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We investigate the feasibility of combining Raman optical lattices with a quantum computing architecture
based on lattice-confined magnetically interacting neutral atoms. A particular advantage of the standing Raman
field lattices comes from reduced interatomic separations leading to increased interatomic interactions and
improved multiqubit gate performance. Specifically, we analyze a J=3/2 Zeeman system placed in �+-�−

Raman fields which exhibit � /4 periodicity. We find that the resulting controlled-NOT �CNOT� gate operations
times are in the order of millisecond. We also investigate motional and magnetic-field induced decoherences
specific to the proposed architecture.
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I. INTRODUCTION

Controlled interactions between qubits is the key to prac-
tical realization of quantum multiqubit gates. The strength of
the interaction determines how fast the gate operations are
performed. In Ref. �1�, a quantum computing scheme based
on magnetically interacting atoms held in optical lattice was
proposed. Since the interaction between magnetic dipoles
separated by a distance R scales as 1 /R3, it is beneficial to
reduce the distance between the atoms. In traditional optical
lattices, created by two interfering counter-propagating laser
fields of wavelength �, the interatomic distance is � /2. The
estimates �1� show that a resulting controlled-NOT �CNOT�-
gate performance time �CNOT ranges from 10−2 s for alkalis
to 10−4 s for complex open-shell atoms with large magnetic
moments, such as dysprosium.

Recently optical lattices of reduced, � /2n�n=1,2 ,3 , . . . �,
periodicity have been proposed �2,3� and are under experi-
mental investigation �4�. Here we evaluate a feasibility of
combining such lattices with the quantum computing scheme
of Ref. �1�. Compared to the conventional � /2 lattices, such
a combination could potentially yield a factor of 23�n−1� im-
provement in the gate performance time. In this paper we
analyze the case of a � /4 lattice.

The paper is organized as follows. In Sec. II, we review
the relevant features of the quantum computing architecture
with magnetic atoms �1�. In Sec. III, we derive optical po-
tentials for a particular case of J=3/2 atoms and demonstrate
their � /4 periodicity. In Sec. IV, we describe operation of our
proposed quantum computing scheme. Finally, in Sec. IV we
address important issues of motional and magnetic-noise in-
duced decoherences.

II. QUANTUM COMPUTING WITH MAGNETIC ATOMS

In Ref. �1�, a scalable quantum computing architecture
was proposed. The architecture utilizes magnetic interaction
of complex open-shell atoms confined to the nodes of an
optical lattice. The lattice is placed in a high gradient mag-
netic field and the resultant Zeeman sublevels define qubit
states. Microwave pulses tuned to space-dependent resonant

frequencies are used for individual addressing. Nearest-
neighbor magnetic-dipolar atomic interactions allow for the
implementation of a quantum controlled-NOT gate. For cer-
tain atoms, the resulting single-qubit gate operation times are
on the order of microseconds, while the two-qubit operations
require milliseconds. These times are much faster than the
anticipated decoherence times.

While the magnetic interaction is weak �so the gate op-
erations are relatively slow�, it is the goal of this paper to
investigate a potential route to strengthening interatomic in-
teractions by bringing atoms closer in optical lattices of re-
duced periodicity. The proposed architecture offers several
distinct advantages. For example, compared to the popular
scheme with Rydberg gates �5�, the advantages are �i� indi-
vidual addressing of atoms with unfocused beams of micro-
wave radiation, �ii� coherent “always-on” magnetic-dipolar
interactions between the atoms, and �iii� substantial decou-
pling of the motional and inner degrees of freedom.

Before proceeding further, it is worth remembering the
following order-of-magnitude values relevant to the architec-
ture of Ref. �1�: light-shifts and the depth of the optical wells
are about 1 MHz, typical Zeeman splitings are 1 GHz, and
the difference in the resonant Zeeman frequency for two
neighboring wells is about 1 kHz.

III. OPTICAL LATTICES OF REDUCED PERIODICITY

Optical lattices of reduced periodicity have been proposed
in Refs. �2,3�. In this section we review the underlying laser
field-atom configuration and formalism, and then specialize
the general formalism of Ref. �3� to the J=3/2 atomic Zee-
man manifold.

