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Relativistic many-body calculations of energy levels, hyperfine constants, and transition rates
for sodiumlike ions, Z511–16

M. S. Safronova, A. Derevianko, and W. R. Johnson
Department of Physics, Notre Dame University, Notre Dame, Indiana 46556

~Received 12 February 1998!

All-order relativistic many-body calculations of removal energies are carried out for 3s, 3p1/2, 3p3/2, 3d3/2,
3d5/2, and 4s states of sodium and sodiumlike ions with nuclear chargesZ in the range 12–16. Hyperfine
constants are evaluated for each state, and reduced dipole matrix elements are determined for 3p1/2-3s, 3p3/2-
3s, 3d3/2-3p1/2, 3d3/2-3p3/2, 3d5/2-3p3/2, 4s-3p1/2, and 4s-3p3/2 transitions. The calculations include single
and double excitations of the Hartree-Fock ground state to all orders in perturbation theory. Corrections to
energies are made for a dominant class of triple excitations. The Breit interaction, with all-order correlation
corrections, is evaluated. Reduced-mass and mass-polarization corrections are included to third order in per-
turbation theory. The predicted removal energies, when corrected for the Lamb shift, agree with experiment at
the 1–20-cm21 level of accuracy for all states considered. Theoretical fine-structure intervals agree with
measurements to about 0.3% for 3p states and to about 3% for 3d states. Theoretical hyperfine constants and
line strengths agree with precise measurements to better than 0.3%.@S1050-2947~98!01308-0#

PACS number~s!: 31.25.Jf, 31.15.Dv, 32.10.Fn, 32.70.Cs
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I. INTRODUCTION

In the present paper, we calculate removal energies
hyperfine constants for 3s, 3p1/2, 3p3/2, 3d3/2, 3d5/2, and
4s states of sodiumlike ions with nuclear charges in
rangeZ511–16. In addition, we calculate reduced dipo
matrix elements for 3p1/2-3s, 3p3/2-3s, 4s-3p1/2, 4s-3p3/2,
3d3/2-3p1/2, 3d3/2-3p3/2, and 3d5/2-3p3/2 electric-dipole
transitions. These calculations are based on the relativ
single-double~SD! equations used in Ref.@1# to study Li and
Be1, in Ref. @2# to study Li, Na, and Cs, and in Ref.@3# to
study Cs. The present calculations complement, and in
supersede, earlier third-order relativistic many-body per
bation theory~MBPT! calculations@4#, in which removal
energies of 3s, 3p1/2, and 3p3/2 states of sodiumlike ions
were evaluated throughout the sodium isoelectronic
quence. ForZ,16, the differences between the MBPT ca
culations and measured removal energies ('100 cm21) are
due to omitted correlation corrections, while for higherZ the
differences between theory and experiment were domin
by omitted QED corrections@5#.

The ‘‘experimental’’ correlation energy of the 3s1/2 state
in Na I is found to be about 1500 cm21 after subtracting the
Dirac-Hartree-Fock~DHF! energy, the Breit energy, th
reduced-mass correction, and the mass-polarization co
tion from the experimental ionization energy. The DHF e
ergy is precisely known and the other three corrections
tiny for Na I. The second- and third-order correlation en
gies are 1293 and 80 cm21, respectively, from which one
infers that 127 cm21 come from fourth and higher orders
Since the third-order MBPT correlation energy disagre
with the ‘‘experimental’’ correlation energy by 8.5% for th
3s state of NaI, it is clearly of interest to carry out all-orde
PRA 581050-2947/98/58~2!/1016~13!/$15.00
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calculations.1 It is also of interest to determine the point
the sodium isoelectronic sequence beyond which all-or
calculations are no longer necessary and third-order MB
gives 99% or more of the correlation energy. In this pap
we use the all-order SD approximation to study these qu
tions in low-Z sodiumlike ions.

