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1. INTRODUCTION

Studies of the behavior of atoms at very low temper-
atures in magnetooptical traps are of the greatest cur-
rent interest in modern atomic physics. Magnetooptical
traps are used most extensively when atoms should be
cooled to microkelvin or lower temperatures, because
these are the temperatures at which several phenomena,
virtually unstudied until recently, are observed. Quite a
number of new directions in the field of atomic physics
have been initiated to describe collisions of ultracold
atoms, such as photoassociation and Feshbach reso-
nance spectroscopy [1]. The use of magnetooptical
traps has allowed the atomic condensate phenomenon
to be observed for the first time. This phenomenon of
the transition of bosonic atoms into the ground quan-
tum-mechanical state at very low temperatures [2, 3]
was predicted by Bose and Einstein as early as the
1930s. Another direction for using magnetooptical
traps is the confinement of atoms in a trap at very low
temperatures with the purpose of creating so-called
“atomic optical clock,” that is, establishing a new stan-
dard of frequency based on one of the atomic transi-
tions [4–6].

Until recently, the most important advances in stud-
ies of ultracold atomic collisions have been made with
the use of alkali metal atoms. In particular, the Bose–
Einstein condensate was for the first time obtained in
1995 for atomic rubidium. The interpretation of exper-
imental data on alkali metal atoms is, however, very
complex and ambiguous because of the presence of a
fine structure in the ground state. Alkaline-earth atoms

in the ground state do not have this disadvantage. Their
attractive feature is the existence of several isotopes
with zero nuclear spins. The absence of hyperfine struc-
ture in them facilitates both theoretical and experimen-
tal studies of atomic interactions. Currently, magne-
tooptical traps have been obtained virtually for all alka-
line-earth atoms (e.g., see [7–9]). This opens up new
possibilities for studying interatomic interactions in
them, which is necessary for understanding photoasso-
ciation phenomena and offers promise for preparing
Bose–Einsten condensates.

The interaction of atoms in a cold trap at large inter-
atomic distances is usually described in terms of disper-
sion (van der Waals) coefficients 

 

C

 

n

 

. For two alkaline-
earth atoms in the ground state, the long-range potential
can be written as
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where 

 

R

 

 is the distance between atomic nuclei.
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ground 

 

1

 

S

 

0

 

 state is resonance in character (the corre-
sponding E1 amplitude makes a ~90% contribution to

 

C

 

6

 

 [10]), it is clear that the E1 amplitude of this transi-
tion should be found with the highest accuracy possi-
ble. In [10], we used high-accuracy experimental life-

times of low lying  states to determine the contribu-
tion of this amplitude to electric dynamic dipole
polarizability and, accordingly, the 

 

C

 

6

 

 coefficient.
However, in the past several years, new experimental
lifetime data have been reported, and some of the ear-
lier results have been revised by experimental physi-
cists. This in particular resulted in a noticeable change
in the 

 

C

 

6

 

 coefficient for Ca. The 

 

C

 

6

 

 coefficient for Sr
can now be calculated much more accurately than pre-
viously. Since dispersion coefficients substantially
influence the determination of scattering lengths neces-
sary for describing the rate of cooling of low-tempera-
ture gases and condensate stability, it is in our view
worthwhile to report new, more accurate values.

It follows from (1) that, apart from 

 

C

 

6

 

, the long-
range interaction potential is also characterized by the
coefficients 

 

C

 

8

 

 and 

 

C

 

10

 

. We used the relativistic method
that combines configuration interaction (CI) and many-
body perturbation theory (MBPT) to calculate these
coefficients for Be, Mg, Ca, Sr, and Ba; estimated the
accuracy of these values; and compared them with
other theoretical and experimental results. Note that the

 

C

 

8

 

 and 

 

C

 

10

 

 coefficients for Ba were calculated for the
first time.

