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A relativistic version of the coupled-cluster single-double �CCSD� method is developed for atoms with a
single valence electron. In earlier work, a linearized version of the CCSD method �with extensions to include
a dominant class of triple excitations� led to accurate predictions for energies, transition amplitudes, hyperfine
constants, and other properties of monovalent atoms. Further progress in high-precision atomic structure
calculations for heavy atoms calls for improvement of the linearized coupled-cluster methodology. In the
present work, equations for the single and double excitation coefficients of the Dirac-Fock wave function,
including all nonlinear coupled-cluster terms that contribute at the single-double level, are worked out. Con-
tributions of the nonlinear terms to energies, electric-dipole matrix elements, and hyperfine constants of
low-lying states in alkali-metal atoms from Li to Cs are evaluated and the results are compared with other
calculations and with precise experiments.
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I. INTRODUCTION

A relativistic version of the coupled-cluster single-double
�CCSD� approximation for monovalent atoms is developed.
In this approximation, single and double excitations of the
�frozen-core� Dirac-Fock wave function for an atom with one
valence electron are included to all orders in perturbation
theory. The relativistic CCSD is an extension of an earlier
relativistic single-double �SD� approximation, in which all
nonlinear coupled-cluster terms were omitted. The relativis-
tic SD approximation provides a method closely related to
the configuration-interaction method for including classes of
correlation corrections to Dirac-Fock wave functions to all
orders in perturbation theory. When modified to include the
dominant triple excitations, the SD method led to accurate
predictions for energies, transition matrix elements, life-
times, hyperfine constants, and polarizabilities in alkali-
metal atoms �see, for example, Refs. �1–6��. Owing to recent
improvements in the precision of atomic experiments, it is
important to go beyond the relativistic SD approximation
and include the nonlinear coupled-cluster terms.

The coupled-cluster method is an all-order extension of
many-body perturbation theory introduced into nuclear phys-
ics by Coester and Kümmel �7,8� and adapted to atomic and
molecular physics by Čižek and Paldus �9–11�. A compre-
hensive review of the coupled-cluster method and its appli-
cations in quantum chemistry is given in Ref. �12�. Relativ-
istic CCSD calculations for monovalent atoms have been
carried out previously by Ynnerman et al. �13� for transition
energies in Li-like U, by Eliav et al. �14� for ionization and
excitation energies of alkali-metal atoms, by Lim et al. �15�

for polarizabilities of alkali-metal atoms from Li to element
119, by Mårtensson-Pendrill �16� for charge radii of fran-
cium isotopes, by Landau et al. �17� for electron affinities in
alkali-metal atoms Na to element 119, by Chaudhuri et al.
�18� for ionization and excitation energies in Rb and Cs, by
Porsev and Derevianko �19� for properties of Na, by Derevi-
anko and Porsev �20� for properties of Cs, and by Sahoo et
al. �21� for parity nonconservation in Cs and Ba+. Among the
nonrelativistic applications of the CCSD method to alkali-
metal atoms, we mention those of Lindgren �22� who calcu-
lated energies and hyperfine constants of 2s and 2p states in
Li and Salomonson and Ynnerman �23� who evaluated ener-
gies and hyperfine constants of 3s and 3p states in Na.

The relativistic SD method for alkali-metal atoms was
introduced in Ref. �24�, where it was used to obtain energy
levels, fine-structure intervals, hyperfine constants, and
electric-dipole matrix elements in Li and Be+. Later, the SD
method was applied successfully to study properties of
heavier alkali-metal atoms and monovalent ions �1–6�. De-
spite the success of the SD all-order method �and its exten-
sion to include important triples� in predicting many proper-
ties of monovalent systems, there are various instances
where it fails to produce accurate results. For example, the
magnetic-dipole hyperfine constant for the 7d5/2 state of Fr
calculated using the SD method significantly disagrees with
the experimental value �25�. The nd5/2 hyperfine constants in
Cs provide other such examples �26�. This issue is not lim-
ited to the hyperfine constants; correlation corrections to
electric-dipole 6dj −6pj� matrix elements in Rb are so large
that they change the sign of the matrix elements �4�. The
large differences between third-order and all-order values
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noted in Ref. �4� lead to the conclusion that the omitted
higher-order contributions are significant. Cases where cor-
relation corrections are extremely large lead to poor accuracy
for the SD method, which is generally of high precision; in
such cases, a more accurate treatment of correlations is man-
datory.

Another motivation for further development of the rela-
tivistic SD method is the study of parity nonconservation
�PNC� in heavy atoms. One goal of PNC studies is to pro-
vide atomic-physics tests of the standard model of the elec-
troweak interactions through determination of the weak
charge QW; another is to extract nuclear anapole moments
from PNC measurements. A precise calculation of the PNC
amplitude �together with an uncertainty estimate of the cal-
culation� is necessary to derive a value of the weak charge
QW from experimental measurements. The accuracy of the
most advanced experimental study of PNC �which was car-
ried out in Cs� is 0.3% �27�, while the accuracy of the cor-
responding theoretical calculations is about 0.5% �see �28�
and references therein�. The difference between the value of
QW extracted from experiment and the value inferred from
the standard model stands at 1� �20�. More accurate experi-
ments, coupled with improvements in the calculation of PNC
amplitude, will lead to a more accurate determination of QW
and a more stringent test of the standard model.

Recently, a rather complete treatment of a class of triple
excitations that included the valence electron and two core
electrons was carried out in Refs. �19,20� for Na and Cs,
respectively. Contributions of quadratic valence nonlinear
terms were also calculated and found to be relatively large.
As a result, further development of the all-order method
must include a complete treatment of the nonlinear terms at
the SD level.

