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Searches for CP-violating effects in atoms and molecules provide important constrains on competing ex-
tensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the
CP-odd �T,P-odd� polarizability �CP: a magnetic moment �CP is induced by an electric field E0 applied to an
atom, �CP=�CPE0. We estimate the CP-violating polarizability for rare-gas �diamagnetic� atoms He through
Rn. We relate �CP to the permanent electric dipole moment �EDM� of the electron and to the scalar constant of
the CP-odd electron-nucleus interaction. The analysis is carried out using the third-order perturbation theory
and the Dirac-Hartree-Fock formalism. We find that, as a function of nuclear charge Z , �CP scales steeply as
Z5R�Z�, where slowly varying R�Z� is a relativistic enhancement factor. Finally, we evaluate the feasibility of
setting a limit on electron EDM by measuring CP-violating magnetization of liquid Xe. We find that such an
experiment could provide competitive bounds on electron EDM only if the present level of experimental
sensitivity to ultraweak magnetic fields �Kominis et al., Nature 422, 596 �2003�� is improved by several orders
of magnitude.
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I. INTRODUCTION

The existence of a permanent electric dipole moment
�EDM� of a particle simultaneously violates two discrete
symmetries: parity �P� and time reversal �T�. By the virtue of
the CPT theorem, the T-violation would imply CP violation
�1,2�. While no EDMs have been found so far, most super-
symmetric extensions of the Standard Model of elementary
particles predict electron EDMs, de, that are within a reach of
planned and ongoing experimental searches. Here we inves-
tigate a related T-odd, P-odd quantity—CP-violating polar-
izability, �CP, introduced recently by Baryshevsky �3�. For a
diamagnetic atom, a nonvanishing �CP could provide an un-
ambiguous signature of the electron EDM or other
CP-violating mechanisms. Here we relate �CP to de via ab
initio relativistic calculations for closed-shell atoms. We also
relate �CP to the scalar constant of the CP-odd electron-
nucleus interaction.

An interaction of an atom with external dc electric field in
the presence of the electron EDM causes spin polarization in
the direction of the field �4�. An early attempt to measure
corresponding magnetization of the ferromagnetic crystal
was made by Vasiliev and Kolycheva in 1978 �5�. According
to Lamoreaux �6�, modern techniques allow us to improve
that old measurement by many orders of magnitude and
reach the sensitivity, which allows us to improve the present
limit on the electron EDM �7�:

de�Tl� � 1.6 � 10−27e cm.

Results of the new generation of experiments with ferromag-
netic solids were recently reported by Hunter �8�. A charac-
teristic feature of the experiments with macroscopic magne-

tization is the dependence of the signal on the density of
atoms. That gives a huge enhancement in sensitivity for a
condensed phase sample.

It is generally assumed that diamagnetic atoms are not
useful for the search of the electron EDM. However, Bary-
shevsky has recently pointed out �3� that CP-violating mag-
netization would also exist for a diamagnetic atom. For a
spherically symmetric atom, the E-field-induced magnetic
moment �CP can be expressed in terms of CP-violating po-
larizability �CP as

�CP = �CPE0, �1�

where E0 is the strength of the electric field. This observation
opens interesting experimental possibilities. For example,
one can measure magnetization of liquid xenon in a strong
external electric field. The advantage of the experiment with
diamagnetic liquid in comparison to ferromagnetic solids is a
much lower magnetic noise.

For a diamagnetic �closed-shell� atom the magnetization
�1� appears in the higher orders of the perturbation theory
than for the open-shell atoms. In this paper we calculate
polarizability �CP for rare-gas atoms He through Rn using
third-order perturbation theory and Dirac-Hartree-Fock
�DHF� formalism.