The paper is organized as follows. Section 2 con-
tains general equations used in our calculations. The
method for calculations is briefly described in Section 3,
which also contains some technical details of construct-
ing the wavefunctions that are necessary for the calcu-
lations. Section 4 presents a discussion of the results
obtained and their comparison with literature data. The
Conclusions contain a review of the modern state of the
theoretical and experimental techniques and a discus-
sion of possible improvements in the accuracy of calcu-
lations.

2. GENERAL FORMALISM

If two atoms 

 

a 

 

and 

 

b

 

 are in the ground spherically
symmetrical state, their long-range interactions can
conveniently be written as [11]

(2)

(we use the atomic system of units; that is, 
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 = 
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 =
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 = 1). It is easy to see that retaining the first three
terms of this series leads to (1). The van der Waals coef-
ficients for atoms in the ground state are given by
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-pole dynamic polarizabilities of atoms 

 

a

 

and 
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, respectively, defined as

(4)

Here, the summation over intermediate states includes

both discrete and continuous spectra and  stands for
zero components of electric multipole operator tensors

(5)

where  are the normalized spherical functions [13]
and
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 is the number of electrons in the atom.
The
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 coefficients can conveniently be
written as

(6)

where the 

 

C

 

ab

 

(

 

l

 

, 

 

l

 

') values are, to within a factor, the
integrals of the product of the 2

 

l

 

-pole and 2

 

l

 

'

 

-pole
dynamic polarizabilities. They are given by the equa-
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If we consider the interaction of two like atoms in iden-
tical states, that is, a = b, the equations given above are
simplified. It is, in particular, clear that Caa(1, 2) =
Caa(2, 1) and Caa(1, 3) = Caa(3, 1).

It follows from (7)–(10) that calculations of the
coefficients require knowledge of the dipole α1(iω),
quadrupole α2(iω), and octupole α3(iω) dynamic polar-
izabilities. Following [14, 15], the polarizability αl(iω)
can conveniently be divided into three parts,

(11)

where (iω) includes excitations of valence elec-

trons; (iω), excitations of core electrons; and

(iω) is a small correction to (iω), which appears
because of possible excitations of core electrons into
the closed valence s shell, which is forbidden by the
Pauli principle. The corresponding contribution should

be subtracted from (iω).

Note from the outset that (iω) = 0 for all atoms
under consideration. Indeed, this contribution is caused
by the excitation of f electrons into the valence s shell,
whereas the alkaline-earth atoms do not have f elec-
trons. As concerns α2(iω), the main contribution to

(iω) is made by the excitations of core d electrons
into the valence s shell. There are no core d electrons in
Be, Mg, and Ca, and this contribution is therefore zero
for them. For Sr and Ba, it is small to the extent that it
can be ignored virtually without loss in accuracy.

Lastly, the main contribution to (iω) caused by the
excitation of core p electrons is absent for Be only. For

the other atoms, we include the (iω) term into the
final equation for α1(iω).

The general approach to calculating the energies
and various observables for atoms with several valence
electrons has repeatedly been described; it is consid-
ered in detail in [16–18]. Recently, we applied it to cal-
culate the multipole dynamic polarizabilities of alkali
metal atoms [15]. Therefore, we shall only remind the
reader of the main points here. All electrons of an atom
are divided into two groups, one including core and the
other, valence electrons. The valence electrons of alka-
line-earth atoms are the two electrons on the highest
energy level, whereas the other electrons constitute the
core. Core–core and core–valence correlations are cal-
culated using many-body perturbation theory, and the
interaction between valence electrons, by the method of
configuration interaction. Technically, this is done as
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follows. An effective Hamiltonian is constructed in the
space of valence electrons; it can be written as

(12)

where

(13)