To evaluate the higher-order correlation corrections,
solve the relativistic SD equations, which are lineariz
coupled-cluster single-double~CCSD! equations@6# that in-
clude single and double excitations of the DHF wave fun
tion to all orders in perturbation theory. In our calculation
corrections are also made for a dominant class of triple
citations. The resulting energies and matrix elements
complete through third order in perturbation theory, and
clude important contributions from fourth and higher orde
The Breit interaction, which is very sensitive to correlatio
is included by calculating the matrix element of the tw
body Breit operator using SD wave functions; it, therefo
includes Coulomb correlation corrections to all orders in p
turbation theory. Mass-polarization corrections are treate
third order in perturbation theory following the procedu
described in Ref.@4#.

We also use the SD wave functions to evaluate hyper
constants for the states considered, andE1 reduced matrix
elements for transitions between these states. The pre

1The third-order correlation energy for sodium given above diff
from the value given in Ref.@4#, which was obtained by summing
partial wavesl 50 –4 and omitting contributions from the 1s2 core
shell. To obtain more accurate values, we recalculated the th
order energies along the isoelectronic sequence including all sh
summed partial wavesl 50 –6, and extrapolated the partial-wav
sequence to obtain thel>7 remainder.
1016 © 1998 The American Physical Society
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PRA 58 1017RELATIVISTIC MANY-BODY CALCULATIONS O F . . .
calculations supersede previous third-order MBPT calcu
tions of hyperfine constants for sodium@7#, which were ac-
curate to about 3%, and third-order calculations of 3p-3s
and 4s-3p transition rates@8#, which differ from recent mea-
surements in sodium@9# by about 1%.

For neutral sodium, previous SD calculations@2,10#,
CCSD calculations@11#, and configuration-interaction calcu
lations@12#, all give values for hyperfine constants and tra
sition rates that agree with experiment to within a fraction
a percent. The previous SD and the CCSD calculations
give removal energies in close agreement with experime

The present SD calculations give removal energies
Na I accurate to better then 2 cm21, and give hyperfine con
stants and dipole line strengths that agree with precise
periments to better than 0.3%. The SD method also g
removal energies for sodiumlike ions,Z512–16, that agree
with experiment at the level 1–20 cm21 assuming that
Lamb-shift corrections are made for 3s states. From the
comparison of the present all-order correlation energies w
previous third-order calculations, we find that fourth- a
higher-order corrections are less than 1% of the correla
energy forZ.20. The present calculations bridge the g
from NaI, where correlation corrections are much larger th
relativistic corrections, to SVI, where higher-order correla
tion corrections are much smaller than relativistic corr
tions.

II. METHOD

The relativistic SD equations were discussed at length
Refs.@1–3#, so we will give only a brief reprise of the equa
tions here. In the SD approach, the wave functionCv of an
atomic system with one valence electron is represented

Cv5F11(
ma

rmaam
† aa1 1

2 (
mnab

rmnabam
† an

†abaa

1 (
mÞv

rmvam
† av1(

mna
rmnvaam

† an
†aaavGFv , ~1!

whereFv is the lowest-order atomic state function, which
taken to be thefrozen-coreDirac-Hartree-Fock wave func
tion of a statev. In this equation,ai

† andai are creation and
annihilation operators, respectively, for statei . Here and be-
low, we use the convention that indices at the beginning
the alphabet (a,b, . . . ), refer to occupied core states, tho
in the middle of the alphabet (m,n, . . . ), refer to excited
states, andv andw refer to valence orbitals. We use indice
i , j , k, and l to describe arbitrary orbitals.

The coefficientsrma andrmnab are amplitudes for single
and double excitations from the core, respectively;rmv is the
amplitude for a single excitation of the valence electron, a
rmnva is the amplitude for excitation of the valence electr
and a core electron. Substituting the wave function~1! into
the many-body Schro¨dinger equation, where the Hamiltonia
is taken to be the relativisticno-pair Hamiltonian@13# with
Coulomb interactions, one obtains the coupled equations
single- and double-excitation coefficients written down
Sec. II A.
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A. Coupled equations for singles and doubles

The coupled equations for the core excitation coefficie
are @1#

~ea2em!rma5(
bn

g̃mbanrnb1(
bnr

gmbnrr̃nrab

2(
bcn

gbcanr̃mnbc, ~2!