Further, we evaluate a feasibility of setting a limit on
electron EDM by measuring CP-violating magnetization of
liquid Xe �LXe�. We consider the effect of the environment
on �CP of Xe atoms in LXe. We use a simple cell model of
an atom confined in a spherically symmetric cavity �9�. In a
nonpolar liquid, such a cavity roughly approximates an av-
eraged interaction with the neighboring atoms. We solve the
DHF equations with proper boundary conditions at the cavity
radius. For LXe, we find that compared to the CP-odd po-
larizability of an isolated atom, the resulting CP-odd polar-
izability of an atom of LXe is suppressed by about 65%.
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We find that the CP-violating polarizability exhibits an
unusually strong dependence on the nuclear charge Z. Previ-
ously, Sandars �10,11� has shown that an atomic enhance-
ment factor for the electron EDM is of the order of �2Z3,
where ��1/137 is the fine-structure constant. As we dem-
onstrate below, for a diamagnetic atom, the polarizability �CP

vanishes in the nonrelativistic approximation. Because of
that it is suppressed by a factor of ��Z�2. With the Sandars’
enhancement factor this leads to a steep, Z5, scaling of the
effect.

Recently there was a renewed interest to the CP-odd
weak neutral current interactions of electrons with nucleons
�12�. It is known that in atomic experiments the electron
EDM is indistinguishable from the scalar CP-odd weak neu-
tral currents �1,13�. Any new limit on the electron EDM from
the atomic experiments will also lead to the improved limit
on the scalar constant of the CP-odd electron-nuclear inter-
action. Here we relate computed �CP to the scalar constant of
the CP-odd electron-nucleus interaction.

The paper is organized as follows: In Sec. II we derive the
third-order expression for the CP-violating polarizability and
use the independent-particle approximation to simplify the
atomic many-body expressions. In Sec. III we present results
of our DHF calculations of �CP for rare-gas atoms and derive
the Z scaling of �CP. In Sec. IV we evaluate a feasibility of
setting a limit on electron EDM by measuring CP-violating
magnetization of liquid Xe. Finally, in Sec. V we draw con-
clusions. Unless specified otherwise, atomic units �e�=�
=me�1 and Gaussian system for electromagnetic equations
are used throughout. In these units, the Bohr magneton is
�B=� /2 and the unit of magnetic field is me

2e5 /�4�1.72
�107 G.

II. FORMALISM

In this section we derive the expression for CP-violating
polarizability within the third-order perturbation theory. Fur-
ther, we simplify the derived expression using the Dirac-
Hartree-Fock approximation for atomic many-body states.

The problem to be solved can be formulated as follows:
What is the induced magnetic moment ��	 of an atom per-
turbed by an external electric field E0? It is easy to demon-
strate that if the atomic wave functions are the eigenstates of
the parity and time-reversal operators, the induced magnetic
moment vanishes. However, in the presence of the CP-odd
interactions, VCP, there appears a tiny E-field-induced mag-
netic moment. To emphasize the essential role of CP viola-
tion in the generation of the magnetic moment, we will use
CP superscript with the magnetic moment, ��CP	. The inter-
action VCP can be due to electron EDM or CP-odd weak
neutral currents, and we will specify the particular forms of
VCP in Sec. II C. For a spherically symmetric system, the
induced magnetic moment will be directed along the applied
E field.

A. Third-order formula for the induced magnetic moment

We develop the perturbative expansion for the atomic
wave function ��0	 in terms of the combined interaction W

=VCP+Vext. Here Vext is the interaction with the external
electric field applied along the z axis, Vext=−DzE0 , Dz being
the z component of the electric dipole moment operator. To
estimate the dominant contribution to ��	, it is sufficient to
truncate the perturbative expansion for the atomic wave
function at the second order in W , ��0	���0

�0�	+ ��0
�1�	

+ ��0
�2�	. Then the expectation value of the magnetic moment

reads

��CP	 = ��0
�1�����0

�1�	 + ��0
�0�����0

�2�	 + ��0
�2�����0

�0�	 .

�2�

To arrive at the above expression we used a simplifying fact
that the magnetic moment is a P-even operator, while both
��0

�0�	 and ��0
�2�	 have parities opposite to the one of the

first-order correction ��0
�1�	.

The textbook expressions for the first- and second-order
corrections to wave functions can be found, for example, in
Ref. �14�. With these expressions,

��CP	 = ��CP	1 + ��CP	2 + ��CP	3, �3�

��CP	1 = 2

kl

V0k
CP

E0 − Ek
�kl

Vl0
ext

E0 − El
, �4�

��CP	2 = 2

kl

�0k

Vkl
CPVl0

ext

�E0 − Ek��E0 − El�
, �5�

��CP	3 = 2

kl

�0k

Vkl
extVl0

CP

�E0 − Ek��E0 − El�
. �6�

In these formulas, the summations are carried out over the
eigenstates of the atomic Hamiltonian Ha , Ha��p

�0�	
=Ep��p

�0�	. The derived third-order expression can be pre-
sented in a more compact and symmetrical form using the
resolvent operator R= �E0−Ha�−1,

��CP	 = 2�0�VCPR�RVext�0	 + 2�0��RVCPRVext�0	

+ 2�0��RVextRVCP�0	 . �7�

The three contributions above differ by permutations of the
operators � , VCP, and Vext.

