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Blackbody radiation �BBR� shifts of the 3P0-1S0 clock transition in the divalent atoms Mg, Ca, Sr, and Yb
are evaluated. The dominant electric-dipole contributions are computed using accurate relativistic many-body
techniques of atomic structure. At room temperatures, the resulting uncertainties in the E1 BBR shifts are large
and substantially affect the projected 10−18 fractional accuracy of the optical-lattice-based clocks. A peculiarity
of these clocks is that the characteristic BBR wavelength is comparable to the 3P fine-structure intervals. To
evaluate relevant M1 and E2 contributions, a theory of multipolar BBR shifts is developed. The resulting
corrections, although presently masked by the uncertainties in the E1 contribution, are required at the 10−18

accuracy goal.

DOI: 10.1103/PhysRevA.74.020502 PACS number�s�: 32.10.Dk, 06.30.Ft, 31.25.�v, 32.80.�t

Atomic clocks based on the ultranarrow 3P0-1S0 transition
in divalent atoms may offer a new level of time-keeping
accuracy. In this scheme the atoms are confined in an optical
lattice. The lattice laser wavelength is selected in such a way
that the dominant perturbations of the clock frequency, the
induced ac Stark shifts, for both clock states exactly cancel.
Although other effects still perturb the clock frequency, esti-
mates �1� indicate that the projected fractional uncertainty of
such clocks may be as low as 10−18. By comparison, 10−15 is
the fractional uncertainty of the current Cs standard realizing
the SI definition of the unit of time. This advantage of the
optical-lattice clocks has motivated a number of recent pro-
posals: the original scheme of Katori �2� with fermionic Sr
isotopes has been extended to Mg �3�, Ca �4�, and Yb �5�
atoms. In addition, various schemes for probing the highly
forbidden nsnp 3P0–ns2 1S0 clock transition in bosonic iso-
topes have been proposed: three-photon transition,
electromagnetically-induced transparency, and transition as-
sisted by a magnetic field �6–8�.

Considering the advantages of optical lattice clocks, here
we investigate an important systematic effect of the black-
body radiation �BBR� on the frequency of the 3P0 -1S0 clock
transition. Indeed, the SI definition of the second explicitly
involves atomic clock operating at the absolute zero of tem-
perature �9�. In a laboratory environment with an ambient
temperature T, one needs to introduce the T-dependent BBR
correction to the observed frequency. Even in Cs the value of
the BBR shift is a subject of recent controversy �10�. Here,
using techniques of many-body relativistic atomic structure,
we compute the BBR shift for Mg, Ca, Sr, and Yb and evalu-
ate uncertainties of the calculations. As summarized in Table
I, the resulting fractional uncertainties in the clock frequen-
cies at T=300 K are large, ranging from 1�10−17 for Mg to
3�10−16 for Yb.

The main conclusions of this paper are �i� the present
uncertainty in our computed BBR shift is an obstacle on the
way toward the projected 10−18 accuracy goal; �ii� due to T4

scaling of the BBR shift, it may be beneficial to operate at
cryogenic temperatures; �iii� if operating at room tempera-
tures, high-precision �0.02% accurate for Sr� measurements

of the BBR shifts or related quantities are required; �iv� the
Mg-based clock is the least susceptible to BBR; compared to
Sr, the Mg BBR shift is an order of magnitude smaller �see
Table I�. Additionally, we develop a relativistic theory of the
BBR shift caused by multipolar components of the radiation
field.

The paper is organized as follows. First, we derive rela-
tivistic formulas for the BBR shift which incorporate various
multipolar contributions of the radiation field. Second, we
apply these general expressions to determination of the BBR
shifts. Unless specified otherwise, atomic units and the
Gaussian system of electromagnetic units are used through-
out. Temperature is expressed in units of EH /kB, where EH is
the Hartree energy and kB is the Boltzmann constant.

The BBR shift is caused by perturbation of the atomic
energy levels by the oscillating thermal radiation. Both
atomic levels involved in the clock transition are perturbed
and the overall BBR correction is the difference of the BBR
shifts for the two levels. We find that the determining shift
for the upper 3P0 level requires certain care. This level is a
part of the 3PJ fine-structure manifold, J=0,1 ,2. The sepa-
ration between the levels in the manifold is comparable to
the characteristic wave number of the BBR radiation,
208.51 cm−1, at T=300 K, and contributions of the BBR-
induced magnetic-dipole and electric-quadrupole transitions

TABLE I. Blackbody radiation shift for clock transitions be-
tween the lowest-energy 3P0 and 1S0 states in divalent atoms. ��BBR

is the BBR shift at T=300 K with our estimated uncertainties. �0 is
the clock transition frequency, and ��BBR/�0 is the fractional con-
tribution of the BBR shift. The last column lists fractional errors in
the absolute transition frequencies induced by the uncertainties in
the BBR shift.