~ea1eb2em2en!rmnab

5gmnab1(
cd

gcdabrmncd1(
rs

gmnrsr rsab

1F(
r

gmnrbr ra2(
c

gcnabrmc1(
rc

g̃cnrbr̃mracG
1F a↔b

m↔nG . ~3!

Here e i is the single-body DHF energy for the statei . The
quantitiesgi jkl are two-body Coulomb matrix elements, an
g̃i jkl 5gi jkl 2gi j lk are antisymmetrized Coulomb matrix ele
ments. Antisymmetrized excitation amplitudes are des
nated byr̃ i jkl 5r i jkl 2r i j lk . The correlation correction to the
core energy is given in terms of the core excitation amp
tudes by

dEc5 1
2 (

mnab
gabmnr̃mnab. ~4!

The equations governing the valence excitation amplitu
are

~ev2em1dEv!rmv5(
bn

g̃mbvnrnb1(
bnr

gmbnrr̃nrvb

2(
bcn

gbcvnr̃mnbc, ~5!

~ev1eb2em2en1dEv!rmnvb

5gmnvb1(
cd

gcdvbrmncd1(
rs

gmnrsr rsvb

1F(
r

gmnrbr rv2(
c

gcnvbrmc1(
rc

g̃cnrbr̃mrvcG
1F v↔b

m↔nG , ~6!

wheredEv is the correlation correction to the valence ener
for the statev, which is given in terms of the excitation
amplitudes by

dEv5(
ma

g̃vavmrma1(
mab

gabvmr̃mvab1(
mna

gvbmnr̃mnvb .

~7!
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To solve Eqs.~2!–~7!, an angular momentum decompos
tion is first carried out, and the equations are then reduce
coupled equations involving single-body radial wave fun
tions only. The radial wave functions for statesv, m, n, a,
b, . . . are taken from aB-spline basis set@14#, and the re-
sulting coupled radial equations are solved iteratively. T
core equations~2! and ~3! are solved first, and the valenc
equations~5!–~7! are then solved successively for each
the six states being considered using the converged core
plitudes.
e

e
ef
to
-

e

f
m-

B. Triple excitations and perturbation theory

One can show that the core correlation energydEc ob-
tained from Eq.~4! is complete through third order in per
turbation theory. The valence correlation energydEv given
in Eq. ~7!, by contrast, includes only part of the third-ord
correlation energy. Indeed, the third-order contribution to
energy obtained by iterating Eqs.~2! and~3! and~5! and~6!
once, substituting into Eq.~7!, and omitting second- and
fourth-order terms, is
ely

n

dEv
~3!5 (

mabcd

g̃abvmgcdabgmvcd

~eab2evm!~ecd2emv!
1 (

mabrs

g̃abvmgmvrsgrsab

~eab2evm!~eab2e rs!
1 (

mabcr

g̃abvmg̃cvrbg̃mrac

~eab2evm!~eac2emr!

1 (
mabcr

g̃abvmg̃cmrag̃vrbc

~eab2evm!~ebc2evr !
1 (

mabnr

g̃vavmgmbnrg̃nrab

~ea2em!~eab2enr!
2 (

mabcn

g̃vavmgbcang̃mnbc

~ea2em!~ebc2emn!

1 (
mnbcd

g̃vbmngcdvbgmncd

~evb2emn!~ecd2emn!
1 (

mnbrs

g̃vbmngmnrsgrsvb

~evb2emn!~evb2e rs!
1 (

mnbrc

g̃vbmng̃cnrbg̃mrvc

~evb2emn!~evc2emr!

