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We present a discussion of octupole and other O(k2) (k = 2π/λ, where λ is the
photon wavelength) corrections to to the angular distribution of photoelectrons
from noble-gas atoms. These corrections are characterized by four parameters ∆β,
λ, µ, and ν constrained by λ+µ+ν = 0. As an example, we consider photoioniza-
tion of n = 2 shell of neon for photon energies below 2 keV. The resulting angular
distribution accounts for a significant part of the differences between experimen-
tal values of the non-dipole parameters for the n = 2 shell of neon and previous
theoretical predictions.

1 Introduction

The insufficiencies of the dipole approximation in description of photoionization processes
have been noted already at the dawn of quantum mechanics [1]. However, only recently
experiments using synchrotron radiation sources have highlighted nondipole effects in pho-
toionization and provided a detailed information at relatively low photon energies ω < 1
keV. The deviations from the dipole approximation are manifested primarily in the angular
distributions of photoelectrons. Non-dipole contributions in the angular distributions ap-
pearing as interferences between electric dipole and electric quadrupole amplitudes (O(k)
effects) were convincingly demonstrated in recent experiments [2,3,4]. Here we focus on the
theoretical treatment of next-order O(k2) corrections to differential cross-sections arising
due to an additional inclusion of electric-octupole, magnetic-dipole. magnetic-quadrupole
contributions, and retardation effects. These O(k2) corrections were shown [5] to account
for a large part of the previously unexplained differences between theory and experiment [4]
in the non-dipole contributions to the angular distribution of photoelectrons ejected from
the n = 2 shell of neon. In this paper we review our work [5,6,7] and augment it with an
extended discussion of results and the employed formalism.

2 Formalism

2.1 Qualitative consideration

The differential cross-section of photoionization process may be expressed as

dσ

dΩ
= V

α

2π
pE

ω
|〈f |T |i〉|2 . (1)

Here p is a linear momentum of photoelectron with an energy E, and ω is a frequency of
the photon; the initial and final atomic states are designated as |i〉 and |f〉, and V is a
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normalization volume. T represents an operator of interaction with electromagnetic field

T =
∑

i

t(ω, ri) , (2)

with a summation over atomic electrons. Explicitly in the transverse gauge

t(ω, ri) = αi · ε̂ eik·ri , (3)

where ε̂ is the photon polarization vector, k is the photon wave vector |k| = αω, and αi are
the Dirac matrices.

The conventional approach is to expand the exponent in Eq. (3) in powers of k · r

eik·r ≈ 1 + ik · r− 1
2!

(k · r)2 + · · · (4)

The traditional dipole approximation corresponds to setting eik·r ≈ 1; then the transition
operator reduces to the so-called velocity form of the electric-dipole (E1) operator. The
above expansion is closely related to the expansion in terms of electromagnetic multipoles
designated generically as EJ and MJ , J being the multipolarity. The first order term
is related to a linear combination of electric–quadrupole (E2) and magnetic–dipoles (M1)
multipoles. The term quadratic in k corresponds to electric–octupole (E3) and magnetic–
quadrupole (M2) multipoles. The differential cross-section, Eq. (1), is proportional to the
square of the transition amplitude and we may write qualitatively

dσ

dΩ
∝ E1 · E1 +

+ E1 · E2 + E1 ·M1 +
+ E1 · E3 + E2 · E2 + E1 ·M2 +M1 ·M1 + δ(E1 · E1)ret .

Here we combined interferences between multipoles in such a way that the first line
corresponds to the dominant electric-dipole ( O(1)) contributions, the second line is
due to O(k) corrections, and the last line combines O(k2) terms. We also include ef-
fects of retardation in the electric-dipole operator symbolically represented by the term
δ(E1 · E1)ret. A substantial theoretical work has been carried out for O(k) corrections
(see e.g. Ref. [8,9,10,11,12,13,14] and recent studies [15,16,17,18,19,20,21]). Here we fo-
cus on O(k2) contributions to the photoelectron angular distribution. In Ref. [5] we have
demonstrated that the O(k2) corrections account for a substantial fraction of the difference
between theory and experiment [4] for the O(k) non-dipole parameter in neon.