Atom ��BBR �Hz� �0 �Hz� ��BBR/�0 Uncertainty

Mg −0.258�7� 6.55�1014 −3.9�10−16 1�10−17

Ca −1.171�17� 4.54�1014 −2.6�10−15 4�10−17

Sr −2.354�32� 4.29�1014 −5.5�10−15 7�10−17

Yb −1.34�13� 5.18�1014 −2.6�10−15 3�10−16
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to the levels of the manifold may be enhanced. Taking these
induced transitions into account requires going beyond the
conventional electric-dipole approximation, Ref. �11�.

Considering the potential importance of the multipolar
contributions, in this section we derive the relevant formulas
for BBR-induced energy shifts. Although we show that the
M1 and E2 contributions can be neglected at the present
level of uncertainty for the dominant E1 shift, incorporating
M1 multipoles will be required if the lattice clocks reach
their projected 10−18 accuracy level.

The BBR spectral density is given by the Planck formula
u��T�=�3�−2�3 / �exp�� /T�−1�. It is a weak perturbation
and the time evolution of the reference state �g� for off-
resonance excitations can be computed assuming that the
excited-state amplitudes adiabatically follow that of the ref-
erence state. With a generalization to narrow resonant con-
tributions �11�, the BBR shift is given by

�Eg =
1

4�2�
�
� dk̂ P�

0

	

u��T�
d�

�2 �
p
	 �h�+��gp�h�−��pg

�gp + �

+
�h�−��gp�h�+��pg

�gp − �

 , �1�

with averaging over photon propagation directions k̂ and po-
larizations �. The second-order summation is over interme-
diate atomic states �p� and involves the Coulomb-gauge cou-
plings h�±�= �� ·��exp�
i�k ·r��, � encapsulating the
conventional Dirac matrices. P denotes the Cauchy principal
value; as elucidated in Ref. �11� it is required for a proper
treatment of resonant contributions.

We further use a multipolar expansion of ei�k·r� in vector
spherical harmonics and express the resulting couplings in
terms of traditional multipole moments QJM

���:

����ei�k·r� = − �
JM�

iJ+1+��YJM
����k̂� · ��

��4��2J + 1��J + 1�
J

kJ

�2J + 1� ! !
QJM

��� .

Here �=0 is for magnetic �MJ� and �=1 is for electric �EJ�
multipolar amplitudes. Relativistic expressions with retarda-
tion for matrix elements of QJM

��� can be found in Ref. �12�.
Neglecting retardation effects, QJM

�1� become the frequency-
independent EJ moments. In the case of magnetic-dipole
transitions in the nonrelativistic limit Q1M

�0� =− �
2 �L+2S�M.

Notice that the retardation brings a correction on the order of
����2 to these expressions.

Averaging over polarizations and propagation directions
in Eq. �1�, we find that the BBR shift is a sum over multi-
polar contributions: �Eg=�J��Eg

�J��,

�Eg
�J�� = − �

J + 1

J��2J − 1� ! ! �2�2�J−1�

� P�
0

	

d� �2�J−1�u��T��g
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Here �g
�J����� are the generalized dynamic multipolar scalar

polarizabilities

�g
�J����� =
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A cursory examination of these formulas reveals that
compared to the 2J multipole, the contribution of the 2J+1

multipole is suppressed by a factor of �2. Also for the same
J the magnetic contribution is �2 weaker than that of the EJ
photons. To illuminate the T dependence of contributions of
individual intermediate states we recast the BBR shifts into
the form �Jg is the total angular momentum of the reference
state and g � �QJM

��� � �p� is the reduced matrix element�

�Eg
��J� = −

��T�2J+1

2Jg + 1 �
p

�g�QJ
����p��2FJ	�pg

T

 , �4�

with universal functions �x=� /T�
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The functions FJ�y� are multipolar generalizations of func-
tion F�y� introduced by Farley and Wing �11� in the E1 case.
We plot our computed FJ functions for J=1,2 ,3 in Fig. 1.
FJ�y� are odd functions with respect to y. From examining
Fig. 1, it is clear that FJ rapidly changes around y�1 and
slowly falls off for y�1. Depending on the value of the
excitation energy, �pg=yT, a particular intermediate state
may introduce either a negative or a positive BBR shift. No-
tice that FJ are broad distributions and they have comparable
values for �y � �20; this will have implications for interpret-
ing our results.

