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I. INTRODUCTION

The present definition of the unit of time, the second, is
based on the frequency of the microwave transition between
two hyperfine levels of the Cs atom. Recently, it has been
realized that the accuracy and stability of atomic clocks can
be substantially improved by trapping atoms in optical lat-
tices operated at a certain “magic” wavelength �1,2�. At this
magic wavelength, both clock levels experience the same ac
Stark shift; the clock frequency becomes essentially indepen-
dent on trapping laser intensity.

This effect was demonstrated �3–5� for optical clocks us-
ing strontium atoms. An extension of this idea to microwave
clocks with alkali-metal atoms Rb and Cs was considered in
Ref. �6�. A multitude of magic wavelengths for the hyperfine
transition was identified. Unfortunately, detailed analysis
presented below shows the conclusions of that paper to be
erroneous: there is no magic wavelength for Cs, at least for
clock levels with zero projections of the total angular mo-
mentum MF on the quantizing magnetic field. In a separate
paper �7� we analyze the case of circular light polarization
and MF�0 levels and demonstrate that the ac shift can be
eliminated by an appropriate “magic angle” choice of the
direction of the magnetic field with respect to the light
propagation.

This paper presents a detailed theoretical analysis of the
frequency shift of a microwave clock involving a hyperfine
transition. The analysis requires the calculation of the differ-
ential polarizability involving third-order expressions, qua-
dratic in the field strength and linear in the hyperfine inter-
action. Evaluation of the resulting expressions is carried out
using relativistic many-body theory. The second part of the
paper reports measurements of the clock shift at two laser
wavelengths. The results of the calculations are in good
agreement with the experimental measurements.

II. THEORY

Here we follow the formalism of the quasienergy states
reviewed in the context of laser-atom interaction in Ref. �8�.
We start by considering the ac Stark shift �E�2� in the second
order of perturbation theory �quadratic in the electric field�
and then extend the formalism to the higher-order ac Stark
shift �E�2+1� which takes into account the hyperfine interac-
tion �HFI�. The latter shift appears in the third order of per-
turbation theory and is quadratic in the field amplitude and
linear in the HFI. An important part of the analysis involves
the tensorial expansion of the shifts in the scalar, vector, and
tensor parts.

We are interested in transitions between two hyperfine
components of the same electronic states. Below we employ
the conventional labeling scheme for the atomic eigenstates,
�n�IJ�FMF�, where I is the nuclear spin, J is the electronic
angular momentum, and F is the total angular momentum,
F=J+I. MF is the projection of F on the quantization axis
and n encompasses the remaining quantum numbers. Since
the clock transitions involve the same electronic state, we
will also use a shorthand notation �F ,MF�. For example, the
Cs fountain clock involves transitions between hyperfine lev-
els �F=4,MF=0� and �F�=3,MF� =0� of the 6s1/2 ground
electronic state.

Under the influence of the laser each clock level is per-
turbed. The clock frequency is modified by the difference in
the perturbed energies

��Stark��L� =
1

h
��En�IJ�F�MF�

Stark ��L� − �En�IJ�F�MF�
Stark ��L�� . �1�

At the “magic frequency,” this ac Stark clock shift would
vanish.
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A. Second-order dynamic response

This section introduces notation and reviews derivation
and tensorial analysis of the conventional second-order dy-
namic Stark shift. We demonstrate that for states of total
electronic angular momentum J=1 /2 and for MF=0 levels
�or for linear polarization� the second-order ac Stark shift of
the clock transition vanishes.

Consider a traveling electromagnetic wave of an arbitrary
polarization,

E� =
1

2
EL�̂e−i��t−kz� + c.c.,

with the complex polarization vector parametrized by an
angle �,

�̂ = êx cos � + iêy sin � . �2�

The parametric angle � may be related to the degrees of
linear, l=cos 2�, and circular, A=sin 2�, polarization. Notice
that the quantizing axis z is chosen along the propagation

vector k̂ of the laser. The field amplitude EL is related to the
intensity of the laser as IL= c