On dimensional grounds, the relative size of the O(k) non-dipole terms is ≈ kab, where
ab is the radius of the orbit of the ionized electron. For example, for the n = 2 shell of neon,
kab ranges from 0.027 at 100 eV to 0.27 at 1 keV. Therefore, one expects to find substantial
corrections to the dipole angular distribution at keV energies. Indeed, in Ref. [4], such
large corrections were observed in photoionization of the n = 2 shell of neon. Similarly, the
ratio of O((kab)2) and O(kab) corrections is also in the order of kab, i.e. we expect a 30%
O((kab)2) correction to the angular distribution truncated at O(kab) level.

2.2 Wave functions

We carry out the calculations in the independent particle approximation (IPA). In the IPA
the initial state |i〉 is represented by the Slater determinant constructed from the orbitals
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comprising the atomic ground state and the final state |f〉 – by the determinant where the
orbital of the ejected electron is replaced by a continuum orbital of the photoelectron. At
large values of electronic coordinate the continuum orbital has to go over to a sum of an
incoming spherical and plane waves [22]. Box-normalized scattering wavefunction satisfying
this boundary condition may be decomposed in partial waves

wpλ =

(
(2π)3

αE pV

)1/2 ∑
κm

(
Ω†

κm (p̂) χσ

)
il−1e−iδκ wκm (r) . (5)

In this equation Ωκm is a spherical spinor, χσ is a two-component spinor describing spin-
polarization of the photoelectron, and κ = (l − j)(2j + 1) is expressed in terms of the
total and orbital angular momenta, and δκ is a phase shift. Wave function wκm (r) may be
expressed in terms of the large (Sκ) and small (Tκ) components satisfying the radial Dirac
equations

wκm (r) =
1
r

(
iSκ(r)Ωκm(r̂)
Tκ(r)Ω−κm(r̂)

)
. (6)

We substitute the continuum, Eq. (5), and bound state b wavefunctions in the expres-
sion for the differential cross-section and average over all possible spin polarizations σ and
magnetic quantum numbers mb of the residual ion

|〈f |T |i〉|2 =
(2π)3

αE pV

∑
κm κ′m′mbσ

[
Ω†

κ′m′ (p̂) χσ

] [
χ†

σ Ωκm (p̂)
]×

{
il−1e−iδκ〈κm|t|κb,−mb〉

} {
il

′−1e−iδκ′ 〈κ′m′|t|κb,−mb〉
}∗

. (7)

The angular dependence on the direction of the photoelectron linear momentum becomes
more explicit by carrying out the summation over spin projections∑

σ

[
Ω†

κ′m′ (p̂) χσ

] [
χ†

σ Ωκm (p̂)
]
= Ω†

κ′m′ (p̂) Ωκm (p̂) =
∑
LML

A
(κmκ′m′)
LML

YLML
(p̂) , (8)

where

A
(κmκ′m′)
LML

= (−1)j
′−m′+ML〈κ′||YL||κ〉

(
j′ L j

−m′ −ML m

)
. (9)

2.3 Multipole expansion

The electromagnetic vector potential may be expanded in the multipole series (see, e.g.,
Ref. [23])

ε̂ eik·r = 4π
∑
JMλ

iJ−λ
(
Y(λ)

JM (k̂) · ε̂
)
a(λ)

JM (r) . (10)

Here Y(λ)
JM are the vector spherical harmonics, described, for example, in Ref. [24]. Photon

multipolarity is designated as J with associated magnetic quantum numbers M . λ = 0
and λ = 1 correspond to magnetic and electric multipoles respectively, and a(λ)

JM (r) are the
multipole potentials. The parity of a multipole potential (Jλ) is given by (−1)J+1+λ.
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The multipole expansion of the electromagnetic vector potential, Eq. (10), leads to a
corresponding multipole expansion of the transition matrix element

t(ω, r) = 4π
∑
JMλ

iJ−λ
(
Y(λ)

JM (k̂) · ε̂
)
τ

(Jλ)
M , (11)

with the spherical tensor operator

τ
(Jλ)
M =

(
α · a(λ)

JM (r)
)

. (12)

The operators τ
(Jλ)
M are related to the conventional multipole operators q

(Jλ)
M as

τ
(Jλ)
M = i

√
(2J + 1)(J + 1)

4πJ
kJ

(2J + 1)!!
q
(Jλ)
M . (13)