In this work, we include all valence and core nonlinear
coupled-cluster corrections to the SD equations, leading to a
complete set of CCSD equations, and we study their effects
on various atomic properties of alkali-metal atoms. In par-
ticular, we calculate ionization energies and hyperfine con-
stants for the ground ns states and the np1/2, np3/2 excited
states of Li, Na, K, Rb, and Cs. Reduced electric-dipole ma-
trix elements for the ns−np1/2 and ns−np3/2 transitions are
also calculated. We give a detailed breakdown of various
nonlinear contributions in order to identify the most impor-
tant effects and to measure the influence of core nonlinear
terms. Comparison of our calculations with other theoretical
calculations and with experimental results is presented.

II. COUPLED-CLUSTER METHOD

In coupled-cluster theory, the wave function of an atom
with one valence electron in a state v is written as

��v� = exp�S���v� , �1�

where ��v� is the lowest-order atomic wave function for
atomic state v, which is taken to be a frozen-core Dirac-Fock
�DF� wave function, and where the wave operator �the op-
erator that maps the DF wave function onto the exact wave
function� is expressed in exponential form exp�S�. The expo-
nential function in Eq. �1� can be expanded to give

��v� = �1 + S + 1
2S2 + ¯ ���v� . �2�

The cluster operator S is expressed as a sum of n-particle
excitations Sn of the lowest-order wave function

S = S1 + S2 + ¯ . �3�

As the number of excitations increases, the complexity of the
wave function increases. The computational complexity rises
dramatically beyond the double excitation term S2. Retaining
only single and double excitations, Eq. �2� may be written

��v� = �1 + S1 + S2 + 1
2S1

2 + S1S2 + 1
6S1

3 + 1
2S2

2 + 1
2S1

2S2

+ 1
24S1

4 + ¯ ���v� . �4�

The one-electron excitation S1 may be either an excitation of
a core electron or an excitation of the valence electron. Cor-
respondingly, the single core and valence excitations are
given by

S1c = �
ma

�maam
† aa,

S1v = �
m�v

�mvam
† av. �5�

Similarly, for double core and valence excitations

S2c =
1

2 �
mnab

�mnabam
† an

†abaa,

S2v = �
mnb

�mnvbam
† an

†abav. �6�

The expansion coefficients �ma and �mv are referred to later
as single core and valence excitation coefficients, while �mnab
and �mnva are referred to as double core and valence excita-
tion coefficients, respectively. In Eqs. �5� and �6�, ai

† and ai
are creation and annihilation operators for an electron state i.
Here and in subsequent formulas, the indices from the begin-
ning of the alphabet a ,b , . . . designate core states, indices
from the middle of the alphabet m ,n , . . . designate excited
states, the index v labels the valence state, and indices i, j, k,
and l designate arbitrary states.

In the SD method, only terms linear in the excitation co-
efficients are retained, and all remaining terms are omitted.
Substituting Eqs. �5� and �6� into Eq. �4� and retaining the
terms linear in the excitation coefficients yields the single-
double �SD� all-order wave function

��v� = �1 + �
ma

�maam
† aa +

1

2 �
mnab

�mnabam
† an

†abaa

+ �
m�v

�mvam
† av + �

mnb

�mnvbam
† an

†abav	��v� . �7�

To derive the equations for the excitation coefficients �see
Ref. �24� for details�, the SD all-order wave function �7� is
substituted into the many-body Schrödinger equation

H��v� = E��v� , �8�

where the Hamiltonian H is the relativistic no-pair Hamil-
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tonian �29�, which can be written in second-quantized form
as H=H0+V, where

H0 = �
i

�i�ai
†ai� , �9�

V =
1

2�
ijkl

gijkl�ai
†aj

†alak� + �
ij

�VDF − U�ij�ai
†aj�

+
1

2�
a

�VDF − 2U�aa. �10�

In the no-pair Hamiltonian, contributions from negative-
energy �positron� states are omitted. Products of operators
enclosed in brackets, such as �ai

†aj
†alak�, designate normal

products with respect to a closed core. The quantity U in Eq.
�10� is the model potential used in the Dirac equation defin-
ing single-particle orbitals. In this work, Uij is taken to be
frozen-core Dirac-Fock potential

Uij = �VDF�ij = �
a

�giaja − giaaj� .

Such a choice of the potential significantly simplifies calcu-
lation since the second term in Eq. �10� disappears. The
quantities gijkl are two-body Coulomb matrix elements:

gijkl =
 d3r
 d3r��i
†�r�� j

†�r��
1

�r − r��
�k�r��l�r�� ,

and the quantity �i in Eq. �9� is the eigenvalue of the Dirac
equation. The third term in Eq. �10� is a c-number and pro-
vides an additive constant to the energy of the atom.

The all-order SD wave function given by Eq. �7� includes
only terms that are linear in the excitation coefficients. In the
present work, we take into account all nonlinear terms that
arise from the single and double excitations. Out of all pos-
sible nonlinear terms, only six terms, 1

2S1
2, S1S2, 1

6S1
3, 1

2S2
2,

1
2S1

2S2, and 1
24S1

4, contribute to the single-double equations.
Explicitly, the nonlinear terms contributing to the core
single-double equations are 1

2S1c
2 , S1cS2c,

1
6S1c

3 , 1
2S2c

2 , 1
2S1c

2 S2c,
and 1

24S1c
4 and the nonlinear terms contributing to the valence

single-double equations are S1cS1v, �S1vS2c ,S1cS2v�, 1
2S1c

2 S1v,
S2cS2v, �S1vS1cS2c , 1

2S1c
2 S2v�, and 1

6S1c
3 S1v.

