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Hyperfine quenching rates of the lowest-energy metastable3P0 and3P2 states of Mg, Ca, Sr, and Yb atoms
are computed. The calculations are carried out usingab initio relativistic many-body methods. The computed
lifetimes may be useful for designing novel ultraprecise optical clocks and trapping experiments with the3P2

fermionic isotopes. The resulting natural widths of the3P0- 1S0 clock transition are 0.44 mHz for25Mg,
2.2 mHz for43Ca, 7.6 mHz for87Sr, 43.5 mHz for171Yb, and 38.5 mHz for173Yb. Compared to the bosonic
isotopes, the lifetime of the3P2 states in fermionic isotopes is noticeably shortened by the hyperfine quenching
but still remains long enough for trapping experiments.
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I. INTRODUCTION

This work is motivated by emerging experiments with
cold divalent atoms Mg, Ca, Sr, and Yb[1]. For example, the
recently attained Bose-Einstein condensate of the ground-
state Yb[2] may offer new insights into the physics of de-
generate quantum gases due to a vast number of available
isotopes and relative simplicity of molecular potentials. As to
the 3P2 metastable states(see Fig. 1), it was realized that the
nonscalar nature of the3P2 states may be used to overcome
the unfeasibility of magnetic trapping of the spherically sym-
metric 1S0 ground states[3–6]. Knowing radiative lifetimes
of the other3P0 metastable states is required in developing
the next generation of ultraprecise optical atomic clocks
[7–10]. Here the clockwork is based on cold atoms confined
to sites of an engineered optical lattice. The lifetime deter-
mines the natural width of the clock transition between the
ground and the3P0 state.

For all bosonic isotopes of Mg, Ca, Sr, and Yb, the
nuclear spinI vanishes and these isotopes lack hyperfine
structure. For bosonic isotopes the3P0 state may decay only
via very weak multiphoton(e.g.,E1-M1) transitions. How-
ever, for fermionic isotopes(Table I), I Þ0, a new radiative
decay channel becomes available due to the hyperfine inter-
action (HFI). The HFI, although small, admixes atomic lev-
els of the total angular momentumJ=1 thus opening an
electric-dipole branch to the ground state. The resulting HFI-
induced E1 decays do determine the lifetimes of the3P0
states. As to the3P2 states, here the single-photon decays are
allowed, but being of non-E1 character, are very weak. The
lifetimes are long and range from 15 s for Yb to 2 h for Ca
[11,12]. As we demonstrate here, depending on an isotope,
the hyperfine quenching of the3P2 states is either compa-
rable to or is much faster than the small non-E1 rates.

A detailed theoretical analysis of the hyperfine quenching
has been limited so far to astrophysically important He, Be,
and Mg and their isoelectronic sequences[13–16]. The hy-
perfine quenching of the3P0 states of Sr and Yb has been
estimated in Refs.[7,10]. Here we carry outab initio rela-
tivistic many-body atomic structure calculations to extend
and refine these previous studies. We find that the resulting
natural widths of the3P0–1S0 clock transition are 0.44 mHz

for 25Mg, 2.2 mHz for43Ca, 7.6 mHz for87Sr, 43.5 mHz for
171Yb, and 38.5 mHz for173Yb. Compared to the bosonic
isotopes, the lifetime of the3P2 states in fermionic isotopes
is noticeably shortened by the hyperfine quenching but still
remains long enough for trapping experiments.

The paper is organized as follows. First, in Sec. II we
derive the hyperfine quenching rates using perturbation
theory. The solution of many-body atomic problem and nu-
merical details are given in Sec. III. Finally, we present the
results, compare with the previous calculations, and draw the
conclusions in Sec. IV. Unless noted otherwise, atomic units
s"= ueu=me;1d are used throughout.

II. DERIVATION OF HYPERFINE QUENCHING RATES

In the presence of nuclear moments, the total electronic
angular momentumJ no longer remains a good quantum
number. The atomic energy levels are characterized instead
by the total angular momentumF=J+ I . Nevertheless, the
coupling of the electronic and the nuclear momenta is small
and in this section we employ the first-order perturbation
theory in the magnetic-dipole hyperfine interaction to com-
pute the modified atomic wave functions of the3P0;2 levels.

FIG. 1. Lowest-lying energy levels of Mgsn=3d, Ca sn=4d,
Sr sn=5d, and Ybsn=6d, relevant to the radiative decay of the
nsnp3P0,2 states. The hyperfine quenching predominantly is caused
by the admixture of thensnp3P1 andnsnp1P1 states.
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With these perturbed wave functions the hyperfine quenching
rates are obtained with the conventional Fermi golden rule.