B. Dirac-Hartree-Fock approximation

Having derived a general third-order expression for the
induced magnetic moment, Eq. �7�, here we proceed with the
atomic-structure part of the evaluation. We employ the con-
ventional Hartree-Fock �HF� or independent-particle ap-
proximation for that purpose. In this approach, the atomic
many-body wave function is represented by the Slater deter-
minant composed of single-particle orbitals. These orbitals
are determined from a set of the HF equations. Using a com-
plete set of Slater determinants, the contributions to the in-
duced magnetic moment, Eqs. �4�–�6�, may be expressed as

��CP	1,a = 2

amn

Van
CP�nmVma

ext

��m − �a���n − �a�
, �8�
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��CP	1,b = − 2

abm

Vbm
CP�abVma

ext

��m − �a���m − �b�
, �9�

��CP	2,a = 2

amn

�anVnm
CPVma

ext

��m − �a���n − �a�
, �10�

��CP	2,b = − 2

abm

�bmVab
CPVma

ext

��m − �a���m − �b�
, �11�

��CP	3,a = 2

amn

�anVnm
extVma

CP

��m − �a���n − �a�
, �12�

��CP	3,b = − 2

abm

�bmVab
extVma

CP

��m − �a���m − �b�
. �13�

Here indexes a and b run over single-particle orbitals occu-
pied in ��0	, indexes m and n run over virtual orbitals, and �i
are the energies of the HF orbitals.

It is well known that the relativistic effects are essential
for the nonvanishing contributions to energy levels due to
EDMs �Schiff theorem�. Moreover, in Sec. IIIA, we will
demonstrate that the relativism enters into the calculations of
CP-violating polarizability in the enhanced fashion: one also
needs to incorporate relativistic corrections to electric- and
magnetic-dipole matrix elements and energies entering Eqs.
�4�–�6�. We include the relativistic effects by directly solving
Dirac-Hartree-Fock �DHF� equations

�c�� · p� + �c2 + Vnuc + VDHF�ui�r� = �iui�r� , �14�

where Vnuc is a potential of the Coulomb interaction with a
finite-size nucleus and VDHF is nonlocal self-consistent DHF
potential.

C. Matrix elements

We use the following ansatz for the Dirac bi-spinor:

un	m�r� =
1

r
� iPn	�r�
	m�r̂�

Qn	�r�
−	m�r̂�
� , �15�

where P and Q are the large and small radial components,
respectively, and 
 is the spherical spinor. The angular quan-
tum number 	= �l− j��2j+1�.

In particular, the reduced matrix elements of the
magnetic-dipole and electric-dipole moment operators be-
tween two bi-spinors are given by

�a�b	 = −
1

2
�	a + 	b��− 	aC1	b	

��
0

�

rdr�Pa�r�Qb�r� + Qa�r�Pb�r�� , �16�

�aDb	 = − �	aC1	b	 � �
0

�

rdr�Pa�r�Pb�r� + Qa�r�Qb�r�� ,

�17�

C1�r̂� being the normalized spherical harmonic.

At this point we would like to specify particular forms for
the CP-odd interaction VCP. We will distinguish between the
electron EDM coupling VCP,EDM and weak neutral-current
�NC� interactions VCP,NC. The EDM interaction of an elec-
tron with an electric field Eint can be written in four-
component Dirac notation as �13�

VCP,EDM = 2de�0 0

0 � · Eint
� . �18�

The matrix element of this interaction is given by

Vab
CP,EDM = de�2Z�

0

� dr

r2 Qa�r�Qb�r���	a,−	b
�ma,mb

, �19�

where we assumed that the dominant contribution is accumu-
lated close to the nucleus �of charge Z� so that Eint can be
approximated by the nuclear field. The selection rules with
respect to angular quantum numbers m and 	 arise because
VCP is a pseudoscalar.