First, we consider the contributions from the nonlinear
core terms. The first three nonlinear core terms,

T1 =
1

2
S1c

2 =
1

2 �
rscd

�rc�sdar
†as

†adac, �11�

T2 = S1cS2c =
1

2 �
rstcde

�te�rscdar
†as

†at
†aeadac, �12�

T3 =
1

6
S1c

3 =
1

6 �
rstcde

�te�rc�sdar
†as

†at
†aeadac, �13�

contribute to equations for both single- and double-excitation
coefficients, while the last three terms,

T4 =
1

2
S2c

2 =
1

8 �
rstucdef

�rscd�tuefar
†as

†at
†au

†afaeadac, �14�

T5 =
1

2
S1c

2 S2c =
1

4 �
rstucdef

�te�uf�rscdar
†as

†at
†au

†afaeadac,

�15�

T6 =
1

24
S1c

4 =
1

24 �
rstucdef

�rc�sd�te�ufar
†as

†at
†au

†afaeadac,

�16�

contribute to the equation for the double-excitation coeffi-
cients only.

The right-hand side of the single-double equations is ob-
tained by operating on the nonlinear terms above with the
two-particle interaction operator

G =
1

2�
ijkl

gijkl�ai
†aj

†alak� �17�

according to Eq. �10�.
To derive the equation for the core single-excitation coef-

ficients, we extract those terms in GTk �k=1,2 ,3� that are
proportional to am

† aaav
†. To derive the equation for the core

double-excitation coefficients, we extract the terms in GTk

�k=1, . . . ,6� that are proportional to 1
2am

† an
†abaaav

†. In all
cases, we drop terms corresponding to disconnected dia-
grams. Below, we use the notations GTk

s and GTk
d to desig-

nate contribution of the corresponding terms to the single- or
double-excitation equations, respectively. For clarity, we
give the contributions from all terms separately.

The equation for the core single-excitation coefficients
becomes

��a − �m��ma = XSD + GT1
s + GT2

s + GT3
s , �18�

where �i is the one-body DF energy for the state i, XSD is the
contribution from the linear coupled-cluster terms given in
�24�, and the contributions of the nonlinear terms are

GT1
s = �

drs

g̃mdrs�ra�sd − �
cds

g̃cdas�mc�sd, �19�

GT2
s = − �

cdrs

g̃cdsr�rsda�mc − �
cdrs

g̃cdsr�smcd�ra

+ �
cdrs

g̃cdrs�̃rmca�sd, �20�

GT3
s = − �

cdrs

g̃cdsr�mc�rd�sa. �21�

We used the notations g̃mnab=gmnab−gmnba and �̃mnab=�mnab
−�mnba in the above formulas.

The equation for the core double-excitation coefficients is
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��a + �b − �m − �n��mnab

= XSD + GT1
d + GT2

d + GT3
d + GT4

d + GT5
d + GT6

d,

�22�

where

GT1
d = �

rs

gmnrs�ra�sb + �
cd

gcdab�mc�nd

− ��
dr

g̃mdar�rb�nd +  a ↔ b

m ↔ n
�	 , �23�

GT2
d = �− �

cdr

g̃cdrb�nd�̃rmca − �
cdr

g̃cdar�rd�mncb

+ �
cdr

gcdra�rb�nmcd + �
crs

g̃ncrs�rb�̃smca

+ �
crs

g̃ncrs�sc�mrab − �
crs

gncrs�mc�srab +  a ↔ b

m ↔ n
�	 ,

�24�

GT3
d = ��

cdr

gcdar�nd�mc�rb − �
crs

gmcrs�nc�ra�sb +  a ↔ b

m ↔ n
�	 ,

�25�

GT4
d = �

cdtu

gcdtu�tuab�mncd + �
cdtu

g̃cdtu�̃mtac�̃undb

− ��
cdtu

g̃cdtu��tubd�mnac + �mucd�ntba� +  a ↔ b

m ↔ n
�	 ,

�26�

GT5
d = �

cdtu

gcdtu��ta�ub�mncd + �mc�nd�tuab�

− ��
cdtu

g̃cdut�tb�uc�mnad + �
cdtu

g̃cdtu�tc�nd�muab

+ �
cdtu

g̃cdtu�tb�nc�̃muad +  a ↔ b

m ↔ n
�	 , �27�

GT6
d = �

cdtu

gcdtu�ta�ub�mc�nd. �28�

All nonlinear contributions to double-excitation coefficients
are symmetrized to preserve the property �mnab=�nmba.

Only one nonlinear term, GT1= 1
2GS1c

2 , contributes to the
equation for the core correlation energy:

�Ec = �Ec
SD + �

abmn

1

2
g̃abmn�ma�nb, �29�

where �Ec
SD is the core correlation energy obtained with lin-

earized SD wave function �7�:

�Ec
SD =

1

2 �
mnab

gabmn�̃mnab.

We note that the summation over each index, for example i,
involves summing over the principal quantum number ni, the
relativistic angular momentum quantum number 	i, and the
magnetic quantum number mi. The sum over the magnetic
quantum numbers is carried out analytically and the final
formulas are given in the Appendix.

The equations for the valence excitation coefficients �mv
and �mnvb are identical to the core equations given by Eqs.
�18�–�28� with replacement of index a by index v and addi-
tion of the valence correlation energy �Ev into the parenthe-
ses on the left-hand side of both equations, i.e.,

��v − �m + �Ev��mv = XSD + �GT1
s + GT2

s + GT3
s�a→v,

�30�

��v + �b − �m − �n + �Ev��mnvb

= XSD + �GT1
d + GT2

d + GT3
d + GT4

d + GT5
d + GT6

d�a→v.