Before proceeding with the outlined derivation, we note
that in this problem there are two types of perturbations: the
hyperfine interaction and the interaction with the electromag-
netic field. Here we treat the HFI as the dominant interaction,
determine the hyperfine structure first, and as the next step
compute the lifetimes. This approach is valid as long as the
radiative width of the3P1 level is much smaller than the
fine-structure intervals between the components of the3PJ
multiplet [14]. We verified that this inequality holds for all
the atoms under consideration.

We develop the formalism in terms of the hyperfine states
ugsIJdFMFl. Here the angular momentaI andJ are conven-
tionally coupled to produce a state of definite total momen-
tum F and its projectionMF, and g encapsulates all other
atomic quantum numbers. In the first order of perturbation
theory in the hyperfine interaction,HHFI, the correction to the
hyperfine sublevelugsIJdFMFl of the metastable stateugJl
reads

ugsIJdFMFls1d = o
g8J8

ug8sIJ8dFMFl

3
kg8sIJ8dFMFuHHFIugsIJdFMFl

Esg8J8d − EsgJd
, s1d

whereEsgJd are the energies of atomic states. In the above
expression, we have taken into account thatHHFI is a scalar,
so the total angular momentumF and its projectionMF are
conserved. In general, the hyperfine coupling Hamiltonian
HHFI may be represented as a sum over multipole nuclear
momentsMl

skd of rank k combined with the even-parity
electronic coupling operatorsTl

skd of the same rank so that
the total interaction is rotationally andP invariant,

HHFI = o
k

sMskdT skdd.

In the following we limit the discussion to the contributions
from the nuclear magnetic-dipolesk=1d and electric-
quadrupole sk=2d moments. The conventionally defined
nuclear moments are related to the tensorsMl

skd as m
;kIMI = I uM0

s1duIMI = Il and Q;2kIMI = I uM0
s2duIMI = Il. We

list the moments for the isotopes of interest in Table I. Note

that the quadrupole moment of171Yb vanishes, since the
nuclear spinI =1/2 for this isotope.

Using the Wigner-Eckart theorem, the matrix element of
the hyperfine interaction in Eq.(1) may be simplified to

kg8sIJ8d;FMFuHHFIugsIJd;FMFl

= dFF8dMFMF8
s− 1dI+J8+Fo

k

kIiMskdiIlkn8J8iTskdinJl

3HI

J

I

J8

k

F
J . s2d

Given the correction to the wave function, Eq.s1d, we derive
the hyperfine quenching rate using the standard formalism of
the Fermi golden rule. The rate of spontaneous emission
sa→bd for an electric-dipole radiation is

Aa→b =
4a3

3
vab

3 ukauDublu2, s3d

where a<1/137 is the fine-structure constant,vab=Ea
−Eb is the transition frequency, andD is the electric-
dipole operator. Summing over all possibleFb and mag-
netic quantum numbersMb of the final state, while disre-
garding smallF-dependent energy correction, one obtains

Aa→b =
4a3

3
vab

3 1

2Fa + 1o
Fb

ukaiDiblu2. s4d

For the case at hand, the initial state is the HFI-perturbed
nsnp3PJ,sJÞ1d state, and the final state is the ground
ns2 1S0 state. Taking into account Eq.s1d, we arrive at the
hyperfine quenching rate as

AHFIsnsnp3PJ;F → ns2 1S0d =
4a3

9
vJ

3Uo
k

SkU2
, s5d

with vJ=Esnsnp3PJd−Esns2 1S0d and the sumsSk defined
as

Sk = kIiMskdiIl o
g8,J8

HI

J

I

J8

k

F
J

3
kns2 1S0iDig8J8lkg8J8iT skdinsnp3PJl

Esg8J8d − Esnsnp3PJd
. s6d

Note that due to the electric-dipole selection rules,J8=1.
Due to this restriction, in a particular case of thensnp3P0
states only the magneticsk=1d HFI coupling causes theE1
transitions and Eqs.s5d and s6d are simplified to

TABLE I. Nuclear parameters of the stable fermionic isotopes
of Mg, Ca, Sr, and Yb. HereI are the nuclear spins,m /mN are the
nuclear magnetic moments expressed in units of the nuclear mag-
netonmN, andQ are the nuclear quadrupole moments expressed in
barns.