In the atom-field geometry of Ref. �3�, a neutral atom
interacts with four laser beams of equal intensities arranged
as two counter-propagating Raman pairs, see Fig. 1. The car-
rier frequencies of the pairs are denoted as ��1 and �2� and
��1� and �2��. The lasers are off-resonant with the upper
manifold H; neglecting a small difference in detunings from
the H state for the two pairs, we use a single value for the
detuning �, although it is this difference in detuning that
allows us to neglect interference �modulated Stark shifts� be-
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tween fields having frequencies �1 and �1� �or �2 and �2��
that would give rise to the conventional � /2 periodicity of
the optical lattice �6,7�. Each pair drives a two-photon tran-
sition between the substates g and g� of the ground-state
manifold. As shown in the figure, the complementary fields
�i� of each pair could be detuned from resonance by �=�i�
−�i−�M�M, where �M�M is the splitting between the ground-
state sublevels. In addition to Raman-induced interactions
each sublevel experiences position-independent light shifts
due to the interaction with the four individual laser fields.

We are interested in solving the Schrödinger equation for
the described Raman atom-field geometry. At first we neglect
atomic center-of-mass �c.m.� motion and obtain solutions
with the optical Hamiltonian Hopt which incorporates internal
atomic Hamiltonian and the four atom-laser interactions. We
will return to the question of c.m. motion in Sec. IV. Solving
the time-dependent Schrödinger equation,

i
�

�t
�̃�	,z,t� = Hopt�	,z,t��̃�	,z,t� , �1�

provides dressed atomic states �̃�	 ,z , t�, where 	 and z en-
capsulate internal and external �c.m.� degrees of freedom,
respectively. Below we outline a method of solving the
above equation developed in Ref. �3�. To solve Eq. �1�, we
adiabatically eliminate the excited state and expand the
dressed states �̃�	 ,z , t� in terms of atomic stationary states of
the lower manifold. As a result one arrives at a system of
first-order linear differential equations for the amplitudes of
the ground-state manifold. The right-hand side of the equa-
tions can be expressed as a matrix multiplied by a vector of
ground manifold amplitudes. We denote this matrix W, it is
easily reconstructed from explicit expressions given by Eq.
�17� of Ref. �3�. Diagonalization of the matrix W produces a
set of position-dependent optical potentials Ui�z� and eigen-

vectors that define the dressed states �̃i�	 ,z , t�. In Sec. III,
we define qubit states in terms of these dressed states. Each

dressed state has a characteristic time dependence

�̃i�	,z,t� = �i�	,z,t�e−iUi�z�t, �2�

the position-dependent phase leading to an optical force
−�Ui�z� acting on the atom.

Having reviewed the general standing-wave Raman setup
and the accompanying formalism, we specialize our discus-
sion to an atom with the total angular momenta of Jg=3/2
for the lower manifold and Jh=5/2 for the upper manifold. A
practically relevant example is the metastable 3p3/2 state of
Al atom. It has been used in a matter-wave deposition ex-
periment �8�, where the atoms were cooled on the closed
transition to the 3d5/2 state ��=309 nm�. We estimate the
lifetime of the 3p3/2 state to be in the order of 104 seconds,
much longer than the anticipated decoherence-loading-
cooling time scales. A number of other open-shell atoms
have J=3/2 ground states as well.

In the B field required for addressing individual atoms,
the J=3/2 manifold splits into four Zeeman levels. For Al,
the Lande factor is 4 /3 and the Zeeman ladder in the B field,
B0, is given by

EM = 4
3
BB0M .

The �+-�− Raman fields couple only M =−3/2 to M =1/2
and M =−1/2 to M =3/2 and effectively we deal with a pair
of independent two-level subsystems. Moreover, while con-
structing the matrices W, we find that they are equivalent; the
only difference between the subsystems comes from the fact
that in the B field the level M =−3/2 is below M =1/2, while
M =3/2 is above M =1/2. For zero Raman detuning � this
symmetry leads to identical optical potentials for the two
subsystems. For nonzero detunings, the potentials are related
to each other by changing �→−�. The resulting four optical
potentials may be parametrized as

U±
−3/2,1/2�z� = −

�

3
±

1

30
��� + 15��2 + 3�2 cos2�2kz� ,

U±
3/2,−1/2�z� = −

�

3
±

1

30
��� − 15��2 + 3�2 cos2�2kz� , �3�

where the superscripts in U±
M,M��z� specify optically coupled

Zeeman pairs. Here we introduce the reduced dynamic po-
larizability �=�2 /�, with the Rabi frequency �=−�1/2�
�H�D�G�E /�3 defined in terms of the reduced dipole ma-
trix element and the �equal� strengths of individual laser E
fields.