At large values of the argument �y � �1, FJ�y�1/y. The
limit y�1 corresponds to the case when the transition en-
ergy is much larger than T. If all virtual transitions satisfy
this requirement, then the leading contribution to the multi-
polar BBR shift can be expressed in terms of static polariz-
abilities

�Eg
�J�� = −

��2J + 2��2J + 2�!
2�J��2J − 1� ! ! �2�2J+1T2J+2�g

�J���0� , �6�

where � is the Riemann zeta function. As the scaling factor
�2J+1T2J+2 is expressed in atomic units, we observe that as
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FIG. 1. �Color online� Multipolar functions FJ�y�, Eq. �5�, for
J=1,2 ,3.
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the multipolarity J increases by 1, in addition to the usual �2

suppression, there is a temperature suppression factor of
�kBT /EH�2. For T=300 K this suppression is sizable, as
�kBT /EH�2�9.0�10−7.

Below we apply the developed formalism to computing
the BBR shift for the 1S0-3P0 clock transition in divalent
atoms. We will assume that the atoms are at the ambient
temperature of T=300 K. Both clock levels experience the
BBR shift and the total shift is the difference between the
individual shifts, ��BBR=��BBR�3P0�−��BBR�1S0�.

Consider first the BBR shift of the ground 1S0 state. Here
the transition energies of various multipolar transitions to the
upper levels are much larger than T, i.e., we are in the y�1
limit of Fig. 1. Here, compared to the dominant E1-induced
shift, the contribution of M1 transitions is suppressed by
�2�10−4 and E2 by �2�kBT /EH�2�10−10. Higher-order mul-
tipoles are suppressed even more. As to the retardation ef-
fects in E1 matrix elements, we expect that they will be
suppressed by a factor of �2�kBT /Eh�2�10−10. Nevertheless,
since the fractional contribution of the BBR shift to the clock
frequency is at the 5�10−15 level �see Table I�, one would
need to introduce the M1 corrections at the projected accu-
racy of 10−18.

For the 3P0 levels, the characteristic thermal photon fre-
quency is comparable to the fine-structure intervals for the
3PJ manifold. The 3P0 level is connected by M1 transition to
the 3P1 level and by E2 transition to the 3P2 level. For these
transitions the values of the relevant functions FJ�1 �see
Fig. 1�, and we estimate �Eg

�M1���2��T�3, �Eg
�E2����T�5,

while �Eg
�E1���3�T�4 /�3D1-3P0

. Our numerical estimate,
based on the transitions inside the fine-structure manifold,
lead to the following values of the BBR shifts for Sr:
�Eg

�M1�=2.4�10−5 Hz and �Eg
�E2�=2.5�10−8 Hz. Since the

E1 BBR shift for Sr is �2 Hz, the M1 and E2 contributions
can be neglected at the present 1% level of accuracy of our
calculations.

We find that, although the thermal photon energy is close
to the fine-structure intervals, the induced multipole BBR
shifts are not amplified. The main reason is that the BBR
energy distribution is broad: the functions FJ have compa-
rable values for a wide range of excitation energies,
�� � �20 T �see Fig. 1�. For example, for the Sr 3P0-3D0 E1
transition F1�0.16, while for the 3P0-3P1 M1 transition
F1�−0.41 and for the 3P0-3P2 E2 transition F2�−0.36. For
such a broad distribution, the multipolar BBR shift is deter-
mined by the prefactor in Eq.�4�, resulting in a suppression
of multipoles beyond E1.

Based on the above discussion, we may exclusively focus
on the electric-dipole �J=1,�=1� contribution to the BBR
shift. From our general expressions we obtain an approxi-
mate formula

�Eg
�E1� � −

2

15
����3T4�g

�E1��0��1 + �� ,

� =
�80/63��2

�g
�E1��0�T �

p

�p�Q1
�1��g��2

�2Jg + 1�yp
3 	1 +

21�2

5yp
2 +

336�4

11yp
4 
 .

�7�

Here yp=�pg /T and �g
�E1��0� is the traditional static dipole

polarizability. To arrive at the above equation, we used the
asymptotic expansion F1�y�� 4�3

45y + 32�5

189y3 + 32�7

45y5 + 512�9

99y7 , which
has an accuracy better than 0.1% for �y � �10. � represents a
“dynamic” fractional correction to the total shift. The leading
contribution is determined by polarizability and below we
compute �g

�E1��0� using the methods of atomic structure.
Evaluation of the static dipole polarizabilities follows the

relativistic many-body procedure of Refs. �13–15�. The em-
ployed formalism is a combination of the configuration-
interaction method in the valence space with many-body per-
turbation theory for core-polarization effects. In this method,
one determines wave functions by solving the effective
many-body Schrödinger �Dirac� equation �HFC+��E�� ��n�
=En ��n�. Here HFC is the frozen-core Dirac-Hartree-Fock
Hamiltonian and self-energy operator � is a core-
polarization correction. To improve upon this approximation,
one can introduce an adjustable energy shift � and replace
��E�→��E−�� in the effective Hamiltonian. We have deter-
mined � empirically, from a fit of theoretical energy levels to
the experimental spectrum. Inclusion of this shift mimics
high-order corrections in perturbation theory. In addition, we
incorporated dressing of the external electromagnetic field
�core shielding� in the framework of the random-phase ap-
proximation �RPA�. To find the valence contribution to
�g

�E1��0� we summed over the intermediate states in Eq. �3�
solving the inhomogeneous equation. A small correction to
the polarizability due to core-excited states in Eq. �3� was
computed within the relativistic RPA.

