1.7.

Matrix elements of the HFI and electric dipole operators are
computed within the time-dependent Hartree-Fock (TDHF)
method [20,22]. This method is equivalent to the well-known
random-phase approximation. In the TDHF method, the
single-electron wave functions are presented in the form
ψ = ψ0 + δψ , where ψ0 is the unperturbed wave function. It
is an eigenstate of the RHF Hamiltonian Ĥ0: (Ĥ0 − ε0)ψ0 = 0.
δψ is the correction due to external field. It can be found be
solving the TDHF equation

(Ĥ0 − ε0)δψ = −δεψ0 − F̂ψ0 − δV̂ N−1ψ0, (A1)

where δε is the correction to the energy due to external field
(δε ≡ 0 for the electric dipole operator), F̂ is the coupling to
the external field (hyperfine or electric-dipole interaction), and
δV̂ N−1 is the correction to the self-consistent potential of the
core due to external field.

The TDHF equations are solved self-consistently for all
states in the core. Then the matrix elements between any (core
or valence) states i and j are given by

〈ψi |F̂ + δV̂ N−1|ψj 〉. (A2)

The final results were obtained with the RHF ψi and ψj

replaced by the corresponding Brueckner orbitals computed
with rescaled correlation potential 	̂. This approach usually
improves accuracy, as it effectively builds in additional
correlation effects.
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