�31�

The valence correlation energy �Ev is given by

�Ev = �Ev
SD − �

cdt

g̃cdvt�td�vc + �
dtu

g̃vdtu�tv�ud

− �
cdtu

g̃cdut�vc�utvd − �
cdtu

g̃cdut�tv�uvcd

+ �
cdtu

g̃cdtu�̃vtvc�ud − �
cdtu

g̃cdut�td�uv�vc. �32�

The term �Ev
SD represents the expression for the valence cor-

relation energy without the nonlinear terms �24�:

�Ev
SD = �

ma

g̃vavm�ma + �
mab

gabvm�̃mvab + �
mnb

gvbmn�̃mnvb.

The nonlinear contributions to the valence correlation energy
arise from the S1cS1v, �S1vS2c ,S1cS2v�, and 1

2S1c
2 S1v terms.

We solve the SD equations using a finite basis set. Each
orbital wave function is represented as a linear combination
of the B splines. We consider a radial grid of 250 points
within a sphere of radius 100 a.u. We include 35 out of 40
basis orbitals for each angular momentum and include all
partial waves with l
6 in our calculations. A detailed de-
scription of the B-spline method is given in Ref. �30�. We
treat the nonlinear terms on the same footing with the linear
terms, i.e., all the linear and nonlinear terms are iterated to-
gether. First, the equations for the single core and double
core excitation coefficients are iterated until the core corre-
lation energy given by Eq. �29� converges to relative accu-
racy �=10−5. Then, the valence equations are iterated until
the valence correlation energy given by Eq. �32� converges
to the relative accuracy �. Atomic properties can be evalu-
ated once the values of the excitation coefficients are known,
as briefly described below.

Matrix elements of a one-body operator Z=�ijZijai
†aj are

determined using the formula
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Zwv =
��w�Z��v�

���v��v���w��w�
. �33�

Substituting the expression for the wave function from Eq.
�7� in the above equation and simplifying, one finds

Zwv = �wvZcore +
Zval

��1 + Nv��1 + Nw�
, �34�

where Zcore, Zval, Nv, and Nw are linear or quadratic functions
of the single- and double-excitation coefficients written out
in Refs. �1,24�.

In general, the nonlinear terms coming from expanding
the exponent in the CC wave function also contribute to the
expressions to matrix elements. Even at the CCSD truncation
level, one encounters an infinite number of such contribu-
tions. A rigorous method of partial summation �dressing� of
the resulting series was devised in Ref. �31�. The method is
built upon expanding a product of cluster amplitudes into a
sum of n-body insertions. Although in the present paper we
do not include these direct nonlinear contributions to matrix
elements, calculations �20� show that dressing may contrib-
ute as much as a few 0.1% to hyperfine constants in Cs.

III. RESULTS AND DISCUSSION

A. Energies

Table I shows a detailed breakdown of contributions from
nonlinear terms to the removal energies of the alkali-metal
atoms Li, Na, K, Rb, and Cs. To illustrate the relative impor-
tance of the various terms, we conducted five separate calcu-
lations for each atom. Each subsequent calculation includes
all terms in the previous calculation together with additional
terms, the effect of which is being determined. For clarity,
we describe each of the calculations below.

�1� Linearized SD calculation, with all nonlinear terms
omitted. The results of this calculation are listed in the rows
labeled “SD.”

�2� All nonlinear terms are included in the core equations
only, all nonlinear valence terms are omitted. The differences
of those values and the SD results are listed in rows labeled
“Core NL terms.”

�3� All nonlinear terms are included in the core equations
and the quadratic term S2cS2v is included in the valence equa-
tions. The differences with the calculation �2� give the con-
tributions from the nonlinear valence term S2cS2v and are
listed in the rows labeled accordingly.

�4� All nonlinear terms are included in the core equations,
and all remaining quadratic terms are included in the valence
equations. The differences between those values and the re-
sults of the calculation �3� give the contributions of the
S1cS1v and �S1vS2c ,S1cS2v� quadratic valence terms.

�5� Final calculation: all nonlinear terms are included in
the core and valence equations. The results of this calculation
are listed in the rows labeled “Total.” The differences be-
tween those values and the results of the calculation �4� give
the contributions of the cubic and quartic nonlinear terms
that are listed in rows labeled “Other valence NL SD terms.”

In all of the cases considered here, the addition of the
nonlinear terms results in a decrease in the correlation con-

tributions to the removal energies. From Table I, we see that
while the contribution of the core nonlinear terms to the
removal energies is negligible compared to contribution of
the valence nonlinear terms for the ground states of Na, it
becomes significant �over 10% of the total NL contribution
and about 1% of the total correlation energy� for all states of
K, Rb, and Cs considered here. Furthermore, the contribution

TABLE I. Contributions of the nonlinear �NL� terms to removal
energies for Li, Na, K, Rb, and Cs. A detailed description of all
contributions is given in text. SD designates the correlation correc-
tions to the energies calculated using the SD method. All results are
in cm−1.