8�EL
2, or in practical units

IL� mW
cm2 ��1.33�EL� V

cm��2.
In the dipole approximation, the coupling can be repre-

sented as �H.c. is a Hermitian conjugate�

VE1�t� � − E� · D = −
1

2
EL�̂De−i�t + H.c.

Application of the Floquet formalism �dressed states� yields
the second-order ac shift of the atomic energy level a

�Ea
�2� = 	

b

�
�b�v��a��2

Ea − �Eb − ��
+ 	

b

�
�a�v��b��2

Ea − �Eb + ��
,

where v=− 1
2EL�̂ ·D, �a and �b being the stationary atomic

states with unperturbed energies Ea and Eb, respectively.
Now we proceed to the conventional reduction of the po-

larizability into a sum over irreducible tensor operators. In-
troducing the resolvent operator �H0 is the unperturbed
atomic Hamiltonian�

REa
��� = �Ea − Ĥ0 + ��−1,

we may recast the shift as an expectation value �Ea
�2�

= � 1
2EL�2
�a�ÔE1�����a�, with

ÔE1��� = ��̂ · D�†REa
�����̂ · D� + ��̂ · D�REa

�− ����̂ · D�†.

The order of coupling of the operators may be changed

ÔE1��� = 	
K=0,1,2

��− 1�K
„�̂* � �̂�K · �D � REa

���D�K

+ ��̂* � �̂�K · �D � REa
�− ��D�K� ,

leading to the conventional decomposition into the scalar
�K=0�, vector �K=1�, and tensor �K=2� terms. Here we em-
ployed ��̂ � �̂*�KM = �−1�K��̂* � �̂�KM and the fact that �̂ and
D are rank 1 tensors. The MK component of the compound
tensor of rank K composed from components of the tensors

AK1
and BK2

�of rank K1 and K2� is defined as �AK1
� BK2

�KMK
=	M1M2

CK1M1K2M2

KMK AK1M1
BK2M2

, where CK1M1K2M2

KMK

are the Clebsch-Gordan coefficients. The generalized scalar
product is defined as �AKBK�=	MK

�−1�MKAKMK
BK,−MK

.
Using the Wigner-Eckart theorem, a matrix element be-

tween two atomic states may be expressed as


FMF�ÔE1����FMF��

= 	
K=0,1,2

�− 1�K	
	

�− 1�	��̂* � �̂�K,−	�− 1�F−MF


 F K F

− MF 	 MF�
��nF

�K���� ,

with the reduced polarizabilities

�nF
�K���� = 
nF��D � REnF

���D�K

+ �− 1�K�D � REnF
�− ��D�K�nF�

= ��K��− 1�K+2F	
F�
�1 1 K

F F F�
�


	
n�


nF�D�n�F��
n�F��D�nF�


  1

EnF − En�F� + �
+ �− 1�K 1

EnF − En�F� − �
� .

�3�

Here we have used the shorthand notation �K���2K+1�.
The matrix element may be simplified further using specific
parametrization, Eq. �2�, of the polarization vector. Explic-
itly, ��̂* � �̂�00=− 1

�3
, ��̂* � �̂�1	=− sin 2�

�2
�	,0, ��̂* � �̂�2	

=− 1
�6

�	,0+ 1
2 cos 2��	,�2.

Finally, the ac Stark energy shift reads

�EnFMF

�2� = − 1

2
EL�2��nF

s ��� + A�nF
a ���

MF

2F

− �nF
T ���

3MF
2 − F�F + 1�

2F�2F − 1� � , �4�

with the conventional scalar, vector, and tensor polarizabil-
ities

�nF
s ��� =

1
�3

1
��F�

�nF
�0���� ,

�nF
a ��� = −

1
�2

1
��F�

2F
�F�F + 1�

�nF
�1���� ,

�nF
T ��� = −

2
�6

2F�2F − 1�� �2F − 2�!
�2F + 3�!�1/2

�nF
�2���� . �5�

In general, there is an off-diagonal MF=MF� �2 optical cou-
pling involving the tensor part of the polarizability. In prac-
tice, a quantizing B field is applied along the propagation of
the laser wave, and as long as the off-diagonal coupling is
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much smaller than the Zeeman intervals, it can be disre-
garded.