1 (
mnbrc

g̃vbmng̃cmrvg̃nrbc

~evb2emn!~ebc2enr!
, ~8!

which differs from the results of third-order MBPT given in Ref.@15#. The missing third-order terms are accounted for entir
by adding triple excitations of the form

1
6 (

abmnr
rmnrvabam

† an
†ar

†avabaaFv

to the right-hand side of the wave function in Eq.~1!. The contribution of this term to the valence energy is

Ev extra5
1
2 (

mnab
g̃abmnrmnvvab . ~9!

When this term is evaluated to lowest nonvanishing order~third order!, it leads to the following contribution to the correlatio
energy:

Ev extra
~3! 5 (

mnabc

g̃abmng̃cmavg̃nvbc

~eab2emn!~ebc2env!
1 (

mnabs

g̃abmng̃nvasg̃msvb

~eab2emn!~evb2ems!
1 (

mnabc

gabmng̃cvbvg̃mnca

~eab2emn!~eca2emn!

1 (
mnabs

gabmng̃mvsvg̃nsba

~eab2emn!~eab2ens!
1 (

mnabs

gabmng̃mnvsgvsba

~eab2emn!~eab2evs!
1 (

mnabc

gabmng̃cvbagmnvc

~eab2emn!~evc2emn!

1 (
mnabc

gabmng̃cmabg̃vnvc

~eab2emn!~ec2en!
1 (

mnabs

gabmng̃mnasg̃vsvb

~eab2emn!~eb2es!
. ~10!
nts

ix
e
rep-
The sumdEv
(3)1Ev extra

(3) gives the entire third-order valenc
correlation energy@15#. In our final tabulations, we add
Ev extra

(3) to the SD correlation energydEv to account for the
missing third-order terms.

C. Matrix elements of one-body operators

The formalism for calculating matrix elements of a on
body operatorZ in the SD approach was developed in R
-
.

@1#, where it was applied to determine hyperfine consta
and transition matrix elements for Li and Be1. Here, we
apply the formalism to calculations of electric-dipole matr
elements, as well asA and B hyperfine constants along th
sodium isoelectronic sequence. A one-body operator is
resented in second quantization as

Z5(
i j

zi j ai
†aj , ~11!
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where zi j is the matrix element of the operatorz between
single-particle orbitals. Here,z is the coordinate operato
when one is evaluating dipole transition matrix elements
the hyperfine operator written down and discussed in R
@16# when one is evaluating the magnetic-dipole hyperfi
constant. Substituting wave functions of the form Eq.~1! into
the matrix element̂CwuZuCv&, and correcting for normal-
ization, one obtains the size-consistent expression@1#

^CwuZuCv&5dwvZcore1
Zval

@~11dNw!~11dNv!#1/2
.

~12!

The termZval consists of the lowest-order~DHF! matrix el-
ementzwv corrected by a set of 20 terms, given together w
normalization correctiondNv in Ref. @1#. Two of the impor-
tant contributions to Zval are the random-phase
approximation~RPA!-like term Zwv

RPA, and the polarization-
like @Brueckner orbital~BO!# correctionZwv

BO, given by

Zwv
RPA5(

am
zamr̃wmva1c.c.,

Zwv
BO5(

m
zwmrmv1c.c.

The remaining 18 contributions toZval are linear or quadratic
functions of the SD excitation amplitudes that can be eva
ated once the SD equations are solved. The termZcore con-
tributes only for scalar operators; it was written down a
discussed recently in Ref.@17#.

D. Expectation value of the Breit operator

The atomic Hamiltonian employed to determine the wa
functions did not contain the Breit interaction. The contrib
tion of the Breit interaction to the removal energies is fou
by calculating the expectation value of Breit operatorB̂:

Bv
SD5^CvuB̂uCv&.