Here, HFC is the Hamiltonian obtained in the frozen-
core approximation and the energy-dependent correc-
tion Σ describes the virtual excitations of core elec-
trons. In our approach, we fully took into account the
second and, in part, higher perturbation theory orders.
The latter should be considered separately. The matter
is that, already at the stage of calculating second-order
corrections to the Hamiltonian, we must, in addition to
one-electron, calculate two-electron diagrams, which is
a special feature of applying many-body perturbation
theory to atoms with several valence electrons. The
number of these diagrams is very large (>107), and their
calculations take enormous time even on modern super-
computers. Fortunately, there is no need to calculate all
diagrams; the problem can usually be reduced to calcu-
lations of several hundred thousand diagrams virtually
without loss in accuracy. Clearly, attempts at directly
taking into account all third-order diagrams of many-
body perturbation theory would cause great technical
difficulties and can hardly be practicable. It is therefore
more reasonable to include the higher orders of many-
body perturbation theory partly and indirectly. Accord-
ing to [18], the quality of wavefunctions can be consid-
erably improved by the introduction of energy shift δ
with the replacement Σ(E)  Σ(E + δ) in (13). The δ
parameter is selected to provide the best fit of the calcu-
lated energies to experiment. Practical calculations
(e.g., see [10, 19, 20]) show that two or three δ param-
eters are usually sufficient for reproducing both even
and odd low-lying energy levels to high accuracy. Actu-
ally, the introduction of the δ parameter corresponds to
implicitly including the higher perturbation theory
orders.

If the number of valence electrons is two or more,
the method of configuration interaction explicitly
describes their interactions with each other. This
approach allows all types of interelectronic correlations
to be included and increases the accuracy of level
energy and various observable calculations by approxi-
mately one order of magnitude compared with the pure
method of configuration interaction. Note that the
approach under consideration is especially effective in
high-accuracy calculations of divalent atoms. First, the
presence of only two valence electrons allows “satura-
tion” of the method of configuration interaction to be
attained. The number of basis functions used is so large
that the error arising from basis insufficiency can be
ignored. These basis functions are used to construct all
possible configurations in the valence space. This
solves the problem of saturation in the method of con-

Heff En( )Φn EnΦn,=

Heff E( ) HFC Σ E( ).+=
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figuration interaction. No errors arise that are caused by
not including all possible configurations within the
framework of the basis sets constructed. Secondly,
because of a more compact core, the convergence of
perturbation theory series is better than, say, for alkali
metal atoms. The second many-body perturbation the-
ory order therefore gives high accuracy for both ener-
gies and E1 amplitudes.

In addition to the effective Hamiltonian, other effec-
tive operators that act in the model space of valence
electrons can be constructed [17]. It is important that
corrections for the screening of external electric fields
by core electrons be taken into account. These correc-
tions are introduced using the random phase approxi-
mation described in detail in [17, 21, 22].

After solving (12) by applying the approach
described above, which combines the methods of con-
figuration interaction and many-body perturbation the-
ory (referred to as CI + MBPT for brevity), and obtain-
ing the wavefunctions of the ground states, the dynamic

polarizabilities (iω) are found by solving the inho-
mogeneous many-body Schrödinger equation with the
use of the Sternheimer–Dalgarno–Lewis method
[23, 24]. Let us introduce the wavefunction of interme-
diate states |Ψf〉 defined as

(14)

where Ψ0 and E0 are the wavefunction and energy of the

ground state. The equation for (iω) then takes the
simple form

(15)

Here,  are the effective operators of electric mul-
tipole moments constructed by analogy with the effec-
tive Hamiltonian. We assume in what follows that these
operators are constructed with the inclusion of self-
energy corrections Σ and corrections calculated by the
random phase approximation method.

As concerns the (iω) contribution, it is calculated
by the relativistic random phase approximation method
described in [21, 22]. The procedure does not differ
basically from that applied in [15] to calculate similar
contributions for alkali metal atoms.