For example, the traditional electric-dipole operator r is recovered in the long-wavelength
limit kr 	 1 of q(1 1)

M .
The differential cross-section may be represented as

dσ

dΩ
=

∑
LML

YLML
(p̂)

∑
(Jλ),(J′λ′)

B
(Jλ)(J′λ′)
LML

(14)

with

B
(Jλ)(J′λ′)
LML

=
(2π)4

ω
iJ−λ−J ′+λ′ ∑

κm κ′m′
A

(κmκ′m′)
LML

×
∑

MM ′

(
Y(λ)

JM (k̂) · ε̂
) (

Y(λ′)
J ′M ′(k̂) · ε̂

)∗
× (15)

∑
mb

{
il−1e−iδκ〈κm|τ (Jλ)

M |κb,−mb〉
} {

il
′−1e−iδκ′ 〈κ′m′|τ (J ′λ′)

M ′ |κb,−mb〉
}∗

By applying the Wigner-Eckart theorem and summing over the magnetic quantum numbers
mb of the residual ion and m,m′ of the photoelectron we arrive at

B
(Jλ)(J′λ′)
LML

=
(2π)4

ω
C

(Jλ)(J′λ′)
LML

iJ+λ+J′+λ′
(−1)λ+J′ × (16)∑

κ κ′
(−1)jb+j′

{
J J ′ L
j′ j jb

}
〈κ′||YL||κ〉

{
il−1e−iδκτ (Jλ)

κκb

}{
il

′−1e−iδκ′ τ
(J ′λ′)
κ′κb

}∗
.

Here τ
(Jλ)
κκb are reduced matrix elements and

C
(Jλ)(J′λ′)
LML

= (−1)J+J ′+L
∑

MM ′
(−1)M

′+ML

(
J ′ L J

−M ′ −ML M

)(
Y(λ)

JM (k̂) · ε̂
) (

Y(λ′)
J ′M ′(k̂) · ε̂

)∗

(17)
contains the angular dependence on propagation direction and polarization of the photon.

The following selection rules may be imposed on L

|J − J ′| ≤ L ≤ J + J ′ , (−1)L = (−1)J+λ+J′+λ′
. (18)

The triangular condition follows, e.g., from the examination of the 3j-symbol in Eq. (17)
and the parity rule comes from the inspection of matrix elements in Eq. (16). Indeed, the
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parities of the intermediate states are Pκ = (−1)J+1+λPb and Pκ′ = (−1)J
′+1+λ′Pb and

the reduced matrix element 〈κ′||YL||κ〉 requires (−1)L = PκPκ′ .
We choose the coordinate system in such a way that the photon propagation direction

k̂ is along the z-axis and the polarization ε̂ is along the x-axis (see Fig. 1(a)). Then(
Y(λ)

JM (k̂) · ε̂
)
=

1
4

√
[J ]
π

(
(−1)λδM,1 + δM,−1

)
, (19)

where we used a conventional abbreviation [J ] = 2J + 1. Further

C
(Jλ)(J′λ′)
LML

=
−1
16π

√
[J ][J ′]×{

2
(

J L J ′

−1 0 1

)
δML,0 + (−1)λ

′
(

J L J ′

−1 2 −1

)
(δML,2 + δML,−2)

}
. (20)

To simplify this formula we invoked the parity selection rule, Eq. (18).

2.4 All-multipole angular distribution

By substituting Eq. (20) into Eq. (14), we see that on very general grounds, the photoelec-
tron angular distribution by a linearly polarized photon averaged over photoelectron spin
and magnetic states of the residual ion may be expressed as

dσ

dΩ
=

∞∑
L=0

aLPL(cos θp) +
∞∑

L=2

bLP 2
L(cos θp) cos 2φp . (21)

Here PL(z) are the Legendre polynomials and P 2
L(z) are the second-order associated Legen-

dre polynomials of the first kind. Such an all-multipole formula has been originally derived
by Scofield [13]. The angular photoelectron distribution from an unpolarized light is

dσ

dΩ

∣∣∣∣
unpol

=
∞∑

L=0

aLPL(cos θp) . (22)

Therefore the second sum in Eq. (21) is associated with the light polarization. The Eq. (22)
was originally derived by Bechler and Pratt [8] and by Scofield [13]. Total photoionization
cross-section is given by