This expression treats the Breit interaction to first order,
includes Coulomb corrections to all orders. In Ref.@4#, the
Breit energy shift was evaluated to third order in MBP
~first-order Breit and second-order Coulomb! including RPA
and polarization corrections. A strong dependence of
Breit interaction on correlation effects was found in the
MBPT calculations. To study this problem further, we calc
late the expectation value of the Breit operator using the
wave functionCv . The SD approach is expected to be mo
accurate, since the SD approximation recovers the en
third-order contribution for one-body operators, and conta
polarization corrections and the dominant RPA correctio
as a subclass of all-order diagrams.

The two-body Breit operator can be represented in
static limit as

B̂5 1
2 (

i jkl
bi jkl ai

†aj
†alak , ~13!

where
r
f.
e

-

e
-
d

t

e
e
-
D

re
s
s

e

bi jkl 52^ i j u
a1•a21~a1• r̂ 12!~a2• r̂ 12!

2r 12
ukl&. ~14!

Let us outline the formalism used to determine matrix e
ments of two-body operators. Any two-body operatorB can
be decomposed as a sum of normally ordered zero-b
B(0), one-bodyB(1), and two-bodyB(2) operators:

B~0!5 1
2 (

ab
b̃abab, ~15!

B~1!5(
i j

S (
a

b̃ia jaD :ai
†aj :, ~16!

B~2!5 1
2 (

i jkl
bi jkl :ai

†aj
†alak :. ~17!

Here :: denotes the normal form of operator products. T
zero-body operatorB(0) does not contribute to valence re
moval energies. The calculation of the matrix element of
one-body operatorB(1) follows exactly the pattern describe
previously for the operatorZ. The matrix element of the
two-body operatorB(2) is more complicated, leading to 3
distinct terms. These terms can be classified by an ‘‘eff
tive’’ MBPT order, taking into account that single excita
tionsr i j appear in the expression for the wave function sta
ing in second order of MBPT, while double excitationsr i jkl
appear starting in first order. We assume that the major c
tribution toB(2) arises from the second effective order. The
are two such terms contributing to the valence removal
ergies

Ba
~2!5(

amn
bmnvar̃mnva1c.c., ~18!

Bb
~2!5(

abm
bmvabr̃vmab1c.c. ~19!

The expression for the normalized two-body matrix elem
in second effective order is similar to the corresponding
pression~12! for the one-body operatorZ:

Bnorm
~2! 5

Ba
~2!1Bb

~2!

11dNv
. ~20!

TABLE I. Partial-wave contributions todEv (cm21) for Al III .
The row labeled Err. contains an estimate of the extrapolation e

l 3s 3p1/2 3p3/2 4s 3d3/2 3d5/2

0 56.1 94.4 94.0 10.7 20.7 20.7
1 2506.8 2168.9 2166.4 2164.8 288.0 288.4
2 22688.9 21785.8 21774.6 2749.0 2465.5 2465.0
3 22990.3 22014.9 22002.4 2829.0 21001.1 21000.4
4 23057.6 22080.4 22067.6 2847.1 21080.8 21080.1
5 23080.9 22100.4 22087.5 2853.5 21103.8 21103.0
6 23090.9 22108.5 22095.6 2856.3 21110.8 21110.0
dEv 23106.1 22120.4 22107.5 2860.6 21115.1 21114.3
Err. 1.9 1.0 0.9 0.5 5.9 6.0
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TABLE II. Contributions to the removal energies (cm21) for sodiumlike ions,Z511–16.

Term 3s 3p1/2 3p3/2 4s 3d3/2 3d5/2

Na I

Ev
DHF 239951.6 224030.4 224014.1 215398.9 212217.4 212217.5

dEv 21488.8 2463.9 2461.6 2308.5 258.9 258.9
Ev extra

(3) 29.2 21.5 21.6 22.1 1.0 1.0

Bv
SD 1.2 1.4 0.1 0.3 20.1 20.1

RM1MP 1.0 0.5 0.5 0.4 0.3 0.3
Etot 241447.3 224493.9 224476.7 215708.7 212275.1 212275.1