3. METHOD OF CALCULATIONS

All the Be, Mg, Ca, Sr, and Ba atoms are treated as
divalent, that is, as having two valence electrons above
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αl
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the closed core. Beryllium has four core electrons
[1s2, 2s2], whereas the cores of the other atoms can be
represented as [1s2, …, np6], where n = 2, 3, 4, and 5 for
Mg, Ca, Sr, and Ba, respectively. The scheme for con-
structing one-electron basis sets was approximately the
same for all atoms. At the first stage, self-consistent
solutions to the Hartree–Fock–Dirac equations for the
configurations [1s2, …, (n + 1)s2] (n = 1 for Be) were
obtained. As a result, the orbitals 1s – (n + 1)s were con-
structed in the VN approximation. The next several
orbitals (usually, (n + 1)p, nd, and (n + 1)d) were
obtained in the VN – 1 approximation. That is, the 1s –
(n + 1)s orbitals were “frozen,” one electron was trans-
ferred from the valence s shell into one of the orbitals
specified above, and the corresponding one-electron
wavefunction was found by solving the Hartree–Fock–
Dirac equations. Additional orbitals of the basis sets
can be constructed as the products of one of the existing
orbitals with powers of r or with sinr with subsequent
orthogonalization of the newly constructed orbital with
respect to all the other. This recurrent scheme was
described in detail in [25, 26]. Note that the number of
orbitals in each partial wave for each atom was selected
such that it ensured the numerical convergence of the
method of configuration interaction. As a result, the
one-electron basis sets used in calculations by the
method of configuration interaction comprised the fol-
lowing orbitals:

(16)

At the stage of calculating self-energy corrections, we
must include core electron excitations. Since we con-
sider excitation of inner-shell electrons at this stage,
and these shells may lie fairly deeply, we must take into
account a large number of high-lying states. The corre-
sponding basis sets should usually contain much more
orbitals than the basis sets at the stage of configuration
interaction. As is explained in detail in [16], this poses
no problem, because different basis sets can be used for
configuration interaction and performing many-body
perturbation theory calculations, depending on the par-
ticular atom under consideration and the problem to be
solved. In this work, extended basis sets necessary for
calculating self-energy corrections included the orbit-
als 1s–ks, 2p–kp, 3d–(k – 1)d, 4f–(k – 4)f, and
5g−(k − 8)g, where k = 18, 19, 20, 21, and 22 for Be,
Mg, Ca, Sr, and Ba, respectively.

Be Mg Ca:, ,
1s–13s 2 p–13 p 3d–12d 4 f –11 f ;, , ,
Sr:
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4. RESULTS AND DISCUSSION

 

4.1. Dipole Electric Polarizabilities

 

We begin with dipole electric polarizabilities. For

alkaline-earth atoms in the ground 
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S

 

0

 

 state, (

 

i

 

ω

 

) can
conveniently be written in terms of reduced matrix ele-
ments as

(17)

Here Ea and  are the energies of intermediate and

ground states and d ≡ (T1)eff denotes the effective elec-
tric dipole moment operator. Let us single out the term
of (17) that characterizes the E1 transition from the

ground state to the lowest  state and makes the
major contribution to the dipole electric polarizability

of the ground state 1S0. We can then write (iω) as the
sum of two terms

(18)

where

(19)

Here,

and (iω) includes all the other terms of the sum over
a in (17); that is,

With the core contributions included, the total polar-
izability α1(iω) can be written as

(20)

where

(21)

The reason for such partitioning is as follows. The

(iω) term makes a determining contribution to
α1(iω). This contribution amounts to 90% even for Ba
and 97% for Be. Accordingly, the accuracy of calculat-
ing α1(iω) is to a great extent determined by the accu-

racy of the (iω) value. For obtaining the highest
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accuracy, it appears reasonable to correct dipole polariz-
abilities found by solving inhomogeneous equation (4).

We single out the  contribution and recalculate it
using the experimental energy levels from [27] and the

most accurate matrix element 〈 ||d ||1S0〉 values pub-
lished.