Li 2s1/2 2p1/2 2p3/2

SD 406.0 352.1 352.0

Core NL terms 0.9 0.1 0.1

S2cS2v −5.1 −4.2 −4.2

S1cS1v, �S1vS2c ,S1cS2v� −2.6 −0.9 −0.9

Other valence NL SD terms 0.0 0.0 0.0

Total 399.2 347.1 347.0

Na 3s1/2 3p1/2 3p3/2

SD 1483.3 462.0 459.8

Core NL terms 0.5 2.6 2.5

S2cS2v −44.3 −15.3 −15.3

S1cS1v, �S1vS2c ,S1cS2v� −23.8 −10.2 −10.1

Other valence NL SD terms 0.0 0.0 0.0

Total 1415.6 439.1 436.9

K 4s1/2 4p1/2 4p3/2

SD 2869.7 1114.3 1100.5

Core NL terms 26.8 11.3 11.2

S2cS2v −142.5 −59.1 −58.5

S1cS1v, �S1vS2c ,S1cS2v� −62.9 −34.4 −34.3

Other valence NL SD terms 0.1 0.1 0.1

Total 2691.2 1032.2 1019.1

Rb 5s1/2 5p1/2 5p3/2

SD 3423.2 1301.1 1236.3

Core NL terms 31.7 13.5 13.1

S2cS2v −185.4 −76.7 −73.2

S1cS1v, �S1vS2c ,S1cS2v� −105.0 −47.9 −46.3

Other valence NL SD terms 0.3 0.1 0.1

Total 3164.8 1190.1 1130.0

Cs 6s1/2 6p1/2 6p3/2

SD 3881.5 1618.7 1442.3

Core NL terms 44.3 18.1 16.8

S2cS2v −224.4 −107.3 −96.3

S1cS1v, �S1vS2c ,S1cS2v� −162.4 −74.6 −68.3

Other valence NL SD terms 0.9 0.4 0.4

Total 3539.9 1455.3 1294.9
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from core NL terms is opposite in sign to that from the
valence nonlinear contribution.

The S2cS2v term gives the dominant nonlinear contribu-
tion, as expected. More than half of the contribution from
nonlinear terms to the removal energy arises from this term.
However, contributions from other quadratic terms, S1cS1v
and �S1vS2c ,S1cS2v�, are also significant. Finally, the contri-
butions from terms 1

2S1c
2 S1v, �S1vS1cS2c , 1

2S1c
2 S2v�, and

1
6S1c

3 S1v, i.e., terms that are cubic or quartic in the excitation
coefficients, are negligible. For Li and Na, contributions
from these terms are essentially zero; for K, Rb, and Cs, the
contributions are less than 0.5% of the total from all nonlin-
ear terms. The breakdown of contributions from the valence
NL terms is essentially identical for all states of Na, K, Rb,
and Cs under consideration. The total contribution of the NL
terms to the correlation energies of the lowest three states of
Na, K, Rb, and Cs is remarkably large; it is about 1.5% of
the linear SD correlation energy for Li, 5% for Na, and 9%
for Cs.

In Table II, we compare our results for the correlation
with the linearized all-order calculations of Ref. �2� that par-
tially include triple excitations, CCSD calculations of Ref.
�14�, the CCSD�T� calculations of Ref. �18�, and with the
experimental energies �32�. The values in the rows labeled
“SD” are the sum of lowest-order �DF� energies, the SD
contributions given in Table I, and the extrapolated contribu-
tions of the higher partial waves �Eextrap�; the values in the
rows labeled “CCSD” are the sums of the DF, SD, nonlinear
contributions, and Eextrap. The CCSD values should agree
with the calculation of Ref. �14� within the numerical uncer-
tainties of the calculations. Significant differences between
all-order SD results and CCSD results were noted earlier in
Ref. �2�, indicating that NL terms may be large. In this work,
we find a good agreement between our CCSD values and the
results of Ref. �14�. The remaining discrepancies can be ex-
plained by the differences in some numerical details of the
calculations. In our calculations, we truncated the number of
partial waves included in all sums over excited states at
lmax=6. Contributions from partial waves with l�6 are ex-
trapolated in second order �see �3� for details of the extrapo-
lation procedure�. The resulting correction increase for
heavier alkali-metal atoms and is about 0.1% of the total
energy of the 6s state in Cs. The differences between our
values and those of Ref. �14� are of the same order of mag-
nitude as the Eextrap contributions.

The SD approximation omits contributions to energies of
third order in perturbation theory that arise from triple exci-
tations. These missing third-order terms were included in the
calculation of Ref. �2�. The size of these terms is approxi-
mately given by the differences between values listed in
rows “SD” and “SD �2�.” The calculation of Ref. �14� omits
these terms entirely. Interestingly, these terms are of nearly
the same magnitude as the NL terms and of the same sign. As
a result, both calculation of Ref. �2�, that omitted NL terms,
and of Ref. �14�, that omitted missing third-order terms, were
in quite good agreement with experiment. It was shown in
�19,20� that actual iterated triple contribution significantly
differs from the third-order values. For this reason, and to
make a clear comparison with previous CCSD results, we

omit all triple contributions in this calculation. For Rb and
Cs, we also list values from the CCSD�T� calculations of
Ref. �18� in the rows labeled “CCSD �18�” that include con-
tributions from triple excitations, but omit the odd-parity
channels.

B. Reduced electric-dipole matrix elements

Table III gives the detailed breakdown of the contribu-
tions of the nonlinear terms to the reduced electric-dipole
matrix elements for Li, Na, K, Rb, and Cs. This table is
structured in exactly the same way as Table I; the only ex-
ception is that we added lowest-order DF values to the lin-
earized SD values in rows labeled “SD.” The breakdown of
the nonlinear terms is identical to the breakdown for corre-

TABLE II. Comparison of the all-order removal energies with
the theoretical results obtained by the coupled-cluster method
�14,18� and experiment. All the values are in cm−1.