Eexpt 241449.4 224493.3 224476.1 215709.4 212276.6 212276.6
Err. 0.4 0.0 0.0 0.1 0.0 0.0

Mg II

Ev
DHF 2118824.0 284293.9 284203.6 250858.1 249341.2 249342.0

dEv 22462.2 21322.3 21315.0 2609.9 2433.5 2433.4
Ev extra

(3) 12.0 4.7 4.6 4.6 4.3 4.3

Bv
SD 6.9 8.9 2.7 2.0 20.4 20.6

RM1MP 2.8 1.5 1.5 1.2 1.0 1.0
Etot 2121264.6 285601.1 285509.8 251460.2 249769.8 249770.7

Eexpt 2121267.6 285598.3 285506.8 251462.7 249776.6 249777.4
Err. 1.0 0.3 0.3 0.2 1.4 1.4

Al III

Ev
DHF 2226396.4 2173686.9 2173452.1 2102439.3 2112371.9 2112373.9

dEv 23106.1 22120.4 22107.5 2860.6 21115.1 21114.3
Ev extra

(3) 33.5 18.4 18.2 12.5 10.2 10.1

Bv
SD 17.3 23.8 9.3 5.3 20.8 21.8

RM1MP 4.6 2.5 2.5 2.2 1.7 1.7
Etot 2229447.0 2175762.6 2175529.6 2103280.0 2113475.9 2113478.2

Eexpt 2229445.7 2175762.8 2175529.1 2103281.6 2113487.2 2113489.5
Err. 1.9 1.0 0.9 0.5 5.9 6.0

Si IV

Ev
DHF 2360613.7 2290073.8 2289606.1 2169076.7 2201807.3 2201807.4

dEv 23578.3 22809.3 22790.6 21071.8 21915.8 21913.1
Ev extra

(3) 49.4 32.3 31.9 19.0 18.9 18.7

Bv
SD 33.1 47.3 21.1 10.6 0.1 23.5

RM1MP 6.9 3.7 3.7 3.4 2.4 2.4
Etot 2364102.5 2292799.8 2292340.0 2170115.6 2203701.8 2203702.8

Eexpt 2364093.1 2292805.6 2292344.5 2170114.2 2203717.5 2203718.7
Err. 2.2 1.4 1.6 0.8 13.0 13.0

P V

Ev
DHF 2520666.6 2432533.4 2431722.3 2250303.9 2317578.4 2317567.4

dEv 23945.9 23397.9 23372.7 21252.1 22700.6 22694.9
Ev extra

(3) 60.3 43.9 43.4 24.0 28.7 28.5

Bv
SD 55.1 80.8 39.1 18.2 3.5 24.9

RM1MP 9.0 4.8 4.8 4.5 2.9 2.9
Etot 2524488.1 2435801.7 2435007.7 2251509.4 2320243.8 2320235.7

Eexpt 2524462.9 2435811.0 2435015.6 2251503.6 2320263.9 2320256.9
Err. 3.3 2.8 2.6 1.0 21.3 21.3

S VI

Ev
DHF 2706161.1 2600593.4 2599302.4 2345878.2 2459392.4 2459354.6

dEv 24242.8 23901.8 23870.1 21407.9 23412.6 23402.9
Ev extra

(3) 67.6 53.0 52.3 28.2 38.3 38.0

Bv
SD 84.1 125.9 64.2 28.4 10.7 25.4

RM1MP 11.7 6.2 6.2 6.0 3.6 3.6
Etot 2710240.5 2604310.2 2603049.8 2347223.5 2462752.5 2462721.3

Eexpt 2710194.7 2604321.1 2603057.0 2347205.9 2462772.2 2462739.7
Err. 4.6 4.2 4.3 1.6 29.9 29.8
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For a more detailed description, the reader is referred to
@17#, where the ‘‘effective’’-order formalism was applied t
the calculation of the static atom-wall interaction const
C3.