Isotope I m /mN Q

25Mg 5/2 −0.85546 0.1994(20)
43Ca 7/2 −1.31727 −0.0408s8d
87Sr 9/2 −1.09283 0.335(20)

171Yb 1/2 0.4919 0
173Yb 5/2 −0.6776 2.800(40)
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AHFIsnsnp3P0;F = I → ns2 1S0d =
4a3

27
v0

3m2I + 1

I Uo
g8

kns2 1S0iDig8J8 = 1lkg8J8 = 1iT s1dinsnp3P0l
Esg8J8 = 1d − Esnsnp3P0d U2

. s7d

For the case ofnsnp3P2 state we restrict our consideration
by the first two terms in the sum overk in Eq. s5d. In the
following section we carry outab initio relativistic many-
body calculations of the derived hyperfine quenching rates.

III. SOLVING ATOMIC MANY-BODY PROBLEM

Theab initio relativistic atomic-structure calculations em-
ployed here are similar to computations of electric-dipole
amplitudes for the alkaline-earth-metal atoms[17] and hy-
perfine structure constants and electric-dipole amplitudes for
ytterbium[11,18]. Here we only briefly recapitulate the main
features of this method. We consider Mg, Ca, Sr, and Yb as
atoms with two valence electrons outside the closed-shell
cores. Strong repulsion between the two valence electrons is
treated nonperturbatively using the configuration-interaction
(CI) method. The core-valence and core-core correlations are
taken into account with the help of the many-body perturba-
tion theory(MBPT) method. In the following we refer to this
combined approach as the CI+MBPT method[19].

In the CI+MBPT approach, the energies and the wave
functions are determined from the eigenvalue equation in the
model space of the valence electrons

HeffsEpd uFpl = Ep uFpl, s8d

where the effective Hamiltonian is defined as

HeffsEd = HFC + SsEd. s9d

Here HFC is the relativistic two-electron Hamiltonian in
the frozen-core approximation andSsEd is the energy-
dependent core-polarization correction. The all-order op-
eratorSsEd completely accounts for the second-order cor-
relation correction to the energies. The omitted diagrams
in higher orders may be accounted for indirectly by ad-
justing the effective Hamiltonianf17,20g. Namely, one in-
troduces an energy shiftd and replacesSsEd with SsE
−dd. The parameterd is determined semiempirically from
a fit of the resulting theoretical energy levels to experi-
mental spectrum.

Using the effective Hamiltonian we find the wave func-
tions of the ground and the3PJ states. Further we apply the
technique of effective all-order(dressed) operators to calcu-
lations of the matrix elements. Technically, we employ the
random-phase approximation(RPA). The RPA sequence of
diagrams describes a shielding of externally applied field by
the core electrons. This is the level of approximation em-
ployed here for electric-dipole matrix elements. The hyper-
fine, T s1d andT s2d, matrix elements required more sophisti-
cated approach: for these operators we additionally
incorporated smaller corrections(the details can be found in
Ref. [18]). For the heaviest and more computationally de-

manding Yb, the corrections to the effective hyperfine opera-
tor tend to cancel[18], and we have simplified the calcula-
tions for Yb by using the bareT s1d operator.

To demonstrate the quality of the constructed wave func-
tions and the accuracy of the effective-operator approach, in
Table II we present the calculated magnetic-dipole hyperfine
structure constantsA for the 3P1,2 states. These constants are
expressed in terms of expectation values ofHHFI. As seen
from the Table II the differences between the calculated and
the experimental values, even for heavy Yb, do not exceed
1%.

Further the sumsSk, Eq. (6), are computed in the frame-
work of Sternheimer-Dalgarno-Lewis method[27,28]. At the
heart of this method is the recasting of the sumsSk in the
form

Sk = kIiMskdiIlHI

J

I

1

k

F
JkdCiT eff

skdinsnp3PJl, s10d

where udCl satisfies the inhomogeneous Schrodinger equa-
tion

fHeff − Esnsnp3PJdgudCl = Deffuns2 1S0l. s11d

It is worth noting that because the effective operators act in
the valence model space, theudCl solution encompasses
only the excitations of the valence electrons to higher va-
lence states. The unaccounted for core excitations involve

TABLE II. Magnetic-dipole hyperfine structure constantsA for
the nsnp3P1 and nsnp3P2 states. The computed values are com-
pared with the experimental data.

As3P1
0d sMHzd As3P2

0d sMHzd

25Mg This work −146.1 −129.7

Experiment −144.977s5da −128.445s5da

43Ca This work −199.2 −173.1

Experiment −198.890s1db −171.962s2dc

87Sr This work −258.7 −211.4

Experiment −260.083s5dd −212.765s1dd

171Yb This work 3964 2704

Experiment 3957.97(47)e 2677.6f

173Yb This work −1092 −745

Experiment −1094.20s60de −737.7f

aLurio [21].
bArnold et al. [22].
cGrundeviket al. [23].
dHeider and Brink[24].
eClark et al. [25].
fBudick and Snir[26].
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large energy denominators and we disregard their contribu-
tions.