Li 2s1/2 2p1/2 2p3/2

SD 43494 28586 28585

CCSD 43488 28581 28580

Expt. �32� 43487 28584 28583

Na 3s1/2 3p1/2 3p3/2

SD 41444 24495 24476

CCSD 41376 24472 24453

SD �2� 41447 24494 24477

CCSD �14� 41352 24465 24447

Expt. �32� 41449 24493 24476

K 4s1/2 4p1/2 4p3/2

SD 35258 22219 22066

CCSD 35080 22044 21984

SD �2� 34962 22023 21966

CCSD �14� 35028 22016 21957

Expt. �32� 35010 22025 21967

Rb 5s1/2 5p1/2 5p3/2

SD 34021 21241 20994

CCSD 33762 21130 20888

SD �2� 33649 21111 20875

CCSD �14� 33721 21117 20877

CCSD �18� 33603 21080 20831

Expt. �32� 33691 21112 20874

Cs 6s1/2 6p1/2 6p3/2

SD 31871 20421 19842

CCSD 31529 20258 19695

SD �2� 31262 20204 19652

CCSD �14� 31443 20217 19669

CCSD �18� 31250 20137 19574

Expt. �32� 31407 20228 19674
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lation energies. The major contribution comes from the term
S2cS2v as in the case of the removal energies. Also, there is
almost no contribution from terms which are cubic or quartic
in the excitation coefficients. The core nonlinear terms and
the cubic and quartic valence nonlinear terms decrease the
E1 reduced matrix elements, while the quadratic valence
nonlinear terms increase these values. The only exception to
the statement above is the contribution of the core nonlinear
terms for Na which behaves in the opposite manner. Since
the contribution of the quadratic valence nonlinear terms out-
weighs the contribution of all the other terms, the ultimate
effect is an increase in values of the reduced electric-dipole
matrix elements. As in the case of the correlation energies,
the contribution of the NL terms is rather large, especially for
heavy alkali metals where it reaches 1.5%. The comparison
of our results with the experiment �33,34� is also given in
Table III. Addition of nonlinear terms results in a deteriora-
tion of the agreement with experimental values as expected
from �19,20� owing to significant cancellation between the
valence NL and valence triple terms. A very interesting find-
ing of this work is relatively large contribution of the core
nonlinear terms for heavy alkali-metal atoms. While the core
nonlinear term is entirely negligible for Na, it is found to be
0.2% for Cs.

C. Hyperfine constants

We calculate the magnetic-dipole hyperfine constants A
for the ns1/2 ground states and the np1/2, np3/2 excited states
of Li, Na, K, Rb, and Cs. The nuclear magnetization density
is described by a Fermi distribution with half-density radius
c and 90%–10% falloff thickness t=2.3 fm. Table IV lists
values of the parameter c �fm� used for magnetization distri-
bution and the gyromagnetic ratio gI for each of the alkali-
metal atoms. The nuclear magnetic moments were taken
from Ref. �35� and weighted averages were considered when
more than one value was present.

Contributions of the various nonlinear terms to the hyper-
fine constants are given in Table V. The comparison of our
results with experiment �36–43� is also given. The structure
of Table V is identical to that of Table III. The “SD” values
are the sum of the lowest-order DF values and correlation
correction calculated in the absence of the NL terms. Addi-
tion of the nonlinear terms resulted in a decrease in the val-
ues of the hyperfine constants in comparison to the linearized

TABLE III. Contributions of the nonlinear terms to the ns1/2

−np1/2 and ns1/2−np3/2 reduced electric-dipole matrix elements for
Li, Na, K, Rb, and Cs. The final values are compared with experi-
mental results. All values are given in atomic units �ea0, where a0 is
the Bohr radius�.

Li 2s1/2−2p1/2 2s1/2−2p3/2

SD 3.31654 4.69033

Core NL terms −0.00007 −0.00008

S2cS2v 0.00063 0.00088

S1cS1v, �S1vS2c ,S1cS2v� 0.00020 0.00028

Other valence NL SD terms 0.00000 0.00000

Total 3.31730 4.69141

Expt. �33� 3.317�4� 4.689�5�

Na 3s1/2−3p1/2 3s1/2−3p3/2

SD 3.53099 4.99314

Core NL terms 0.00005 0.00006

S2cS2v 0.00487 0.00690

S1cS1v, �S1vS2c ,S1cS2v� 0.00211 0.00297

Other valence NL SD terms 0.00000 0.00000

Total 3.53802 5.00307

Expt. �33� 3.5246�23� 4.9838�34�

K 4s1/2−4p1/2 4s1/2−4p3/2

SD 4.09820 5.79392

Core NL terms −0.00474 −0.00669

S2cS2v 0.02261 0.03198

S1cS1v, �S1vS2c ,S1cS2v� 0.00873 0.01231

Other valence NL SD terms −0.00002 −0.00003

Total 4.12478 5.83149

Expt. �33� 4.102�5� 5.800�8�

Rb 5s1/2−5p1/2 5s1/2−5p3/2

SD 4.22005 5.95527

Core NL terms −0.00649 −0.00913

S2cS2v 0.03230 0.04564

S1cS1v, �S1vS2c ,S1cS2v� 0.01533 0.02156

Other valence NL SD terms −0.00004 −0.00006

Total 4.26115 6.01328

Expt. �33� 4.231�3� 5.977�4�

Cs 6s1/2−6p1/2 6s1/2−6p3/2

SD 4.48157 6.30391

Core NL terms −0.01057 −0.01482

S2cS2v 0.04585 0.06437

S1cS1v, �S1vS2c ,S1cS2v� 0.02762 0.03865

Other valence NL SD terms −0.00015 −0.00021

Total 4.54432 6.39190

Expt. �34� 4.4890�65� 6.3238�73�

TABLE IV. Values of the Fermi half-density c �fm� parameter
used for magnetization distribution and gyromagnetic ratio gI �in
units of the nuclear magneton� which were used to calculate hyper-
fine constants.