The derived optical potentials and the corresponding
dressed states depend on the adjustable detuning �, see Fig.
1. Because of the �←−� mapping, for �=0 the optical po-
tentials for the two sets of Zeeman levels coincide. However,
the resulting U+ and U− potentials are energetically shifted
with respect to each other and this energy gap might lead to
a nonunform loading of the lattice. Below we optimize the
choice of the detuning �.

First we focus on the −3/2 , +1/2 optically coupled Zee-
man pair. A particular choice of �=−� /15 leads to a pair of
potentials,

FIG. 1. �Color online� The standing wave Raman atom-field
configuration is composed of four laser fields. For Jg=3/2 the op-
tically coupled states are either M =−3/2 ,1 /2 or M =−1/2 ,3 /2 and
the lower-manifold splitting is due to the Zeeman interaction.
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U±�z� = −
�

3
±

�

10�3
cos�2kz� , �4�

that are energetically equivalent �see Fig. 2�. As an additional
benefit, at this value of � the potentials have the largest in-
tersite barriers. In going from Eq. �3� and �4�, we have taken
�cos2�2kz�=cos�2kz� rather than 	cos�2kz�	 to avoid impor-
tant nonadiabatic coupling between the potentials that would
occur had we taken the absolute value �6,7�. Qualitatively,
the detuning �=−� /15 is chosen to compensate for the dif-
ference in the light shifts for the two sublevels. As shown in
Fig. 2, the minima of each individual potential are separated
by � /2. In addition, the potentials are shifted with respect to
each other. This produces potential minima separated by
� /4. In other words, if the lattice is properly loaded, the
distance between the neighboring atoms is � /4. Compared to
the conventional � /2 lattices, the use of the described Raman
configurations increases the atomic dipolar interactions by a
factor of 23. The eigenstates of the optical Hamiltonian
�omitting the potential dependence, cf. Eq. �2�� are

�±�	,z,t� =
1
�2

�	− 3/2�e−i�E−3/2−�/2�t � 	 + 1/2�e−i�E1/2+�/2�t� .

�5�

Of course, the separation between adjacent potential minima
in conventional lin� lin lattices is also � /4, but each adja-
cent minima contains atoms in a given magnetic substate and
is not suitable for the computing scheme described in this
paper.

The problem with the above choice of detuning
�=−� /15 is that it optimizes only the potentials for the
−3/2 , +1/2 pair. For the other, +3/2 ,−1/2, pair the optimal
choice would be ��= +� /15. If we keep the �=−� /15 de-
tuning, the height of the intersite barriers for the +3/2 ,
−1/2 pair would be just 
20% of the optimal values and in
addition the corresponding U+�z� and U−�z� potentials would
be energetically separated. To rectify this problem, we envi-

sion adding another independent set of four laser beams. To
distinguish between the two sets, we will use primed quan-
tities for this second set. This second quadruplet would be
Raman resonant for the +3/2 ,−1/2 coupled sublevels. The
required detuning is ��=� /15=−�. We further require that
the relative phases of the laser fields for the two quads are
adjusted so that both resulting sets of U+ /U− potentials co-
incide, i.e., U±��z��U±�z�. The eigenstates are

�±��	,z,t� =
1
�2

�	3/2�e−i�E3/2−�/2�t � 	− 1/2�e−i�E−1/2+�/2�t� .

�6�

We assume that the dominant trapping is produced by the
�two-photon� resonant fields, but detailed calculations are
needed to confirm this assumption.

Notice that in the B-field gradient the Raman detuning
� would change across the lattice sites. However, the change
�
1 kHz increment per site� is small compared to the typical
light shifts, 
1 MHz, implying that the resonance conditions
�= ±� /15 is little changed over the entire sample.

To summarize results of the discussion so far, we have
designed a confinement scheme for J=3/2 atoms in mag-
netic fields. The atoms are separated by a distance of � /4,
improving the performance of multiatom gates over the con-
ventional � /2 schemes. In the following section we address
operations of a quantum computer based on the described
� /4 lattice.