Since the dipole matrix elements do not couple to the
nuclear degrees of freedom, the dependence of the reduced
polarizabilities on I and F may be factored out as

�nF
�K���� = �− 1�J+I+F+k�F�� J F I

F J K
��̄nJ

�K���� ,

where the quantities �̄nJ
�K���� are the reduced matrix elements

in the �nJMJ� basis,

�̄nJ
�K���� = 
nJ��D � REnF

���D�K

+ �− 1�K�D � REnF
�− ��D�K�nJ� .

These quantities do not depend on either I or F.
With this factorization, we can make important comments

specific to the case of J=1 /2 �e.g., ground state of alkali-
metal atoms such as Rb and Cs�. Due to the angular selection
rules, the tensor contribution �expectation value of the rank 2
tensor� vanishes and the only contributions come from the
scalar and vector parts. As the vector part of the energy shift
is proportional to MF, for MF=0 clock levels only the scalar
contribution remains. The vector contribution also vanishes
for the case of linear polarization �A=0�.

The next important step is to demonstrate that the scalar
shift does not depend on F. In other words, there is no clock
shift at the second order. Indeed, for the scalar term,
�nF

s ���= 1
�3

1
��F��nF

�0����= 1
�3

1
��J� �̄nJ

�0����. This result holds for an
arbitrary J.

This result has a very simple explanation. As it was
pointed out above, for the case of linear polarization of laser
light and J=1 /2 we have only a scalar contribution to the
polarizability. This contribution does not depend on the ori-
entation of the quantization axis �external magnetic field�.
Let us consider the case when the quantization axis is di-
rected along the laser electric field �along the linear polariza-
tion vector e�. From the symmetry of the problem it is obvi-
ous that the electron states �Jz=1 /2� and �Jz=−1 /2� have
exactly equal quadratic shifts. The hyperfine states �F ,Fz� are
linear combinations of these electron states multiplied by
nuclear states. Since both components, �Jz=1 /2� and �Jz
=−1 /2�, of any hyperfine state have the same shift, all hy-
perfine states have the same shifts, i.e., the differential polar-
izability is equal to zero. To have a nonzero differential po-
larizability one has to include the hyperfine interaction. Note
that the inclusion of the magnetic polarizability does not
change this conclusion. If the lattice laser frequency is in
optical range, the magnetic polarizability contribution is sup-
pressed by an additional factor 	B

2 /D2��2��1 /137�2 and
may be neglected.

To summarize, we arrive at the conclusion that for J
=1 /2, MF=0 clock levels �or for linear polarization� the
second-order ac Stark shift is zero. Since the calculations of
Ref. �6� were limited to this second order, their conclusions
are erroneous. This is also shown in the Appendix without
using irreducible tensor algebra.

B. Nontrivial effect of the hyperfine interaction

In the previous section, the hyperfine structure �HFS� in-
teraction has served the role of an “observer,” as it only
defined the coupling scheme. In particular, we find that the
MF=0 levels of the hyperfine manifold attached to the J
=1 /2 levels are shifted identically—at that level of approxi-
mation any laser wavelength is “magic,” i.e., the clock tran-
sition remains unperturbed by any laser field. The nontrivial
effect arises when we take into account the dynamic �as op-
posed to the observer� role of the HFS interaction.

Formally, this effect appears in the third-order double per-
turbation theory with two laser and one HFS interactions. We
build the perturbation theory in terms of combined interac-
tion

V = Vhfs + VE1�t� .

The convenience of the Floquet formalism is that we may
immediately employ the conventional formula for the third-
order energy correction

�Ea
�2+1� = 	

b,c�a

VabVbcVca

�Eb
�0� − Ea

�0���Ec
�0� − Ea

�0��

− Vaa 	
b�a

VabVba

�Eb
�0� − Ea

�0��2 .