III. VALENCE REMOVAL ENERGIES

The SD correlation energiesdEv for 3s, 3p1/2, 3p3/2,
3d3/2, 3d5/2, and 4s states of sodium and sodiumlike ion
with nuclear chargesZ512–16 are found from Eq.~7!. As
mentioned previously, we first solve the core equations~2!
and ~3! completely, and then solve the valence equatio
~5!–~7! successively for each of the six states being con
ered. We retain terms in the angular-momentum decomp
tion from single-body states withl 50 –6, and extrapolate to
obtain the final correlation energies. We limit our basis se
n527 out of 30 spline basis functions for each value ofl .
The convergence pattern of the partial-wave sequence
our estimate of the numerical uncertainty is illustrated
Table I for the case of AlIII . The procedures used to extrap
late dEv and estimate extrapolation errors~listed as Err. in
Tables I and II! are described in the Appendix.

In Fig. 1, we plot the all-order correlation energydEv
against nuclear chargeZ for the six states considered. Co
tributions for Z518, 26, 29, and 35 are also included he
and in the next three figures to help clarify theZ dependence
The graphs in Fig. 1 are dominated by the second-order
relation energy, which is 80–90 % ofdEv over the range
considered. For neutral sodium, the correlation energy
seen to be largest for the 3s state; however, at higherZ the
correlation energy is largest for the 3d states. For neutra
sodium, the 3d3/2 and 3d5/2 correlation energies are sma
~about 60 cm21), but they increase very rapidly withZ.
Since the second-order energy determines the shapes o
curves in Fig. 1, we plotdEv2Ev

(2) in Fig. 2 to gain a more
detailed view of third- and higher-order contributions giv
by the SD method. This graph shows that these contribut
still grow very rapidly atZ516; a somewhat unexpecte
result. In Fig. 3, contributions to the correlation energy fro

FIG. 1. The SD correlation correctionsdEv to valence removal
energies as functions ofZ for sodiumlike ions.
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Ev extra
(3) are plotted. These contributions are small for sodiu

but grow very rapidly withZ. For the highestZ considered
(Z535), Ev extra

(3) is 85% ofEv
(3) for the 3s state and of com-

parable size for the other states considered. In Fig. 4,
show Ev

corr2Ev
(213) , whereEv

corr5dEv1Ev extra
(3) . These are

the contributions to the correlation energy of fourth a
higher orders.~In preparing this figure, only the second-ord
energies were extrapolated to avoid introducing additio
extrapolation errors into the small differences shown.! The
higher-order correlation contributions are seen to decreas
a factor of 6 over the rangeZ511–35 for 3s states. For 4s,
3p, and 3d states the higher-order corrections have maxi
at Z512, 13, and 15, respectively. The relative size of t
higher-order correlation corrections decreases from 6–
for Z511 to 1% forZ520. ForZ.20, third-order MBPT,
therefore, recovers more than 99% of the correlation ene

In Table II, we list the various contribution to the remov
energies of 3s, 3p1/2, 3p3/2, 4s, 3d3/2, and 3d5/2 states of
ions withZ511216. The zeroth-order DHF energy is give

FIG. 2. Third- and higher-order correctionsdEv2Ev
(2) to va-

lence removal energies as functions ofZ for sodiumlike ions.

FIG. 3. Contributions to the valence removal energies fr
Ev extra

(3) as functions ofZ for sodiumlike ions.
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in the row labeledEv
DHF. The row labeleddEv lists all-order

results obtained by calculating the first seven partial wav
and extrapolating the remainder as explained in the App
dix. The row labeledEv extra

(3) is the ‘‘extra’’ third-order con-
tribution given in Eq. ~10!. The relative contribution of
Ev extra

(3) increases withZ to about 1.6% of the correlation
energy for the 3s state in SVI and its absolute value for thi
state is large, 68 cm21. Clearly, this contribution cannot b
omitted in precision calculations. The row labeledBv