σ = 4πa0 . (23)

The angles θp and φp are spherical angles of photoelectron linear momentum p̂ in the
coordinate system where photon propagation direction k̂ is along the z-axis and the polar-
ization ε̂ is along the x-axis (see Fig. 1(a)). The general expression (21) may be rewritten
using spherical angles employed by Cooper [11] and elsewhere (see Fig. 1(b))

dσ

dΩ
=

∞∑
L=0

aLPL(sin θ cosφ) +
∞∑

L=2

bLP 2
L(sin θ cosφ)

cos2 θ − sin2 φ sin2 θ

cos2 θ + sin2 φ sin2 θ
. (24)

It is worth emphasizing that the expression for angular distribution, Eq. (21), exhausts
all possible multipoles. The L-dependent coefficients may be expressed as

aL =
∑

(J ′λ′)≥(Jλ)

a
(J ′λ′)(Jλ)
L =
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Figure 1. Employed reference systems. k is the photon propagation direction and ε is its polarization.

π

k

∑
(J ′λ′)≥(Jλ)

(
1− 1

2
δJJ ′δλλ′

)
(−1)λ+J′

(
J L J ′

−1 0 1

)
c
(Jλ)(J′λ′)
L ,

bL =
∑

(J ′λ′)≥(Jλ)

b
(J ′λ′)(Jλ)
L = (25)

π

ω

√
(L− 2)!
(L+ 2)!

∑
(J ′λ′)≥(Jλ)

(
1− 1

2
δJJ ′δλλ′

)
(−1)L+J

(
J L J ′

−1 2 −1

)
c
(Jλ)(J′λ′)
L ,

with

c
(Jλ)(J′λ′)
L =

kJ+J ′

(2J − 1)!!(2J ′ − 1)!!

√
(J + 1)(J ′ + 1)

JJ ′ [L]× (26)∑
κ κ′

{
J J ′ L
j′ j jb

}
(−1)j

′−jb〈κ′||CL||κ〉 ×

RIL

[(
il−1e−iδκ〈κ||q(Jλ)||nbκb〉

) (
il

′−1e−iδκ′ 〈κ′||q(J ′λ′)||nbκb〉
)∗]

. (27)

Here we introduced a function

RIL [z] =

{
(−1)

J+J′+λ+λ′
2 �[z] : evenL

(−1)
J+J′+λ+λ′+1

2 �[z] : oddL
. (28)

Similar relativistic all-multipole formula has been derived by Scofield [13]. Total photoion-
ization cross-section is given by

σ = 4πa0 . (29)

The term a0 contains no interferences between various multipoles, i.e. it is a sum over
J = J ′, λ′ = λ.
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2.5 High-order interference effects

We introduce a characteristic size of the bound electron orbit ab. In atomic units, this size
is approximately given by 1/Zeff , Zeff being the effective charge felt by the bound electron.
Zeff is in the order of 1 for valence shells.

The matrix elements scale as

q(Jλ) ∼ aJ
b (α/ab)1−λ , (30)

i.e. compared to the EJ multipoles, the matrix elements of magnetic multipoles MJ are
suppressed by a factor of α/ab ∼ αZeff . (We remind that the matrix elements of magnetic-
dipole M1 operator are further reduced by a factor of (αZeff)2. )

c
(Jλ)(J′λ′)
L ∼ (kab)J+J ′+2−λ−λ′

(
1

ωa2
b

)2−λ−λ′

. (31)

We choose (kab) as a “smallness” parameter and designate the leading E1-E1 contribution
(∝ k2) as O(1). According to this classification the O(ka) contributions arise from interfer-
ences of multipoles E1E2 and E1M1, and O((ka)2) from E1E3, E2E2, E1M2, and M1M1.
Using the selection rules (18) we restrict the values of L characterizing contributions to the
angular distribution (21); these values are listed in Table 1.

Table 1. Allowed values of L characterizing contributions to general angular distribution, Eq.(21).