IV. RESULTS AND CONCLUSIONS

To reiterate the discussion of the preceding section, we
carry out the calculations in several logical steps. First, we
solve the CI+MBPT eigenvalue problem(8) and determine
the ground and thensnp3PJ state wave functions and ener-
gies. At the next step, we compute the dressedE1-operator
Deff and solve the inhomogeneous equation(11). Finally, we
calculate the required sumsSk, Eqs.(6) and (10), and deter-
mine the hyperfine quenching rates, Eq.(5).

The computed values of the nonvanishing sumsS1 andS2
for nsnp3P0 andnsnp3P2 states for Mg, Ca, Sr, and Yb are
presented in Table III. For thensnp3P0 the quadrupole sums
S2 vanish due to the selection rules; these sums are not listed.
From the table, it is clear that the sums grow larger for
heavier atoms. This is due to increasing matrix elements of
the hyperfine interaction(see Table II). Further, a direct in-
vestigation of the sums shows that the contributions of both
nsnp3P1 and nsnp1P1 intermediate states are comparable.
Qualitatively, the triplet state is separated from the meta-
stable states by a small fine-structure interval, but itsE1
matrix element with the singlet ground state vanishes non-
relativistically. For the singlet state, the situation is reversed:
compared to the triplet contribution, the involved energy de-
nominator is much larger, but the electric-dipole matrix ele-
ment is allowed.

With the determined values ofSk and Eq.(5), we obtain
the hyperfine quenching rates for the metastable3P0 and3P2
states. The resulting rates are listed in Table IV. The tabu-
lated decay rates for the3P2 states require some explanation.
First of all, as follows from Eqs.(5) and (6) the quenching
rates depend on the total angular momentumF of the hyper-
fine substate. Although, in general, the total angular momen-

tum F ranges fromuJ− I u to J+ I, the 6j symbol in Eq.(6)
imposes an additional restriction,uI −1uøFø I +1. This re-
quirement can be tracked to the selection rule for the electric-
dipole transition amplitude between the ground state
sJg=0,Fg= Id and the intermediate state which has the same
F as the original hyperfine state[see Eq.(1)]. Combined
selection rule reads

maxsuJ − I u,uI − 1ud ø F ø minsJ + I,I + 1d.

Keeping this restriction in mind, in Table IV we have listed
the quenching rates only for such allowed values ofF.

A relative role of the quadrupole HFI contribution can be
illuminated using Table III. The ratioS2/S1 for thensnp3P2
states is in the order of 0.01 for isotopes of Mg, Ca, and Sr,
while for 173Yb it is ,0.1. The enhancement for173Yb is
mostly due to a relatively large nuclear quadrupole moment
Q=2.8 barn and a small gyromagnetic ratiogN=−0.2710.
Our computation shows that the electric-quadrupole hyper-
fine interaction contributes to the quenching rate at the level
of 20 % for 173Yb, at the level of 2–3 % for25Mg and 87Sr
and below 1% for43Ca. We also remind the reader that for
the 171Yb isotope,I =1/2 and thenuclear moments beyond
the magnetic-dipole moment vanish.

In Table IV we also compare the computed rates with the
results from the literature. For Mg the hyperfine quenching
rates for the3P2 state were estimated more than four decades
ago by Garstang[13]. Our results are in a reasonable agree-

TABLE III. Sums Sk for the metastable3P0 and 3P2 states for
different total angular momentaF are presented. The values are
given in atomic units.

F S1,nsnp3P0 S1,nsnp3P2 S2,nsnp3P2

25Mg 3/2 −5.7310−6 7.1310−8

5/2 8.0310−6 8.1310−6 −3.8310−8

7/2 −8.4310−6 −5.2310−8

43Ca 5/2 2.1310−5 3.3310−8

7/2 −3.1310−5 −2.7310−5 −1.3310−8

9/2 2.7310−5 −2.6310−8

87Sr 7/2 4.3310−5 −6.0310−7

9/2 6.2310−5 −5.5310−5 1.9310−7

11/2 5.3310−5 4.9310−7

171Yb 1/2 −1.2310−4

3/2 −1.3310−4

173Yb 3/2 −7.5310−5 1.1310−5

5/2 −1.1310−4 −1.1310−4 −5.9310−6

7/2 −1.1310−4 −8.0310−6

TABLE IV. The hyperfineE1-quenching rates for the metastable
3P0 and 3P2 states in s−1. The rates depend on the total angular
momentumF. The rates are compared with values by other authors,
where available.