Here a ,b ,c are dressed atomic states, i.e., �a�= ��a�ein�t, with
n representing the number of photons �n could be both nega-
tive and positive�. The scalar product, in addition to the con-
ventional Hilbert space operational definition includes an av-
eraging over the period of oscillation of the laser field.
Explicitly, after the time averaging �now a , b, and c are
atomic states�

�Ea
�2+1���� = Ta��� + Ca��� + Ba��� + Oa��� ,

Ta��� = 
a�VhfsREa
�0�vREa

���v†�a�

+ 
a�VhfsREa
�0�v†REa

�− ��v�a� ,

Ca��� = 
a�vREa
���VhfsREa

���v†�a�

+ 
a�v†REa
�− ��VhfsREa

�− ��v�a� ,

Ba��� = �Ta����*,

Oa��� = − �Vhfs�aa�
a�v†�REa
����2v�a�

+ 
a�v�REa
�− ���2v†�a�� .

Here Ta���, Ca���, and Ba��� stand for top, center, and bot-
tom position of the HFS interaction in the respective dia-
gram. The term Oa��� describes the normalization term. The
relevant diagrams are shown in Fig. 1. The interaction of the
electron with the nuclear magnetic moment 	 reads

Vhfs = �	T �1�� ,

where T �1� is the rank 1 irreducible tensor operator acting in
the electronic coordinates with components
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T 
�1� = −

�e�
4��0

i�2�� · C1
�0��r̂��

cr2 ,

where � stands for the Dirac matrices and C1
�0��r̂� are the

normalized vector spherical harmonics. In the formulas be-
low we require the reduced matrix element of the nuclear
moment operator in the nuclear basis, 
I�	�I�. It is related to
the nuclear magnetic g factor as


I�	�I� =
1

2
��2I��2I + 1��2I + 2�g	n,

	n being the nuclear magneton.
Carrying out the angular decomposition similar to the

second-order analysis of the preceding section we find that
the expressions for the shift, Eq. �4�, remain the same with
the reduced polarizabilities �nF

�K���� redefined as

�nF
�K���� → �nF

�K���� + �nF
�K���� .

The third-order rank K=0,1 ,2 corrections are given by the
sum over contributions from diagrams of Fig. 1,

�nF
�K���� = 2�nF

�K���;T� + �nF
�K���;C� + �nF

�K���;O� .

Explicitly,

�nF
�K���;T� = �F���K�	

JaJb

�− 1�J+Ja� I I 1

Ja J F
��J 1 Jb

1 Ja K
�


�K J Ja

I F F
�TJaJb

�K� �nJ,�� ,

�nF
�K���;C� = �F���K�	

JaJb

	
Ji

�Ji��− 1�2Ja+Jb+J�J J Ji

I I 1

F F K
�


� J J Ji

Ja Jb 1

1 1 K
�CJaJb

�K� �nJ,�� ,

�nF
�K���;O� = �− 1�2J+1�F���K��1 I I

F J J
�


� J J K

F F I
�	

Ja

�K J J

Ja 1 1
�OJa

�K��nJ,�� .

Here we introduced the reduced sums

TJaJb

�K� �nJ,�� = 
I�	�I�	
nb

	
na�n


nJ�T �1��naJa�
naJa�D�nbJb�



nbJb�D�nJ�


  1

E − Ea

1

E − Eb + �
+ �− 1�K�� → − ��� ,

�6�

CJaJb

�K� �nJ,�� = 
I�	�I� 	
nanb


nJ�D�naJa�
naJa�T �1��nbJb�



nbJb�D�nJ� 
  1

E − Ea + �

1

E − Eb + �

+ �− 1�K�� → − ��� , �7�

OJa

�K��nJ,�� = 
I�	�I�
nJ�T �1��nJ�	
na


nJ�D�naJa�
naJa�D�nJ�


  1

�E − Ea + ��2 + �− 1�K�� → − ��� . �8�

Notice that the angular momenta of the intermediate states Ja
and Jb are fixed.

C. Numerical evaluation

To perform the calculations we use an ab initio approach
which has been described in detail in Ref. �9�. In this ap-
proach high accuracy is attained by including important
many-body and relativistic effects.

Calculations start from the relativistic Hartree-Fock
�RHF� method in the VN−1 approximation. This means that
the initial RHF procedure is done for a closed-shell atomic
core with the valence electron removed. After that, the states
of the external electron are calculated in the field of the fro-
zen core. Correlations are included by means of the correla-
tion potential method �10�. We use the all-order correlation

potential �̂ which includes two classes of the higher-order
terms: screening of the Coulomb interaction and hole-
particle interaction �see, e.g., �11� for details�.