Order Interference L
O(1) E1E1 0, 2

O(ka) E1E2 1, 3
E1M1 1

O((ka)2) E1E3 2, 4
E2E2 0, 2, 4
E1M2 2
M1M1 0, 2

With the aid of this Table we obtain the following contributions to the differential cross-
section:

dσ

dΩ
[O(1)] = aE1E1

0 + aE1E1
2 P2(cos θp) + bE1E1

2 P 2
2 (cos θp) cos 2φp , (32)

dσ

dΩ
[O(ka)] = (aE1E2

1 + aE1M1
1 )P1(cos θp) + aE1E2

3 P3(cos θp) +

bE1E2
3 P 2

3 (cos θp) cos 2φp , (33)
dσ

dΩ
[O((ka)2)] = aE2E2

0 + aM1M1
0 +(

aE1E3
2 + aE2E2

2 + aE1M2
2 + aM1M1

2

)
P2(cos θp) +(

aE1E3
4 + aE2E2

4

)
P4(cos θp) + (34)(

bE1E3
2 + bE2E2

2 + bE1M2
2 + bM1M1

2

)
P 2

2 (cos θp) cos 2φp +
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(
bE1E3
4 + bE2E2

4

)
P 2

4 (cos θp) cos 2φp .

The above differential cross-section may be transformed to the “Cooper” reference frame
(θ, φ) shown in Fig. 1(b)

dσ

dΩ
=

dσ

dΩ
[O(1)] +

dσ

dΩ
[O(ka)] +

dσ

dΩ
[O((ka)2)] =

=
σ̄

4π
{
1 + (β +∆β) P2(cos θ) +

(
δ + γ cos2 θ

)
sin θ cosφ +

+ λP2(cos θ) cos 2φ+ µ cos 2φ+ ν (1 + cos 2φ) P4(cos θ)} . (35)

Here we introduced the total cross-section truncated at O((ka)2) level

σ̄ = 4πā0 = 4π(aE1E1
0 + aE2E2

0 + aM1M1
0 ) . (36)

The conventional dipole O(1) parameter β is

β = −2aE1E1
2 /ā0 . (37)

The O(ka) parameters are

δ =
1
ā0

(
aE1E2
1 + aE1M1

1 + aE1E2
3

)
. (38)

γ = −5
aE1E2
3

ā0
, (39)

and the O((ka)2) parameters are

∆β =
1
ā0

(
−3
4
aE1E3
2 + aE2E2

2

)
, (40)

λ = − 1
ā0

(
2
3
aE1M2
2 +

5
12

aE1E3
2 + aE2E2

2 +
5
6
(aE1E3

4 + aE2E2
4 )

)
, (41)

µ =
1
ā0

(
2
3
aE1M2
2 +

5
12

aE1E3
2 + aE2E2

2 − 1
6
(aE1E3

4 + aE2E2
4 )

)
, (42)

ν =
1
ā0

(
aE1E3
4 + aE2E2

4

)
. (43)

We note that the last three parameters satisfy a relation

ν + λ+ µ = 0 . (44)

Corrections of O(k) to the photoionization differential cross section have been studied
previously in Refs. [8,9,10,11,12,13,14]. The M1 amplitude (consequently aE1M1

1 ) is found
to be negligibly small in the present relativistic calculations and vanishes identically in
the nonrelativistic limit, as pointed out by Cooper [10,11]. In Eq. (35), we followed the
notation of Ref. [10,11] for the O(k) non-dipole corrections to the angular distribution. In
[10,11], one can also find translations to alternative parameterizations of non-dipole angular
distributions used in Refs. [8,9,12,13,14]. It should be mentioned that aE1E2

1 = −aE1E2
3 for

photoionization of ns subshells in nonrelatvistic calculations, and consequently δns = 0
nonrelativistically. In the present relativistic calculations, δns is negligibly small for the 2s
shell of neon.
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To reiterate, the O(k2) corrections to Eq. (35) arise from interference between E1−E3,
E1−M2, E2−E2, E2−M1, M1−M1, and from retardation corrections to the E1−E1
amplitudes. In our calculations, we do not expand out the retardation corrections to the
E1 amplitude in powers of k; rather, we include retardation in the E1 amplitude fully.

3 Example: photoionization of neon

We have carried out detailed numerical studies of the O(k2) corrections for noble-gas atoms
in the independent-particle approximation [7]. Wave functions for bound-state and contin-
uum electrons were obtained by solving the radial Dirac equation in a Hartree potential
modified to produce an orthonormal set of orbitals. Values of the two O(k) parameters
δnκ and γnκ, and the four O(k2) parameters ∆βnκ, λnκ, µnκ, and νnκ were calculated for
energies up to 2 keV ; these results are tabulated and presented graphically in Ref. [7].