Atom Transition rate F This work Other

25Mg AHFSs3P0→ 1S0d 5/2 4.44310−4 4.2310−4 a

AHFSs3P2→ 1S0d 3/2 2.25310−4 1.4310−4 a

5/2 4.65310−4 2.9310−4 a

7/2 5.02310−4 3.1310−4 a

43Ca AHFSs3P0→ 1S0d 7/2 2.22310−3

AHFSs3P2→ 1S0d 5/2 1.02310−3

7/2 1.81310−3

9/2 1.74310−3

87Sr AHFSs3P0→ 1S0d 9/2 7.58310−3 6.3310−3 b

AHFSs3P2→ 1S0d 7/2 4.01310−3

9/2 6.81310−3

11/2 6.38310−3

171Yb AHFSs3P0→ 1S0d 1/2 4.35310−2 5.0310−2 c

AHFSs3P2→ 1S0d 3/2 9.18310−2

173Yb AHFSs3P0→ 1S0d 5/2 3.85310−2 4.3310−2 c

AHFSs3P2→ 1S0d 3/2 2.14310−2

5/2 5.32310−2

7/2 7.22310−2

aGarstang[13].
bKatori et al. [7].
cPorsevet al. [10].
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ment with his values. Certainly, our calculations based on the
modernab initio relativistic many-body techniques are more
complete. In fact, based on better than 1% accuracy of theab
initio hyperfine constants(Table II) and energy levels[17,18]
we expect that the computed hyperfine quenching rates are
accurate within at least a few percent. Further, in the calcu-
lation of the sumsSk, Garstang[13] kept only the two
lowest-energy intermediate states3P1 and 1P1. This author
has also employed the followingE1-matrix elements
uk1S0iD i 3P1l u =0.0058 a.u. anduk1S0iD i 1P1l u =3.46 a.u.,
which are smaller than more accurate values[17] of
0.0064s7d a.u. and 4.03s2da.u., employed here. Our results
for 87Sr are in fair agreement with the estimate of Ref.[7].
Previously, we have estimated the quenching rates for Yb
isotopes[10] by summing only over the two lowest-energy
excited states; the present result should be considered as
more accurate.

In Table V the calculated hyperfine quenching rates
(maximum over hyperfine manifold) for the 3P2 states are
compared with the conventional electromagnetic transition
rates. For Mg, Ca, and Sr these rates were calculated in Ref.
[12] and are due toM1, M2, E2, andE3 multipole transi-
tions. If the hyperfine quenching is allowed for a particular
value of F, both rates contribute at a comparable level for
Mg and Yb. For Ca and Sr the hyperfine quenching becomes

the dominant decay branch and determines the lifetime of the
fermionic isotopes.

It is worth mentioning one more process that can poten-
tially lead to a shortening of lifetimes of the metastable
states. As demonstrated by Yasuda and Katori[29], the black
body radiation(BBR) induced decay rate of the 5s5p 3P2
state for Sr is equal to 8.03310−3 s−1 at 300 K. This decay
rate is comparable to the HFI quenching rate computed in
this work. A detailed analysis of the BBR effects is beyond
the scope of this work. Our order-of-magnitude estimate of
the BBR quenching for Mg, Ca, and Yb shows that at room
temperaturesT=300 Kd the BBR quenching is negligible
compared to the rates caused by the vacuum fluctuations of
the electromagnetic fieldsT=0d. The reader, however, should
be cautioned that the BBR rate strongly depends on the am-
bient temperature and it may become important, for example,
if a hot oven is used as a source of atoms.

To summarize, here we employed relativistic many-body
methods to evaluate hyperfine quenching rates for the meta-
stable3P0 and 3P2 states of Mg, Ca, Sr, and Yb. The tabu-
lated rates may be useful for designing novel ultraprecise
optical clocks and trapping experiments with fermionic iso-
topes of metastable alkaline-earth-metal atoms and Yb. The
resulting natural widths of the3P0–1S0 clock transition are
0.44 mHz for 25Mg, 2.2 mHz for 43Ca, 7.6 mHz for87Sr,
43.5 mHz for171Yb, and 38.5 mHz for173Yb. Compared to
the bosonic isotopes, the lifetime of the3P2 states in fermi-
onic isotopes is noticeably shortened by the hyperfine
quenching but still remains long enough for trapping experi-
ments.
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