Table 1 summarizes the results obtained for static
electric polarizabilities, that is, polarizabilities at ω = 0.
The table contains both final and recommended values.
The former were obtained by numerically solving the

inhomogeneous equation to obtain (0) and adding
core contributions to this value. The recommended val-
ues were found by refining the results through using the
values listed in Table 2 as “best.” In some instances,
recommended values differ somewhat from final. In
particular, we used the experimental high-accuracy life-

times of the low-lying  states for Ca [28] and
Sr [29] to obtain very accurate matrix element values,

〈 ||d ||1S0〉 = 4.905(22) au for Ca and 〈 ||d ||1S0〉 =
5.249(2) au for Sr. These values were used to calculate
polarizabilities the most accurately.

As has been mentioned above, the error in α1(0) is

largely determined by the error in (0). As the level
energies are known to a very high accuracy, they barely

at all contribute to errors in the calculated (0) val-
ues, which are, therefore, almost fully determined by

the uncertainties in the 〈 ||d ||1S0〉 matrix elements.

The (0), (0), and (0) terms introduce addi-
tional errors into the final α1(0) value. It follows

from (20) and (21) that, ignoring the small term ,
the absolute error ∆α1 can be represented in the form

(22)

where δα is the relative error defined as δα = ∆α/α.

Since the uncertainty in 〈 ||d ||1S0〉 is known, it is

easy to find the error in . As far as the second and
third terms on the right-hand side of (22) are concerned,
the method for calculating them was described in [10].

The  value can be estimated as
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in this work and  is the  term calculated using
the best values (see Table 2). Lastly, the term containing

 on the right-hand side of (22) is fairly small even
for Ba (Table 1). It was shown in [10] that the error in

its calculated values can be estimated at  ~ 0.01 for
alkaline-earth atoms.

The final results for the static dipole polarizabilities
obtained in this work and other theoretical and experi-

α1 acc,
v α1 p,

v

δα1
c

δα1
c

mental data are listed in Table 1. As follows from the
above discussion and seen from the table, the polariz-
abilities were determined most accurately for the light
Be and Mg atoms and least accurately for Ba. This is a
reasonable result for calculations by the methods of
configuration interaction and many-body perturbation
theory.

It has already been noted that the error of calcula-
tions at the stage of the configuration interaction was
virtually zero because superposition was complete. At

Table 2.  Reduced matrix elements  for transitions from the ground state to the  state

this work the best value this work experimentala

Be 3.26 3.26(1)b 0.193928 0.193942

Mg 4.03 4.03(2)c 0.159743 0.159705

Ca 4.93 4.905(22)d 0.107776 0.107768

Sr 5.31 5.249(2)e 0.098508 0.098866

Ba 5.475 5.466(23)f 0.082313 0.082289

Note: Here, n = 2, 3, 4, 5, and 6 for Be, Mg, Cs, Sr, and Ba, respectively. The values obtained in this work and “the best literature values”
from a [27], b [10], c [19. 20], d [28], e [29], and f [39] are given.

nsnp P
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P
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1
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–

Table 1.  Static dipole polarizabilities α1 for the ground states of alkaline-earth atoms: valence contributions for CI and CI +
MBPT, core contributions, final results including all terms according to (20), and recommended values (see text)

Be Mg Ca Sr Ba

 (CI) 37.84 72.24 175.0 230.3 333.9

 (CI + MBPT) 37.71 70.89 155.9 196.6 262.2

 + 0.05 0.44 3.1 5.4 9.9

Final 37.76 71.33 159.0 202.0 272.1

Recommended 37.76(22) 71.3(7) 157.1(1.3) 197.2(2) 273.5(2.0)

Other theoretical works

[30] 37.69 71.35 159.4 201.2

[31] 37.9 72.0 152.7 193.2

[32] 71.7 157

[33] 36.7 70.5 153.7

[34] 37.76

[35] 37.3 (7)

Experimental

[36] 71.5 (3.1)

[28] 168.7 (13.5)

[37] 186 (15)

[38] 268 (22)

α1
v

α1
v

α1
c α1

vc
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the stage of many-body perturbation theory calcula-
tions, second order of perturbation theory was included
completely, and the higher orders, only partly. This was
the main source of errors and limited the accuracy of
calculations. Naturally, the heavier the atom, the larger
the number of electrons that it has, the more important
interelectronic core–core and core–valence interactions
are, and the greater the role played by perturbation the-
ory. Accordingly, the role played by the higher orders of
perturbation theory increases as the number of elec-
trons in the atom grows.