The experimental values [4] of the non-dipole parameter for the 2s shell of neon was
found to be somewhat larger than predictions based on theoretical independent-particle
approximation (IPA) calculations of the O(k) corrections [8,9,10,11], while the measured
value of the non-dipole parameter for the 2p subshell was found to be 30% larger than O(k)
theoretical predictions, for energies above 1 keV. It was also found in [4] that the dipole
angular-distribution parameter β disagreed substantially with IPA calculations, but was in
close agreement with correlated calculations carried out in the random-phase approximation
(RPA) [25,26,12]. Electron correlation was thereby found to be responsible for the differ-
ences between IPA calculations of β and experiment. Investigations to determine whether
or not the differences between IPA calculations and experiment for the non-dipole parame-
ters γ and δ were also the results of correlation [6] were negative. In Ref. [6], the correlated
RPA calculations of the non-dipole parameters were found to be in close agreement with the
uncorrelated IPA calculations; both calculations disagreed with the measurements reported
in Ref. [4]. The differences between experimental measurements and calculations were not
explained by including correlation in the O(k) calculations.

The O(k2) corrections were shown [5] to account for the disagreement between theory
and experiment for the neon 2s non-dipole parameter γ2s and to account for a substantial
fraction of the difference between theory and experiment for the 2p non-dipole parameter
γ2p + 3δ2p in neon.

The present values of the two O(k) parameters are in good agrement with the nonrel-
ativistic IPA calculations of Cooper [10,11], which were carried out using Hartree-Slater
wave functions. In Fig. 2, we present values of the O(k2) parameters ∆β, λ, and µ obtained
from our calculations for photon energies below 2 keV. The remaining parameter λ can be
obtained from the values given in Fig. 2 using the relation ν = −λ− µ.

We do not expect correlations to modify the IPA values significantly. Following Ref. [6],
we note that the contributions to O(k2) coefficients are from terms of the form

ρlρl′ cos
(
δl − δl′ − π

2
(l − l′)

)
, (45)

where ρl and ρl′ are radial multipole matrix elements and where δl and δl′ are continuum
orbital phase shifts. The dominant contributions arise when l and l′ take on the maximum
values allowed by angular-momenta selection rules. Thus, the largest contribution to the
E1 −E3 term for 2p photoionization arises from interference of amplitudes involving d and
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Figure 2. O((ka)2) parameters for the 2p shell of neon. We plot ∆β (solid line), λ (dotted line), and µ
(dashed line). Note that ν = −λ − µ. Upper panel: 2p1/2 subshell; Lower panel: 2p3/2 subshell.

g continuum wave functions, while for the E1−M2 and E2−E2 terms, the largest contribu-
tions are from continuum states with l = l′ = d. Therefore, the E1 − E3 contributions are
potentially sensitive to correlations, since δl−δl′ −π(l− l′)/2 is nonvaninshing. However, in
the 1 keV region of photon energies, the value of the cosine in Eq. (45) stays close to -1 and
is, therefore, insensitive to small changes in its argument. It follows that the correlation
corrections to the continuum wave function will have little influence on the leading contri-
butions to the interference terms. The question of the importance of correlation corrections
could be answered more fully in the RPA approach.

In Ref. [4], the O(k) non-dipole parameters γ2s and γ2p+3δ2p in Eq. (35) were determined
by making measurements of the differential cross section for several values of φ at the “magic
angle” θ̄, where P2(cos θ̄) = 0. Indeed, one can define an effective value of γ + 3δ from
Eq. (35) as

(γ + 3δ)eff =

√
27
2

[
σ(θ̄, 0)

σ(θ̄, π/2)
− 1

]
, (46)

≈ γ + 3δ +
√
54(µ− 7ν/18)
1− µ

. (47)

In Eq. (46), we use the notation σ(θ, φ) = dσ
dΩ (θ, φ). The expression in Eq. (47) is obtained

from Eq. (35) and omits terms of O(k3) in the cross section. In Fig. 3, we compare values
of (γ + 3δ)eff and γ + 3δ for the 2s and 2p subshells of neon calculated in the IPA with
experimental results from Hemmers et al. [4]. We see that the experimental results are
uniformly higher than the calculated values of γ+3δ, for energies above 1 keV, but that the
O(k2) corrections contained in (γ+3δ)eff account for a substantial fraction of the differences
between the uncorrected theoretical values of γ + 3δ and experiment.