Recently there was a renewed interest to CP-odd weak
neutral current interactions of electrons with nucleons �12�. It
is known that in atomic experiments EDM of the electron is
indistinguishable from the scalar CP-odd weak neutral cur-
rents �13�:

VCP,NC = i
GF

�2
�Zk1

p + Nk1
n�05��r�, � i

GFZ
�2

k1
nuc05��r� ,

�20�

where GF=2.2225�10−14 a.u. is the Fermi constant, k1
p,n are

dimensionless constants of the scalar P,T-odd weak neutral
currents for proton and neutron �k1

nuc�k1
p+ �N /Z�k1

n�. Further,
Z and N are the numbers of protons and neutrons in the
nucleus, 0,5 are Dirac matrices, and ��r� is the nuclear den-
sity.

III. RESULTS FOR RARE-GAS ATOMS

The derived HF expressions hold for any atomic or mo-
lecular system with a state composed from a single Slater
determinant. Below we will carry out calculations for the
rare-gas atoms He through Rn. These closed-shell atoms
have a 1S0 ground state and, due to the spherical symmetry,
the CP-violating polarizability is a scalar quantity, i.e., the
induced magnetic moment is parallel to the applied electric
field. The intermediate many-body states in Eqs. �4�–�6� are
particle-hole excitations, with the total angular momenta of
J=0 or J=1, depending on the multipolarity of the involved
operator.

To carry out the numerical evaluation, we solved the DHF
equations in the cavity using a B-spline basis set technique
by Johnson et al. �15�. The resulting set of basis functions is
finite and can be considered numerically complete. In a typi-
cal calculation we used a set of basis functions expanded
over 100 B splines. An additional peculiarity related to the
Dirac equation is an appearance of negative energy states
��m�−mec

2� in the summation over intermediate states in
Eqs. �8�–�13�. In our calculations we used the so-called
length form of the electric-dipole operator, Eq. �17�, and we
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found the contribution of negative-energy state to be insig-
nificant.

Numerical results for rare-gas atoms are presented in
Table I and also plotted in Fig. 1. In Table I, the values in the
column marked �CP/de were computed directly, while the
values �CP/k1

nuc �the last column� were obtained from �CP/de
as explained in Sec. IIIA.

From Fig. 1 we observe a pronounced dependence of the
values on the nuclear charge Z. Such a steep scaling of the
CP-odd polarizabilities is expected from the considerations
presented in Sec. IIIA.

To illustrate the �doubly� relativistic origin of the CP-odd
polarizability �CP, we compile values of various contribu-
tions to �CP in Table II for an isolated Xe atom. Apparently,
the dominant contributions are from ��CP	1,a, Eq. �8�, and
��CP	1,b, Eq. �9�, but there is strong cancellation between
these two terms. As we will see below, this cancellation is
not accidental.

Z5 scaling and relation between EDM and NC contributions

Let us consider nonrelativistic limit of Eqs. �4�–�6�. The
magnetic moment operator is reduced to the form

� = −
�

2
�2s + l� . �21�

This operator cannot change electronic principal quantum
numbers. Because of that the contributions �5� and �6� van-
ish, as there � should mix occupied and excited orbitals.
Thus we are left with the single term �4�, which can be
further split in two parts �8� and �9�. We will show now that
these two parts cancel each other.

Indeed, in the nonrelativistic approximation the operator
VCP is given by a scalar product of the spin vector and the
orbital vector. Therefore in the LS-coupling scheme it can
couple the ground state 1S0 only with excited states 3P0.
Operator �21� is diagonal in the quantum numbers L and S
and can couple 3P0 only with 3P1. To return back to the
ground state, the dipole operator Vext has to couple 3P1 with
1S0. However, this matrix element vanishes in the nonrela-
tivistic approximation. The above states 3P0,1 are formed
from the excited electron and a whole in the core, which
correspond to two expressions �8� and �9�. We conclude that
these two contributions exactly cancel in the nonrelativistic
approximation.