The above reasoning is illustrated in Table 1 by the
results obtained using pure configuration interaction,
configuration interaction combined with many-body
perturbation theory, and the final equations for polariz-

abilities including the (0) and (0) terms. The dif-
ference between the values obtained at the stages of
configuration interaction and configuration interaction
combined with many-body perturbation theory charac-
terizes the role played by perturbation theory correc-
tions for every atom and thereby the corresponding
accuracy level.

A comparison of the results obtained in this work
with other data shows that the lighter the atom, the
closer the agreement of the results obtained by different
theoretical groups. This is explained by a decrease in
the role played by electron correlation as the number of
electrons becomes smaller, because the accurate inclu-
sion of electron correlation is usually a very nontrivial
task. As a consequence, the accuracy of calculations
increases for light atoms. Note that, in spite of the
spread of theoretical results, they all agree with the
experimental values to within measurement errors. The
primary reason for this is the low accuracy of experi-

α1
c α1

cv

mental data. Since theoretical accuracy is in many cases
superior to experimental, performing new experiments
with the purpose of more accurately measuring static
dipole polarizabilities is a topical problem of timely
interest.

4.2. Quadrupole 
and Octupole Electric Polarizabilities

Quadrupole and octupole electric polarizabilities
were calculated by analogy with dipole electric polariz-
abilities by solving inhomogeneous many-body
Schrödinger equation (4). The calculation results are
listed in Tables 3 and 4. As distinct from dipole polariz-
abilities, transitions from the ground 1S0 state to low-
lying excited states of the corresponding parity do not
make determining contributions to quadrupole and
octupole electric polarizabilities. In addition, the accu-
racy of determining the matrix elements is lower for the
E2 and E3 transitions than for the electric dipole transi-
tions.

At the same time, we determined the errors in these
values following the same line of reasoning as with
dipole polarizabilities, because the major contribution
is, as previously, made by higher orders of perturbation
theory included indirectly. On this assumption, the
uncertainty in electric quadrupole polarizability can be
approximately estimated as half the difference between
the polarization values obtained with and without tak-
ing into account higher orders of perturbation theory;
that is,

(23)∆α2 0( ) 1
2
--- α2 0( )( )δ 0= α2 0( )( )δ 0≠– .∼

Table 3.  Contributions to static quadrupole polarizabilities α2 for the ground states of alkaline-earth atoms: valence contri-
butions for CI and CI + MBPT, core contributions, and final results (here, final is equivalent to recommended)

Be Mg Ca Sr Ba

 (CI) 304.8 877.3 3632 5767 11235

 (CI + MBPT)δ = 0 301.2 822.7 3028 4597 7530

 (CI + MBPT)δ ≠ 0 300.6 811.5 3074 4613 8850

0.015 0.5 6.9 17 46

Final 300.6(3) 812(6) 3081(23) 4630(8) 8900(650)

Other theoretical works

[30] 300.7 813.9 3063 4577

[32] 809.3 3016

[33] 302.6 828 2717

[34] 301.0

[35] 298.8 (2.6)

α2
v

α2
v

α2
v

α2
c
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Here, (α2(0))δ = 0 is the static quadrupole polarizability
of the ground state calculated at δ = 0, which corre-
sponds to disregarding higher orders of perturbation
theory. The polarizability (α2(0))δ ≠ 0 was calculated at a
certain nonzero δ value, that is, implicitly including
higher orders of perturbation theory. It should be borne
in mind that we always selected the δ value that most
closely reproduced the energies of the ground and low-
lying 1D2 states. This improved the corresponding
wavefunctions and therefore refined the contribution of
the E2 amplitude of the 1S0  1D2 transition to qua-
drupole polarizability. The contribution of the other
intermediate states was, however, appreciable, and the
procedure specified did not result in improvement of
the final result as clearly as with dipole polarizabilities.