The results of calculations for the static electric dipole
polarizabilities for the ns21S0 and nsnp 3P0 states are pre-
sented in Table II. The listed values of the ground-state po-
larizabilities of Mg, Ca, and Sr were obtained by us earlier
�13�. To estimate their uncertainties we used the fact that the
intermediate state nsnp 1P1 contributes to the polarizability
at the level of 95–97 %. For calculating the polarizabilities
we used the best-known literature values of the
ns21S0 � �D � �nsnp 1P1� matrix elements tabulated in �13�. For
Yb �6s2 1S0 � �D � �6s6p 1P1� � =4.148�2� a.u. �16� leading to
0.5% error in �1S0

. The uncertainties in the polarizabilities of
the 3P0 states were estimated as one-half of the difference
between two predictions obtained with �=0 and with � de-
termined with the best fit to the experimental energies �thus

TABLE II. Static electric dipole polarizabilities in a.u. for the
ground 1S0 and the lowest-energy 3P0 excited states of Mg, Ca, Sr,
and Yb atoms. Theoretical uncertainties are indicated in parenthese.

Mg Ca Sr Yb

�1S0
71.3�7� 157.1�1.3� 197.2�2� 111.3�5�

�3P0
101.2�3� 290.3�1.5� 458.3�3.6� 266�15�
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mimicking omitted higher-order many-body corrections�.
The uncertainties in the ground-state polarizabilities range
from 0.1% for Sr to 1% for Mg. For the 3P0 states the errors
range from 0.3% for Mg to 6% for Yb. Unlike in the case of
the ground state, the polarizability of the 3P0 states is accu-
mulated due to several transitions: the 3D1 states contribute
only at the level of 50–60 %. In Mg the contribution of the
3s4s 3S1 state is even larger than the contribution of the
3s3d 3D1 state. Generally, the accuracy of the calculations
becomes worse for heavier atoms; this follows the general
trend of many-body calculations, where the correlations, and
thus the omitted higher order of perturbation theory, become
increasingly important as the number of electrons grows.

With the computed polarizabilities we find the BBR shifts
with Eq. �7�. The “dynamic” correction � is negligible for
the 1S0 states but is needed for the 3P0 calculations.
Indeed, for the ground state, the smallest excitation energy
E1P1

−E1S0
is equal to 21 698 cm−1 for Sr. At T=300 K the

characteristic value of y�100 for all the atoms. By contrast,
for the 3P0 clock level, the transitions to the nearby 3D1 level
involve smaller energies. For Sr, the relevant energy is only
3841 cm−1, corresponding to a characteristic value of
y�20. At this value, the “static polarizability” approxima-
tion F1�y��4�3 / �45y� has only a few percent accuracy.
While evaluating � we find it sufficient to truncate the sum-
mation over intermediate states at the lowest-energy excita-
tion. This “dynamic” correction contributes to the BBR shift
of the 3P0 state at the 0.1% level in Mg, 1% in Ca, 2.7% in
Sr, and 0.7% in Yb. Notice that, since the clock BBR shift is

obtained by subtracting BBR shifts of the individual levels,
the “dynamic” correction contributes at an enhanced 5%
level in Sr. These dynamic corrections must be taken into
account if the BBR shifts are derived from dc Stark shift
measurements.

Finally, we combine the BBR shifts of the individual
clock levels and arrive at the overall BBR corrections sum-
marized in Table I. Our computed BBR shift for Sr,
−2.354�32� Hz, is in agreement with the estimate �1� of
−2.4�1� Hz. Our uncertainties are better than 3%, except for
Yb where the uncertainty is 10%. As discussed in the intro-
duction, although resulting from state-of-the-art relativistic
atomic-structure calculations, these uncertainties are still
large and substantially affect the projected 10−18 fractional
accuracy of the lattice-based clocks �see Table I�. A potential
solution involves operating the clocks at cryogenic
temperatures.

At room temperatures, the uncertainties in BBR shifts
seem to be a major factor in the error budget of these clocks.
At the projected 10−18 fractional accuracy, the required accu-
racies �e.g., 0.02% for Sr� in determining BBR shifts are
beyond the presently demonstrated capabilities of atomic cal-
culations and related polarizability measurements.
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