The matrix element �3P1�Vext�1S0	 is proportional to the
spin-orbit mixing, which is of the order of ��Z�2. It follows
from Eq. �16� that relativistic correction to operator �21� is of
the same order. This correction accounts for the nondiagonal
in the principle quantum numbers matrix elements of � and
leads to the nonzero values of the terms �5� and �6�. Thus we
see that all three terms in Eq. �3� are suppressed by the
relativistic factor ��Z�2, in agreement with numerical results
from Table II.

Matrix elements of the CP-odd interaction VCP depend on
the short distances and rapidly decrease with quantum num-
ber j. To a good approximation it is possible to neglect all
matrix elements for j�3/2. For the remaining matrix ele-
ments between orbitals s1/2 and p1/2 an analytical expression
can be found in Ref. �13�:

�s1/2�VCP,EDM�p1/2	 =
16

3

�2Z3REDM

��s�p�3/2 de, �22�

�s1/2�VCP,NC�p1/2	 =
GF

2�2�

�Z3RNC

��s�p�3/2k1
nuc, �23�

where we use effective quantum numbers �= �−2��−1/2. REDM

and RNC are relativistic enhancement factors:

TABLE I. CP-violating polarizability �CP in Gaussian atomic
units, for rare-gas atoms. CP violation is either due to the electron
EDM, de, or due to the neutral currents �20�. Notation x�y� stands
for x�10y.

Atom Z �CP/de �CP/k1
nuc

He 2 −3.8�−9� −2.4�−22�
Ne 10 −2.2�−6� −1.5�−19�
Ar 18 −7.4�−5� −5.2�−18�
Kr 36 −3.6�−3� −3.1�−16�
Xe 54 −4.5�−2� −5.3�−15�
Rn 86 −1.07 −2.2�−13�

FIG. 1. �Color online� Dependence of the CP-violating polariz-
ability �CP on the nuclear charge Z for rare-gas atoms. CP violation
is due to the electron EDM, de. The ratio �CP/de is given in atomic
units.

TABLE II. Contributions to CP-violating polarizability, �CP/de,
in Gaussian atomic units, for an isolated Xe atom. Each contribu-
tion is defined via Eqs. �8�–�13� as �k,�

CP /de= ��CP	k,� / �deE0�.
CP-violation is due to the electron EDM, de. The notation x�y�
stands for x�10y.

k �k,a
CP /de �k,b

CP /de Sum

1 0.108 −0.132 −2.44�−2�
2 −6.53�−3� 6.63�−5� −6.46�−3�
3 −8.19�−3� −5.13�−3� −1.33�−2�

Total −4.42�−2�
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REDM =
3

�42 − 1�
= �1, Z = 1,

1.4, Z = 54 �Xe� ,

2.7, Z = 86 �Rn� ,
� �24�

RNC =
4�2ZrN�2−2

�2�2 + 1�
= �1, Z = 1,

2.5, Z = 54,

8.7, Z = 86,
� �25�

where =�1− ��Z�2 and the radius of the nucleus is taken to
be rN=1.2�Z+N�1/3fm �13�.

We see that both CP-odd operators scale as Z3R with
relativistic enhancement factors R given by Eqs. �24� and
�25�. This scaling adds up with relativistic suppression ��Z�2

discussed above to give overall scaling Z5R. This scaling
agrees with our numerical calculations and Fig. 1.

Because of the similarity between matrix elements �22�
and �23� of operators VCP,EDM and VCP,NC, there is no need in
calculating independently the NC contribution to �CP. It is
sufficient to substitute matrix elements �22� in all equations
with matrix elements �23�. Comparing these expressions we
find that to get the contribution to �CP induced by the
CP-odd weak neutral currents we need to make following
substitution:

de

er0
⇔ 0.64 � 10−13 RNC

REDMk1
nuc, �26�

where r0 is the Bohr radius and REDM and RNC are given by
Eqs. �24� and �25�. The accuracy of Eq. �26� is typically
15–20 %, which is sufficient for our purposes. It was used to
calculate the last column of Table I.