Unfortunately, we were unable to find experimental
data on static quadrupole polarizabilities of alkaline-
earth atoms and can therefore only compare our results
with those reported by other theoretical groups. Table 3
shows that the agreement between different calcula-
tions is quite satisfactory in spite of the problems men-
tioned above. Our results are especially close to those
reported by Mitroy and Bromley [30], who included a
large number of intermediate states in their calcula-
tions. Because none of the low-lying intermediate
states made a predominant contribution to quadrupole
polarizability, it was very important to accurately per-
form the summation over the whole spectrum. Interme-
diate states of both discrete and continuous spectra
could accurately be included without formal summa-
tion over all intermediate states by solving the inhomo-
geneous Schrödinger equation. As far as we know, this
method was used in the present work only, which
allows us to claim high accuracy of the results obtained.

The results for octupole polarizabilities are listed in
Table 4. Reasoning similar to that applied to quadru-
pole polarizabilities shows that the error in the calcu-

lated octupole polarizabilities does not exceed 10%. A
more meticulous analysis of errors is, we believe,
unnecessary. Indeed, the main goal of this work is cal-
culations of the van der Waals coefficients that charac-
terize long-range interatomic interaction potential.
Equations (6)–(10) show that dynamic octupole polar-
izability appears in the C10 coefficient only. It is well
known that van der Waals series (2) diverges, and high-
accuracy calculations of C10 with neglect of the other
series terms whose contribution to the potential is only
slightly smaller than C10/R10 does not make sense. The
requirements on the accuracy of C10 and, accordingly,
octupole polarizability calculations are therefore much
lower than with C6 and C8.

4.3. The van der Waals Coefficients C6, C8, and C10

Let us turn to the van der Waals coefficients C6, C8,
and C10. Calculating them with the use of (6)–(10)
poses no serious difficulties if we know the dynamic
multipole polarizabilities. The C6 coefficients are listed
in Table 5, which also contains the results obtained by
other authors for comparison. In particular, our own
results obtained several years ago are included. Com-
parison shows that the coefficient values remained
unchanged for Be, Mg, and Ba; for Ca and Sr, the C6
coefficients and their uncertainties changed. For both
atoms, this is the result of the refinement of the E1
amplitudes of transitions from the ground state into the

odd low-lying  state. For Sr, the lifetime τ of the

5s5p  state was measured in [29] with unprece-
dented accuracy to obtain τ = 5.263(4) ns. This allowed
us to calculate the matrix element of the E1 transition
1S0   and, eventually, the C6 = 3103(7) coeffi-
cient with accuracy no worse than 0.2%. As far as we

P1 o
1

P1 o
1

P1 o
1

Table 4.  Contributions to static octupole polarizabilities divided by 103 for the ground states of alkaline-earth atoms: valence
contributions for CI and CI + MBPT, core contributions, and final results (here, final is equivalent to recommended)

Be Mg Ca Sr Ba

 (CI) 3.837 14.70 75.40 138.1 282.5

 (CI + MBPT)δ ≠ 0 3.781 13.51 61.58 106.3 205.6

10–5 10–3 0.034 0.11 0.41

Final 3.781 13.51 61.62 106.4 206.0

Other theoretical works

[30] 3.955 14.02 65.12 107.2

[31] 3.488 11.7 50.8 80.7

[33] 4.126 14.74 61.51

α3
v

α3
v

α3
c
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know, such accuracy is unparalleled in calculations of
van der Waals coefficients.