To calculate �̂ we need a complete set of single-electron
orbitals. We use the B-spline technique �12� to construct the
basis. The orbitals are built as linear combinations of 40 B
splines of order 9 in a cavity of radius 40aB. The coefficients
are chosen from the condition that the orbitals are the eigen-

states of the RHF Hamiltonian Ĥ0 of the closed-shell core.

The �̂ operator is calculated with the technique which com-
bines solving equations for the Green’s functions �for the
direct diagram� with the summation over complete set of
states �exchange diagram� �11�.

(a) (c) (d) (e)(b)

x

FIG. 1. Contributions to the dynamic polarizability ����. Dia-
gram �a� represents the second-order contribution arising from two
photon interactions �wavy lines�. Diagrams �b�–�e� represent the
additional effect of the hyperfine interaction �capped line� and cor-
respond, respectively, to the third-order top, center, bottom, and
normalization terms as described in the text.
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The correlation potential �̂ is then used to build a new set
of single-electron states, the so-called Brueckner orbitals.
This set is to be used in the summation in Eqs. �6�–�8�. Here
again we use the B-spline technique to build the basis. The
procedure is very similar to the construction of the RHF
B-spline basis. The only difference is that the new orbitals

are now the eigenstates of the Ĥ0+ �̂ Hamiltonian.
Brueckner orbitals which correspond to the lowest va-

lence states are good approximations to the real physical
states. Their quality can be tested by comparing experimental
and theoretical energies. Moreover, their quality can be fur-

ther improved by rescaling the correlation potential �̂ to fit
the experimental energies exactly. We do this by replacing

the Ĥ0+ �̂ Hamiltonian with Ĥ0+�̂, in which the rescaling
parameter  is chosen for each partial wave to fit the energy
of the first valence state. The values of  are s=1, p
=0.97, and d=0.95. Note that these values are very close to
unity. This means that even without rescaling the accuracy is

good and only a small adjustment of �̂ is needed. Note also
that since the rescaling procedure affects not only energies
but also the wave functions, it usually leads to improved
values of the matrix elements of external fields. In fact, this
is a semiempirical method to include omitted higher-order
correlation corrections.

Matrix elements of the HFS and electric dipole operators
are found by means of the time-dependent Hartree-Fock
�TDHF� method �10,13�. This method is equivalent to the
well-known random-phase approximation �RPA�. In the
TDHF method, the single-electron wave functions are pre-
sented in the form �=�0+��, where �0 is the unperturbed
wave function. It is an eigenstate of the RHF Hamiltonian

Ĥ0: �Ĥ0−�0��0=0. �� is the correction due to an external
field. It can be found by solving the TDHF equation

�Ĥ0 − �0��� = − ���0 − F̂�0 − �V̂N−1�0, �9�

where �� is the correction to the energy due to the external

field ����0 for the electric dipole operator�, F̂ is the opera-

tor of the external field �Vhfs or −D ·E�, and �V̂N−1 is the
correction to the self-consistent potential of the core due to
the external field.

The TDHF equations are solved self-consistently for all
states in the core. Then the matrix elements between any
�core or valence� states n and m are given by


�n�F̂ + �V̂N−1��m� . �10�

The best results are achieved when �n and �m are the
Brueckner orbitals computed with rescaled correlation poten-

tial �̂.
We use Eq. �10� for all HFS and electric dipole matrix

elements in evaluating the top, center, bottom, and normal-
ization diagrams �Eqs. �6�–�8��. Except for the ground state
HFS matrix element in the normalization diagram where we
use experimental data. The results are presented in Sec. IV.