IV. OPERATION

First we define the qubit states in terms of the eigenstates,
Eqs. �5� and �6�, of the optical Hamiltonian. We assume that
the atoms are in the Lamb-Dicke confinement regime, and
the atoms are trapped at the minima of the U+�z� and U−�z�
potentials �Fig. 2� with 1:1 occupation ratio. The definition
of the qubit depends on whether the atom is trapped at U+�z�
or U−�z� minima. For the U+�z� wells,

zn
�+� =

�

2
n,

	1� = �+,

	0� = �+� ,

while for the U−�z� wells

zn
�−� =

�

4
+ zn

�+�,
	1� = �−,

	0� = �−� ,

where n is an integer. To individually address the qubits, we
introduce a B-field gradient and use pulses of microwave
radiation of various duration to execute one-qubit operations.
However, compared to Ref. �1�, here we deal with the
dressed states. Describing dynamics of the system requires
certain care. For concreteness, we focus on an atom in the U+
well, but the conclusions will apply equally to the U− wells.
The total Hamiltonian including interaction VM with circu-
larly polarized MW radiation of frequency � reads H=Hopt
+VMe−i�t+VM

† e+i�t. The duration of the drive should be cho-
sen to resolve different Zeeman transition frequencies be-
tween ground state sublevels near the potential minima of a
single well, as well as transition frequencies between adja-

z

 

U+ U-

FIG. 2. �Color online� Optical potentials, Eq. �4�, for the optimal
choice of Raman detuning �. While each individual potential U+�z�
and U−�z� has a � /2 periodicity, the minima of the potentials inter-
weave, with the resulting distance between trapped atoms being
� /4.
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cent U+ and U− potential wells. These conditions can be
satisfied easily, as the change of the Zeeman frequency for
two neighboring sites is 
1 kHz, while the light shifts are in
the order of 1 MHz. Under such an assumption, the atomic
wave function can be expanded as ��t�=c�t��̃++c��t��̃+�.
Taking into account Eq. �1�, we arrive at the system of
coupled equations for the expansion amplitudes,

iċ = ��+	VMe−i�t + VM
† e+i�t	�+��c��t� ,

ic� = ��+�	VMe−i�t + VM
† e+i�t	�+�c�t� .

While evaluating matrix elements we find that the resonant
frequencies are �res=�Z ,�Z±�, where �Z= 4

3
BB0. The reso-
nance at �Z corresponds to transitions between the
M =−1/2 and M =1/2 sublevels, while those at �Z±� corre-
spond to transitions between M =−3/2 and M =−1/2 or
M =1/2 and M =3/2. Again, due to the orders-of-magnitude
difference in the Zeeman and the light-shift energy scales,
we may resolve these resonance frequencies and find it con-
venient to work at �Z. For the selected transition, the above
system of equations maps onto the problem of a two-level
system in an oscillating field. By varying the duration of the
MW pulses, we may execute arbitrary rotations in the Hilbert
space spanned by individual qubits.

Since the Zeeman splitting is position dependent, only a
single qubit from the entire ensemble will respond to a pulse
of a certain frequency. The advantage of the proposed ad-
dressing scheme is that there is no need to focus radiation on
an individual atom.

Now we turn to another important ingredient of Quantum
Computer architectures: multiqubit gates. It is sufficient to
consider operation of the universal two-qubit CNOT gate �9�.
In the proposal of Ref. �9� the resonance frequency of the
target qubit should depend on the state of the control qubit.
This leads to a conditional quantum dynamics: the transition
in the target qubit occurs only if the control qubit is in a
predefined state. In our scheme, this dependence of the reso-
nance frequency is due to magnetic interactions between two
neighboring atoms. Indeed, we find that each qubit state pos-
sesses a permanent magnetic-dipole moment aligned with the
z axis: 
	1�= +2/3
B, 
	0�=−2/3
B �these values are inde-
pendent of the well�. The generated magnetic field at the
position of the target qubit is �B=2�2 /R3
	1,0�, where �
�1/137 is the fine-structure constant and R=� /4 is the dis-
tance between the qubits. Depending on the state of the con-
trol qubit the generated field will either increase or reduce
the offset B field B0�z� and modify the Zeeman frequency.
While performing the gate, one needs to resolve the fre-
quency difference

��CNOT =
32

9
�2
B

2

R3 .