IV. LIMITS ON ELECTRON EDM FROM MEASUREMENT
OF CP-ODD POLARIZABILITY

Here we envision the following experimental setup �see
Fig. 2� to measure the CP-violating polarizability: A strong
electric field E0 is applied to a sample of diamagnetic atoms
of number density n. A macroscopic magnetization arises due
to the CP-violating polarizability. This magnetization gener-

ates a very weak magnetic field B. One could measure this
induced magnetic field and set the limits on the electron
EDM or other CP-violating mechanisms. In particular, for a
spherical cell the maximum value of the generated magnetic
field at the surface of the sphere can be related to the
CP-violating polarizability as

Bmax =
8�

3
n�CPE0. �27�

Clearly, one should increase the number density to enhance
the signal, and it is beneficial to work with a dense liquid or
solid sample.

Among the rare-gas atoms, considered here, xenon has the
most suitable properties for such an experiment: Xe is the
heaviest nonradioactive atom, it has a large number density
�n�1022 1 /cm3�, and liquid Xe has a high electric-field
breakdown strength �E0�4�105 V/cm�. Our calculations in
Sec. III were carried out for isolated atoms. However, in a
liquid, there are certain environmental effects �such as con-
finement of electronic density� that affect the CP-violating
signal. To estimate the confinement effects in the liquid, we
employ the liquid-cell model. The calculations are similar to
those presented in Ref. �16�. In brief, we solve the DHF
equations for a Xe atom in a spherical cavity of radius Rcav
= ��3/4���1/n��1/3, with certain boundary conditions im-
posed at the cavity surface. For a density of LXe of 500
amagat �17�, Rcav�4.9 bohr. For a solid state, Rcav
�4.2 bohr and we use the latter in the calculations �see dis-
cussion in Ref. �16��. Technically, we applied the variational
Galerkin method on a set of 100 B-spline functions �15�. We
find numerically that compared to an isolated atom, the
CP-violating polarizability of a Xe atom in LXe is reduced
by about 65%,

�CP�LXe� � − 1.5 � 10−2de. �28�

From Eq. �27� it is clear that the more sensitive the mea-
surement of the B field, the tighter the constraints on �CP

�and de� are. Presently, the most sensitive measurement of
weak magnetic fields has been carried out by Princeton
group �18�. Using atomic magnetometry, this group has
reached the sensitivity level of 5.4�10−12 G/�Hz. The pro-
jected theoretical limit �18� of this method is 10−13 G/�Hz.
Notice that this estimate has been carried out for a sample of
volume 0.3 cm3. According to Romalis �19�, the sensitivity
increases with volume V as V1/3, so a 100 cm3 cell would
have an even better sensitivity of about 10−14 G/Hz1/2. A
more optimistic estimate, based on nonlinear Faraday effect
in atomic vapors �20�, is given in Ref. �21�; here the pro-
jected sensitivity is 3�10−15 G/�Hz.

Assuming ten days of averaging, the most optimistic pub-
lished estimate of the sensitivity to magnetic field �21� leads
to the weakest measurable field of B�3�10−18 G. Combin-
ing this estimate with the breakdown strength of the E field
for LXe, E0�4�105 V/cm, and our computed value of
CP-odd polarizability, Eq. �28�, we arrive at the constraint
on the electron EDM,

FIG. 2. �Color online� A scheme for measuring CP-violating
polarizability.
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de�LXe� � 6 � 10−26 e cm. �29�

This projected limit is more than an order of magnitude
worse than the present limit on the electron EDM from the Tl
experiment �7�, de�Tl��1.6�10−27e cm. It is worth empha-
sizing that the above limit has been obtained using a B-field
sensitivity estimate from Ref. �21�; with the present sensitiv-
ity record �18�, the constraints of electron EDM are several
orders of magnitude weaker. In other words, we find that a
substantial improvement in the experimental sensitivity to
weak magnetic fields is required before the CP-violating po-
larizability of LXe can be used for EDM searches.

V. CONCLUSION

To summarize, we have computed CP-violating atomic
polarizabilities �3�, �CP, for rare-gas atoms. We have derived
third-order expressions for �CP and employed the Dirac-
Hartree-Fock method to evaluate the resulting expressions.
We have elucidated the doubly relativistic origin of the po-
larizability and demonstrated strong Z5 dependence on the

nuclear charge. Finally, we evaluated a feasibility of setting a
limit on the electron EDM by measuring CP-violating mag-
netization of liquid Xe. We found that such an experiment
could provide competitive bounds on electron EDM only if
the present level of experimental sensitivity to ultraweak
magnetic fields �18� is improved by several orders of mag-
nitude.
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