Atom c gI

7Li 1.7995 2.17093
23Na 2.8853 1.4784
39K 3.6108 0.260993
85Rb 4.8708 0.54136
133Cs 5.6748 0.737886
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SD values. The NL core terms and the cubic and quartic
valence nonlinear terms contribute with a positive sign to the
hyperfine constants, while the quadratic valence nonlinear
terms contribute with negative sign for K, Rb, and Cs. For
Na and Li, all core and valence nonlinear terms contribute
with the same sign. The most significant difference between
the NL contributions to the hyperfine constants and to the
removal energies and E1 matrix elements is that the contri-
bution of the S2cS2v terms is smaller than the contribution of
the other three quadratic valence nonlinear terms S1cS1v,
�S1vS2c, S1cS2v� for the ground states of Na, K, Rb, and Cs.
The breakdown is also different for the ns, np1/2, and np3/2
hyperfine constants while it is very uniform for all energies
and E1 matrix elements considered here. The contributions
of the core NL terms are particularly large for the hyperfine
constants, almost 1% of the total values for Cs.

IV. CONCLUSION

We have extended the relativistic SD method to include
all nonlinear terms at the SD level. The effect of the nonlin-
ear terms on the removal energies, hyperfine constants, and
electric-dipole matrix elements of the alkali-metal atoms
from Li to Cs was systematically investigated. In particular,
five different calculations were carried out to establish the
importance of the various contributions for each alkali-metal
atom. The effect of the core nonlinear terms was found to be
not negligible for heavier alkali metals, reaching nearly 1%
of the total values of the Cs hyperfine constants. Among
other terms, the S2

2 term was found to be dominant for re-
moval energies and electric-dipole matrix elements with
other quadratic terms being also significant. In the case of the
hyperfine constants, the contributions of the other quadratic
terms exceeded that of the S2

2 term for most cases. The con-
tribution of the cubic and quartic terms was found to be
negligible in all cases considered in the present work. Inclu-
sion of nonlinear terms in the single-double all-order method
is a significant step toward further development of high-
precision methodologies for the calculation of the atomic
properties.
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APPENDIX: ANGULAR REDUCTION

1. Designations and definitions

The Coulomb interaction gmnab is decomposed into the
product of a term Jk�mnab�,

TABLE V. Contributions of nonlinear terms to the magnetic-
dipole hyperfine constants A �MHz� of Li, Na, K, Rb, and Cs and
comparison with experimental results. The experimental values are
from Ref. �36� unless noted otherwise.

Li 2s1/2 2p1/2 2p3/2

SD 395.232 45.176 −2.291
Core NL terms −0.025 −0.005 0.006
S2cS2v −1.439 −0.212 0.167
S1cS1v, �S1vS2c ,S1cS2v� −0.183 −0.002 −0.011
Other valence NL SD terms 0.000 0.000 0.000
Total 393.585 44.957 −2.129
Expt. 401.75a 46.17�35�b −3.07�13�c

Na 3s1/2 3p1/2 3p3/2

SD 888.286 95.050 18.854
Core NL terms −0.663 −0.242 −0.057
S2cS2v −2.645 −1.022 −0.193
S1cS1v, �S1vS2c ,S1cS2v� −4.878 −0.696 −0.174
Other valence NL SD terms 0.001 0.000 0.001
Total 880.101 93.090 18.431
Expt. 885.8 94.44�13�d 18.534�15�e

K 4s1/2 4p1/2 4p3/2

SD 237.159 28.696 6.214
Core NL terms 0.457 0.138 0.032
S2cS2v −2.783 −0.798 −0.123
S1cS1v, �S1vS2c ,S1cS2v� −3.208 −0.489 −0.145
Other valence NL SD terms 0.007 0.002 0.001
Total 231.632 27.549 5.979
Expt. 230.85 28.85�30� 6.09�4�

Rb 5s1/2 5s1/2 5p3/2

SD 1051.554 125.624 25.560
Core NL terms 5.319 0.710 0.155
S2cS2v −14.198 −4.091 −0.577
S1cS1v, �S1vS2c ,S1cS2v� −22.636 −3.058 −0.816
Other valence NL SD terms 0.047 0.007 0.002
Total 1020.086 119.192 24.324
Expt. 1011.9 120.7�1� 25.029�16�

Cs 6s1/2 6p1/2 6p3/2

SD 2439.053 311.138 51.900
Core NL terms 20.455 2.604 0.475
S2cS2v −39.441 −12.871 −1.137
S1cS1v, �S1vS2c ,S1cS2v� −80.300 −11.259 −2.489
Other valence NL SD terms 0.321 0.043 0.015
Total 2340.088 289.655 48.764
Expt. 2298.2 291.89�8�f 50.275�3�g

aReference �37�.
bReference �38�.
cReference �39�.
dReference �40�.
eReference �41�.
fReference �42�.
gReference �43�.
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Jk�mmab� = �
q

�− 1� jm−mm+jn−mn+k−q

� jm k ja

− mm − q ma
� jn k jb

− mn q mb
� ,

�A1�

depending on only the angular momentum quantum numbers
ji and mi of the four states �m ,n ,a ,b�, and a term Xk�mnab�
depending only on the principal quantum numbers ni and
angular quantum numbers 	i of the states:

gmnab = �
k

Jk�mnab�Xk�mnab� . �A2�

Here

Xk�mnab� = �− 1�k�	m�Ck�	a��	n�Ck�	b�Rk�mnab� .