The minimum duration of the MW pulse is �CNOT

1/��CNOT. For our parameters, �CNOT�10−3 s. The re-
sulting performance is competitive with other quantum com-
puting schemes such as nuclear magnetic resonance �10�
��CNOT
10−3–10−2 s�, and controlled collisions �11�
��CNOT
410−4 s�.

V. MOTIONAL AND MAGNETIC-NOISE INDUCED
DECOHERENCES

The gate operations must be much faster than decoher-
ence rates. A number of decoherence mechanisms present in
the current proposal have been analyzed in Ref. �1�. For ex-
ample, atoms may be lost due to an entanglement of the
internal and motional degrees of freedom during the NOT-
gate operation. It was demonstrated �1� that the associated
excitation rates from the ground motional state are negli-
gible. The underlying reason is that the induced perturbation
is adiabatically slow: on the time scale of the NOT pulse, the
atomic c.m. undergoes many oscillations in the well. The
same conclusion holds for the present proposal. However,
the dressed �qubit� states were introduced in Sec. III neglect-
ing the c.m. motion and we need to additionally consider
coupling of dressed states due to the atomic motion. Fortu-
nately, as shown below, it is straightforward to demonstrate
that the qubit states are not coupled by the c.m. motion.

Another important source of the decoherence arises due to
magnetic noise. The qubit states are defined in terms of the
Zeeman sublevels sensitive to magnetic perturbations. In
Ref. �1�, a noise-induced dephasing has been evaluated, and
it has been shown that the decoherence rate can be reduced
with modest B-field shielding requirements. In the present
proposal, the implications of the magnetic noise can be more
severe: for dressed states, the relative phase �determined by
the Zeeman splitting� between the “bare” magnetic substates
must remain fixed. The noise perturbs the relative phase
leading to excitations of the motional quanta.

In Sec. III, the dressed states �̃±�	 ,z , t� were found by
assuming that the atom was localized at the position z and
then by diagonalizing the position-dependent optical matrix
W�z�. Taking into account that for a fixed z, the �̃±�	 ,z , t�
form a complete basis set, we may expand the exact wave
function as

��	,z,t� = �−�z,t��̃−�	,z,t� + �+�z,t��̃+�	,z,t� , �7�

where �±�z� are �generally coupled� c.m. wave functions of
interest. The Hamiltonian including the c.m. motion is

H�	,z,t� = T + Hopt�	,z,t� , �8�

with T=− 1
2M

�2

�z2 being the kinetic energy operator for the c.m.
motion. Using the standard technique of projecting the
Schrödinger equation onto the �̃± basis, we find

i
�

�t
�±�z,t� = 

p=±
��±	T	�p�p�	 + U±�z��±�z,t� , �9�

where the inner product is with respect to the internal de-
grees of freedom 	. The coupling between the two compo-
nents �+ and �− arises in general due to the off-diagonal term
in the sum. In our case, the dressed states �±�	 , t� do not
depend on z, Eqs. �5� and �6�, and we arrive at a simple result
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i
�

�t
�±�z,t� = −

1

2M

�2

�z2�±�z,t� + U±�z��±�z,t� . �10�

This is a physically significant result: the atomic motion does
not lead to mixing of the qubit states.

At the minima of the potentials, the bottom of the poten-
tial well can be approximated by a harmonic oscillator po-
tential and we can write �±�z , t� as a sum of the time-
dependent stationary states of the harmonic oscillator �n,

�±�z,t� = 
n

c±,n�t��n�z,t� . �11�

The coefficients c±,n depend on the temperature of the qubit
and the loading process; we assume that initially only the
ground motional states are occupied. We also require that the
potential is sufficiently deep so that the atoms do not tunnel
away, see Ref. �1� for estimates.