The contribution from E1 − E3, E2 − E2, and E1 − M2 interferences to the O(k2)
correction are comparable in size. The E1 − E3 contributions aE1E3

2 and aE1E3
4 account
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Figure 3. Comparison of theoretical values of of γ2s and γ2p+3δ2p with experiment for neon. The quantities
with subscript “eff” are corrected for O(k2) effects.

for almost 65% of the total value at 1 keV. The least important contribution is from the
E1−M2 parameter aE1M2

2 which reduces ∆(γ + 3δ) by 10%.

Acknowledgments

This work was supported in part by the National Science Foundation Grants No. Phy-
0099419 and No. PHY99-70666.

References

1. P. Auger and F. Perrin. Le Journal de Physique et le Radium 6, 93 (1927).
2. B. Krassig, M. Jung, D. Gemmell, et al.. Phys. Rev. Lett. 75, 4736 (1995).
3. M. Jung, B. Krassig, D. Gemmell, et al.. Phys. Rev. A 54, 2127 (1996).
4. O. Hemmers, G. Fisher, P. Glans, et al.. J. Phys. B 30, L727 (1997).
5. A. Derevianko, O. Hemmers, S. Oblad, et al.. Phys. Rev. Lett. 84, 2116 (2000).
6. W. R. Johnson, A. Derevianko, K. T. Cheng, et al.. Phys. Rev. A 59, 3609 (1999).
7. A. Derevianko, W. R. Johnson, and K. T. Cheng. At. Data Nucl. Data Tables 73, 153

(1999).
8. A. Bechler and R. H. Pratt. Phys. Rev. A 39, 1774 (1989).
9. A. Bechler and R. H. Pratt. Phys. Rev. A 42, 6400 (1990).

10. J. W. Cooper. Phys. Rev. A 42, 6942 (1990).

NDipICPEAC: 11



11. J. W. Cooper. Phys. Rev. A 47, 1841 (1993).
12. M. Y. Amusia and N. A. Cherepkov. Case Studies in Atomic Physics 5, 47 (1975).
13. J. H. Scofield. Phys. Rev. A 40, 3054 (1989).
14. J. H. Scofield. Phys. Scr. 41, 59 (1990).
15. M. Y. Amusia, A. S. Baltenkov, L. V. Chernysheva, et al.. Phys. Rev. A 63, 052506/1

(2001).
16. N. A. Cherepkov and S. K. Semenov. J. Phys. B 34, L211 (2001).
17. V. K. Dolmatov and S. T. Manson. Phys. Rev. A 63, 022704/1 (2001).
18. W. R. Johnson and K. T. Cheng. Phys. Rev. A 63, 022504/1 (2001).
19. M. Trzhaskovskaya, V. Nefedov, and V. Yarzhemsky. At. Data Nuc. Data Tables 77,

97 (2001).
20. V. Nefedov, V. Yarzhemsky, I. Nefedova, et al.. J. Electr. Spectr. Rel. Phen. 107,

123 (2000).
21. M. B. Trzhaskovskaya, Y. I. Kharitonov, V. I. Nefedov, et al.. Opt. Spectr. 88, 489

(2000). [Opt. Spectr. 88, 489 (2000)].
22. J. R. Taylor. Scattering Theory : The Quantum Theory of Non-Relativistic Collisions.

R.E. Krieger Pub. Co, Malabar, Fla. (1983).
23. W. R. Johnson, D. R. Plante, and J. Sapirstein. Adv. At. Mol. Phys. 35, 255 (1995).
24. D. A. Varshalovich, A. N. Moscalev, and V. K. Khersonsky. Quantum Theory of

Angular Momentum. World Scientific, Singapore (1988).
25. W. R. Johnson and C. D. Lin. Phys. Rev. A 20, 964 (1979).
26. W. R. Johnson and K. T. Cheng. Phys. Rev. A 20, 978 (1979).

NDipICPEAC: 12