�A3�

The quantities Rk�mnab� are �relativistic� Slater integrals and
�	m �Ck �	a� is a reduced matrix element of a normalized
spherical harmonic. The quantities Zk�mnab� are given by

Zk�mnab� = Xk�mnab� + �
k�

�k�� jm ja k

jn jb k�
�Xk��mnba� ,

where �k�=2k+1. Double excitation coefficients have the
same angular structure as Coulomb matrix elements:

�mnab = �
k

Jk�mnab�Sk�mnab�

and the quantities S̃k�mnab� are defined in the same way as
Zk�mnab�. The angular reductions for the single-excitation
coefficients are defined as follows:

�ma = �	m	a
�mmma

S�ma� ,

�mv = �	m	v
�mmmv

S�mv� , �A4�

where 	 is the relativistic angular momentum quantum num-
ber defined as

	 =  �j + 1/2� for j = l ± 1/2.

2. Angular decomposition of terms contributing
to the equation for core single-excitation coefficients

GT1
s = �

drs

��jd�
�ja�

Z0�mdrs�S�ra�S�sd�

− �
cds

��jd�
�ja�

Z0�cdas�S�mc�S�sd� ,

GT1
s = − �

cdrsl

�− 1�r+s−a−d

�l��ja�
Zl�cdsr�Sl�rsda�S�mc�

− �
cdrsl

�− 1�c+s−a−d

�l��ja�
Zl�cdsr�Sl�smcd�S�ra�

+ �
cdrs

��jd�
�ja�

� jrjc
Z0�cdrs�S̃0�rmca�S�sd� ,

GT3
s = − �

cdrs

��jd�
�ja�

Z0�cdsr�S�mc�S�rd�S�sa� .

3. Angular decomposition of the terms contributing to the equation for core double-excitation coefficients

GT1
d = �

rs

Xl�mnrs�S�ra�S�sb� + �
cd

Xl�cdab�S�mc�S�nd� − ��
dr

Zl�mdar�S�rb�S�nd� +  a ↔ b

m ↔ n
�	 ,

GT2
d = �

cdr

�− 1�c+r+l

�l�
Zl�cdrb�S̃l�rmca�S�nd� − �

cdr

��jr�
�ja�

� jcja
Z0�cdar�Sl�mncb�S�rd� + �

cdrjk

�− 1�n+m+a+b�l�� k l j

ja jd jm
�

�� k l j

jb jc jn
�Xj�cdra�Sk�nmcd�S�rb� − �

crs

�− 1�l+c+s

�l�
Zl�ncrs�S̃l�smca�S�rb� + �

crs

��jc�
�jn�

� jrjn
Z0�ncrs�Sl�mrab�S�sc�

− �
crsjk

�− 1�n+m+a+b�l�� k l j

jn js jb
�� k l j

jm jr ja
�Xj�ncrs�Sk�srab�S�mc� +  a ↔ b

m ↔ n
� ,

GT3
d = �

cdr

Xl�cdar�S�nd�S�mc�S�rb� − �
crs

Xl�mcrs�S�nc�S�ra�S�sb� +  a ↔ b

m ↔ n
� ,
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GT4
d = �

cdtu
�

k1k2k3k

�− 1�a+b+t+u�l��k��k1 k3 k

jm jt jc
��k1 k3 k

jn ju jd
��k2 k l

jm ja jt
��k2 k l

jn jb ju
�Xk1

�cdtu�Sk2
�tuab�Sk3

�mncd�

+ �
cdtu

�− 1�c+d+t+u

�l�2 Zl�cdtu�S̃l�mtac�S̃l�undb� − � �
cdtuk

�− 1�c+d+t+u

�l��jb�
� jbjc

Zk�cdtu�Sk�tubd�Sl�mnac�

+ �
cdtuk

�− 1�c+d+t+u

�l��jm�
� jtjm

Zk�cdtu�Sk�mucd�Sl�ntba� +  a ↔ b

m ↔ n
�	 ,

GT5
d = �

cdtujk

�− 1�n+m+a+b�l�� k l j

jb jd jn
�� k l j

ja jc jm
�Xj�cdtu�Sk�mncd�S�ta�S�ub� + �

cdtujk

�− 1�n+m+a+b�l�� k l j

jn ju jb
�

�� k l j

jm jt ja
�Xj�cdtu�Sk�tuab�S�mc�S�nd� − ��

cdtu

��jc�
�jb�

� jdjb
Z0�cdut�Sl�mnad�S�tb�S�uc�

+ �
cdtu

��jc�
�jn�

� jnju
Z0�cdtu�Sl�muab�S�tc�S�nd� + �

cdtu

�− 1�u−d+l

�l�
Zl�cdtu�S̃l�muad�S�tb�S�nc� +  a ↔ b

m ↔ n
�	 ,

GT6
d = �

cdtu

Xl�cdtu�S�ta�S�ub�S�mc�S�nd� .

4. Angular decomposition of terms contributing to the core and valence energies

�Ec
NL =

1

2
��ja��jb�Z0�abmn�S�ma�S�nb� ,

�Ev
NL = − �

cdt

��jd�
�jv�

Z0�cdvt�S�td�S�vc� + �
dtu

��jd�
�jv�

Z0�vdtu�S�tv�S�ud� − �
cdutk

1

�k��jv�
Zk�cdut�Sk�utvd�S�vc�

− �
cdutk

1

�k��jv�
Zk�cdut�Sk�uvcd�S�tv� + �

cdtu

��jd�
�jv�

Z0�cdtu�S0�vtvc�S�ud� + �
cdtu

��jd�
�jv�

Z0�cdut�S�td�S�uv�S�vc� .
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