III. EXPERIMENT

We measure the frequency shift of the Cs clock transition
��F=3,MF=0� to �F=4,MF=0�� induced by a far detuned
laser beam. A Cs fountain clock �14� is used. At each cycle
�106 atoms are loaded in an optical molasses and cooled to
below 2 	K. Moving molasses launches the atoms upwards
with a speed of 4.1 m /s where they pass twice through a
microwave cavity thereby realizing Ramsey spectroscopy.
The Zeeman degeneracy is lifted by a 1.6 mG magnetic field
aligned along the fountain’s axis. The detuned laser beam is
a traveling wave beam also aligned on the axis of the foun-
tain. The light polarization is linear with respect to the light
propagation. The beam waist is larger than the 11 mm diam-
eter opening in the microwave cavity. This assures that all
atoms passing through the opening and being detected expe-
rience the light. The light intensity averaged over 1 cm2 is
measured by a commercial powermeter �Newport 840-C� be-
fore entering the fountains vacuum chamber. One intensity
measurement is taken before and one after each one-day run.
The intensity drift between the two is of the order of 1%,
however the error of the light intensity experienced by each
atom is rather high. This is due to our ignorance of the exact
intensity distribution, the exact atom distribution and inten-
sity losses in the vacuum window as well as parasite reflec-
tions inside the vacuum chamber. We estimate the intensity
error as 20%.

The frequency shift is measured by alternating the foun-
tain’s configuration every 50 cycles. The first configuration
is the standard clock operation. The second configuration is
identical to the first plus the laser beam opened during the
Ramsey period. This assures that the atom preparation and
cooling is not disturbed by the laser and that the atomic
cloud is identical in the two configurations. Hence, we can
assume that all other clock shifts, in particular collisions, are
identical for the two configurations. The absolute frequency
is measured for each configuration against a highly stable
local oscillator exhibiting no significant drift during several
hundred cycles. The frequency shift induced by the light cal-
culates as the simple difference

�� = �with light − �without light.

The frequency shift is measured for a number of laser inten-
sities. Two sets of measurements are taken for light at wave-
lengths of 532 nm and 780 nm. The averages of each set
weighted by the statistical frequency uncertainty give a light
shift of �−3.51�0.7�
10−4 Hz�W /cm2�−1 for 532 nm and
�−2.27�0.4�
10−2 Hz�W /cm2�−1 for 780 nm. The statisti-
cal uncertainty is negligible before the uncertainty on the
light intensity.

IV. RESULTS AND DISCUSSION

The shift of the clock frequency is given by �cf. Eq. �1��

��L
Stark = − 1

2
EL�2

����L� ,
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where ����L� is the differential polarizability. The conver-
sion factor between differential polarizability in atomic units
and the ratio of the shift to laser intensity in practical units is
given by

��L
Stark�Hz�

IL�mW

cm2 � = − 4.68 
 10−5 
 ������a.u.� .

We start by considering dc polarizabilities. In the static re-
gime ��L=0�, our calculations give ��=1.82
10−2 a.u.,
which translates into the commonly used dc Stark coefficient
kS=−2.26
10−10 Hz / �V /m�2. Notice that this value in-

cludes only the scalar part of the polarizability. This is in
agreement with the most accurate experimental result �15� of
kS=−2.271�4�
10−10 Hz / �V /m�2.

For the ac case, our calculated differential polarizability
����L� for the cesium clock transition is presented in Fig. 2
as a function of laser frequency. Both values are given in
atomic units. The two peaks correspond to the 6s-6p and
6s-7p resonances. The graph never crosses zero, which im-
plies no magic frequency. Experimental results for two laser
wavelengths are also shown �also see Fig. 3�. Calculated and
experimental relative frequency shifts are compared in Table
I and found to be in agreement with each other.

To summarize, we presented a comprehensive analysis of
the ac Stark shift of the Cs microwave atomic clock transi-
tion. Theoretical analysis based on the second- and third-
order perturbation theory is accompanied by measurements.
Calculations and measurements are in good agreement with
each other and indicate the absence of a magic frequency at
least for the MF=0 clock levels with zero projections of the
total angular momentum on the quantizing magnetic field.
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APPENDIX

Considering the complexities of working with the angular
algebra, here we analyze Eq. �2� of Ref. �6� for the second-
order dynamic Stark shift. Starting from their equation we
again show that there is no ac Stark shift of the clock tran-
sition frequency. Equation �2� of Ref. �6� for the polarizabil-
ity contains a summation over M�, which we manipulate

TABLE I. Comparison of the theoretical and experimental ac
frequency shifts for the clock transition in Cs.