The situation with Ca is opposite to a degree. In
2003, Tiemann et al. (Germany) published new data on

the probability of the transition from the 4s4p  state
to the ground 4s2 1S0 state, γ = 2.150(19) × 108 s–1 [28].
This value was different from γ = 2.205(8) × 108 s–1

reported by the same group earlier [8]. As a conse-
quence, the matrix element of the E1 transition 1S0 

 and the C6 coefficient also changed. Note that C6 =
2121(35) obtained for Ca in this work is much closer to
the experimental value 2080(7) [40] than our earlier
result 2221(15) [10] based on less accurate experimen-
tal data from [8]. Note also that the new matrix element

value, |〈4s2 1S0 ||d ||4s4p 〉| = 4.905(22) au, obtained
from the most recent data [28] became closer to our
numerical result 4.93 au than previously.

The method for estimating errors in calculated C6
coefficients was discussed in detail in [10]. We shall
therefore only briefly remind the reader that the largest

P1 o
1

P1 o
1

P1 o
1

error is introduced in C6 by uncertainties in the

|〈ns2 1S0 ||d ||nsnp 〉| matrix elements. This is clearly
seen from the results listed in Table 5 (especially the
results obtained for Sr). In our view, new high-accuracy
experimental measurements of, for instance, the life-

times of low-lying  levels would improve the accu-
racy of determining the C6 coefficients for two alkaline-
earth atoms that interact with each other in the ground
state.

A comparison of our results with other data reveals
a picture closely similar to that with polarizabilities.
Agreement between the results reported by various
groups is closer for light and less close for heavy atoms.
Our results are closest to those reported by Mitroy and
Bromley [30] for all atoms except strontium. For the
latter, the value obtained in this work on the basis of the
high-accuracy experimental data [29] is smaller by 4%.

The general approach to calculating errors in C8 and
C10 was described in [15]; this approach was applied to
alkali metal atoms. The same technique is equally
applicable to alkaline-earth atoms, For this reason, we

P1 o
1

P1 o
1

Table 6.  Van der Waals coefficients C8 of alkaline-earth dimers comprising atoms in the ground state 1S0; 10–4C8 values are given

Final
Be Mg Ca Sr Ba

1.023(6) 4.15(5) 22.3(3) 37.92(8) 77.2(4.6)

Other theoretical works

[30] 1.022 4.164 22.6 38.54

[42] 1.04–1.09 4.11–4.35 19.0–24.9

Experimental

[40] 28.5(5.0)

[44] 3.8(8)

Table 5.  Van der Waals coefficients C6 of alkaline-earth dimers comprising atoms in the ground state 1S0

Final
Be Mg Ca Sr Ba

214(3) 627(12) 2121(35) 3103(7) 5160(74)

Other theoretical works

[10] 214(3) 627(12) 2221(15) 3170(196) 5160(74)

[30] 213 629.5 2188 3249

[41] 216 648 2042 3212

[42] 220 634 2785

[33] 208 618 2005

[43] 254 2370

Experimental

[40] 2080(7)

[44] 683(35)
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shall omit details and write the final result right away.
The uncertainty in the van der Waals coefficients is
directly related to errors in dynamic multipole polariza-
tion calculations. It is easy to see from (7)–(10) that the
Cab(l, l ') values are largely “built up” in the region ω ≈
0. The errors in polarizabilities being known, the rela-
tive error in Cab(l, l ') can therefore be estimated as

(24)

It follows that, for the interaction of two like atoms, the
uncertainty in C8 can be written as

(25)

The final van der Waals coefficient values are listed in
Tables 5–7.

5. CONCLUSIONS

Note in conclusion once more that, in this work, we
calculated the electric dipole, quadrupole, and octupole
dynamic polarizabilities of alkaline-earth atoms in the
ground state. The static polarizabilities α1–α3 obtained
from the dynamic polarizabilities at ω = 0 are listed in
the tables and compared with other results found in the
literature. Unfortunately, high-accuracy experimental
data that might be used to test the calculation results are
nearly absent at present. The dynamic polarizabilities
found were used to calculate the C6, C8, and C10 van der
Waals coefficients; the errors in their values were esti-
mated. Note that the C8 and C10 coefficients for barium
were calculated for the first time.
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