Now we can analyze the effect of time-dependent mag-
netic noise B�t� acting on the qubit. Let us take, for example,
the qubit in the state �+ localized in the motional ground
state �0 of one of the minima of U+ for t�0. For t�0, the
magnetic noise is turned on and we look at the decoherence
rate of the qubit. We consider the loss mechanism as a two-
step process. The magnetic field acts only on the internal
degree of freedom of the qubit causing a primary transition
c+,0�+�0�z�→c−,0�−�0�z�. Minima of U+�z� correspond to
maxima of U−�z� so the new state �−�0�z� is motionally un-
stable. For example, one of the possible transitions this state
undergoes is c−,0�−�0�z�→c−,2�−�2�z�. The exact details of
this secondary transition are not important, since the entire
decoherence rate is determined by the rate of the primary
excitation. For example, characteristic time associated with
the c−,0�−�0�z�→c−,2�−�2�z� route is �2= 1

2k
�5�3M

� . Our esti-
mate for Al atom, �=309 nm and �
107 Hz results in �2

10−7 s.

The decoherence rate is determined by the primary exci-
tation c+,0�+�0→c−,0�−�0 and below we determine the prob-
ability associated with this process. The required time evo-
lution of the coefficient c−,0�t� is computed by including the
magnetic noise perturbation 
B�t�	�−���+ 	 �+H.c. in the
Schrödinger equation

i
�

�t
c−,0�t� = �Umax − Umin�c−,0�t� + 
B�t�c+,0�t� , �12�

where 
=��−	
̂ B
B 	�+

�, and Umax−Umin= �

5�3
is the energy

difference between the minimum and the maximum of the
U+ and U− potentials, Eq. �4�. The solution of Eq. �12� is

c−,0�t� = − ie−i��/5�3�t�
0

t


B�t1�c+,0�t1�ei��/5�3�t1dt1. �13�

The magnetic noise is characterized by its autocorrelation
function

�B�t1�B*�t1 + ��� =
1

2�
�

−�

+�

S���ei��d� , �14�

where S��� is the frequency-dependent spectral density of
the noise. The autocorrelation function �c−,0�t�c−,0�t�� repre-

sents the probability p�t� of excitation �+�0→�−�0,

p�t� = �
0

t �
0

t

dt1dt2
2�B�t1�c+,0�t1�

B*�t2�c+,0
* �t2�ei��/�5�3��t1−t2�� . �15�

For time t sufficiently short to guarantee that 	c−,0�t�	
� 	c+,0�t�	, but longer than the correlation time of the mag-
netic noise, we may approximate c+,0�t��1, and find

p�t� = 
2�
0

t

S�−
�

5�3
�dt =

1

�1
t , �16�

with �1= 1

2 S� �

5�3
�−1.

For coherence times on the order of 10 seconds the mag-
netic noise should satisfy

�S� �

5�3
� � 3  10−12 T/�Hz. �17�

This level can be attained with passive shielding �12�. More-
over, notice that the spectral density of the noise is evaluated
at a relatively high �
1 MHz� frequency. This frequency is
of the order of the light shift induced by the lattice lasers. At
such a high frequency the magnetic noise is highly sup-
pressed. For example, for passive shielding, the characteristic
cutoff frequency due to induced currents is in the order of
kHz �12�.

To conclude, our analysis suggests that magnetic noise
can be controlled at an adequate level. Also the atomic mo-
tion does not lead to entanglement of qubit states, defined as
dressed atomic Zeeman sublevels. Other sources of decoher-
ence common with the present proposal, were considered in
Ref. �1� and we refer the reader to that paper for details.

VI. CONCLUSION

We have outlined a method for increasing the relatively
weak magnetic interactions in which atoms are trapped in
Raman optical lattices having reduced periodicity. The re-
duced interatomic distances lead to improved performance of
multiqubit gates. In the particular case of the Al, J=3/2 Zee-
man manifold, we designed a � /4 optical lattice and found
that universal two-qubit CNOT-gate operations require times
of approximately 10−3 s. These times are comparable to
other quantum computing schemes such as nuclear magnetic
resonance �10� and controlled collisions �11�. Moreover, the
present proposal offers scalability, individual qubit address-
ability with unfocused beams of microwave radiation, and
coherent “always-on” interactions between the qubits.

Analysis of Refs. �2,3� suggests that in general, the
standing-wave Raman fields should lead to
� /2n�n=1,2 ,3 , . . . � interatomic separations. For a given
number of atoms, such lattices should improve performance
of the original � /2 quantum computing architecture of Ref.
�1� by an exponentially increasing factor of 23�n−1�. It re-
mains to be seen if the present � /4 proposal can be general-
ized to optical lattices of smaller periodicity.
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