 �nm� � �a.u.�

��L / IL �Hz /mW /cm2�

Theoretical Experimental

780 0.0584 −1.95
10−2 −2.27�40�
10−2

532 0.0856 −3.73
10−4 −3.51�70�
10−4

FIG. 2. �Color online� Differential polarizability of the Cs clock

transition �MF=MF� =0� in the B � k̂ configuration as a function of
the probe laser frequency. Two experimental measurements �at
780 nm and 532 nm� are compared with theoretical predictions
�solid curve�. Refer to Fig. 3 for better graphical resolution of the
532 nm experimental point.

FIG. 3. �Color online� Same as in Fig. 2, in the region of the
experimental point at 532 nm.
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M�

F� 1 F

M� p − M
�2

= �− 1�F�−M+p	
M�

F 1 F�

M − p − M�
�F� 1 F

M� p − M
�

= �− 1�F�−M+p�− 1�2F	
KQ

�− 1�K−Q�K�F F K

M − M − Q
�K 1 1

Q p − p
��1 1 K

F F F�
� �A1�

=�− 1�F−M+p	
K

�− 1�F+F�+K�K� F K F

− M 0 M
� 1 K 1

− p 0 p
��1 1 K

F F F�
� . �A2�

The expression �A1� is obtained from using the summation rule 12.1�5� of Ref. �16�; we further obtain expression �A2� by
noting that only Q=0 terms are nonzero in the summation.

Now we take the F�-dependent part of Eq. �A2� with the F�-dependent part of Eq. �2� of Ref. �6� and take the summation
over F�

	
F�

�− 1�F+F�+K�F��� J J� 1

F� F I
�2�1 1 K

F F F�
� = 	

F�

�− 1�F+F�+K�F���1 F F�

I J� J
�� I J� F�

1 F J
��1 F F�

F 1 K
�

= �− 1�I−J�+F�J J K

1 1 J�
�� J J K

F F I
� . �A3�

The expression �A3� is obtained from using the summation rule 9.8�6� of Ref. �16�.
Combining the above results gives

	
F�M�

�F��F��F� 1 F

M� p − M
�2� J J� 1

F� F I
�2

= �− 1�F−M+p�− 1�I−J�+F�F�


 	
K

�K� F K F

− M 0 M
� 1 K 1

− p 0 p
��J J K

1 1 J�
�� J J K

F F I
� .

Not surprisingly, the six-j symbols here are identical to the
ones appearing in the previously derived polarizabilities
�nF

�K����. Hence, this makes the connection to scalar �K=0�,
vector �K=1�, and tensor �K=2� parts.

First we focus on the case p=0; this corresponds to linear
polarization in the B � �̂ geometry. For J=1 /2 atomic states
the tensor part �K=2� is necessarily zero due to selection
rules in the six-j symbols �this is the case regardless of po-
larization�. Furthermore the vector part �K=1� is zero due to
the fact that the top row of the second three-j symbol sums to
an odd number �or see Eq. �A4� below, with p=0�. This
leaves us with only the scalar part �K=0� to analyze. In this
case, the right-hand side simply reduces to 1 / �3�J��=1 /6.
Thus we can conclude that for linear polarization of this
geometry, the second-order dynamic Stark shift is F indepen-
dent for J=1 /2 atomic states.

For the B� �̂ geometry, the linear polarization is regarded
as an equal mixture of �+ �p= +1� and �− �p=−1� circularly
polarized light. Again the tensor part is necessarily zero for
J=1 /2. For the vector part, we note the three-j symbol rela-
tion

 1 K 1

− p 0 p
� = �− 1�K1 K 1

p 0 − p
� . �A4�

Thus, when we take equal mixtures of �+ and �− light, the
vector contribution drops out. Again, we are left with only
the scalar part. Not surprisingly, we again obtain the result
1 / �3�J��=1 /6 when taking equal mixtures of �+ and �−

light.
The above results then generalize to any geometry for

linearly polarized light.
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