SD gives
the Breit contribution evaluated as the expectation value
the Breit operator using SD wave functions. The evaluat
of the Breit correction is discussed further in Sec. IV C. T
row labeled RM1MP contains the sum of the reduced-ma
and mass-polarization corrections, which are evaluated
third order using the method described in Ref.@4#. The row
labeledEtot lists the theoretical energy, which is the sum
all of the above contributions. The row labeledEexpt gives
experimental removal energies taken from the National In
tute of Standards and Technology database@18#. Finally, the
row labeled Err. gives our estimate of the numerical unc
tainty in the theoretical energies. Note that this uncertai
grows withZ because the correlation energy increases w
Z. The relatively large value of Err. for 3d states is a resul
of the fact that including only seven partial waves permits
to extrapolate the 3d correlation energies with only 1% ac
curacy forZ.13.

Differences between the theoretical and experiment e
gies for 3s states of ions withZ<13 range from 1 to 3 cm21,
but these differences increase rapidly forZ.13 as shown in
Fig. 5. We attribute the major part of the differences forZ
.13 to omitted QED corrections, which are dominated
the 3s self-energy. Codes to evaluate the self-energy i
realistic atomic potential, such as the one described in R
@5#, do not converge for the low values ofZ considered here
so it is necessary to turn to approximate schemes to estim
QED corrections. In Fig. 5, we show several different es
mates. First, we show values of the self-energy obtained
replacingZ by Z25, Z26, andZ27 in the precisely calcu-
lated Coulomb-field self-energies given for 3s states by
Mohr and Kim @19#. Next, we compare with values of th

FIG. 4. Fourth- and higher-order correlation corrections to
valence removal energies as functions ofZ for sodiumlike ions.
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Lamb shift from the MCDF code of Grantet al. @20#, which
were also obtained by scaling Coulomb-field values of
self-energy, but contain estimates of vacuum-polarizat
corrections. Finally, we present values of the Lamb sh
from Kim et al. @21#, determined using Welton’s approxima
tion @22# to the self-energy, and including corrections f
vacuum polarization. The values from Ref.@20# agree well
with the Z27 Coulomb values from Ref.@19#, while those
from Ref. @21# lie between theZ25 and Z26 Coulomb-
field values. It can be seen that if we add any of these e
mates of the Lamb shift to the theoretical energy, the res
ing value will be within 20 cm21 of the experimental energy
In the absence of more reliable values for the low-order Q
corrections, it is impossible to reduce the difference betw
theory and experiment for these states further.

All-order methods were used previously in Ref.@2# to
calculate correlation energies for 3s, 3p1/2, 3p3/2, and 4s
states of NaI, and in Ref.@11# to calculate correlation ener
gies for the 3s state of NaI. In Table III, we compare our
results with these two calculations and with the ‘‘experime
tal’’ correlation energy. To obtain the experimental corre
tion energy, we subtracted the DHF energy, the Breit ene
and the reduced mass plus mass polarization correct
from the experimental data@18#. Our value ofdEv is more
precise than the SD result from Ref.@2# since, in that work,
only partial waves withl<4 were included,Ev extra

(3) was
omitted, and no extrapolation was made. In Ref.@11#, accu-
rate nonrelativistic calculations of 3s correlation energy
were made using the CCSD approach. Relativistic corr
tions and certain three-body cluster contributions to thes
energy were also included in the correlation energy.
though the two calculations account for different classes

e

FIG. 5. Differences between experimental and theoretical e
gies for 3s states of sodiumlike ions are compared with theoreti
estimates of the 3s Lamb shift.

TABLE III. Comparison of the present SD calculations of th
correlation energy~a.u.! for Na I with the SD calculations of Ref.
@2#, the CCSD calculations of Ref.@11#, and experiment@18#.

State Present SD@2# CCSD @11# Expt.

3s 20.006835 20.00657 20.006840 20.006825
3p1/2 20.002118 20.00204 20.002121
3p3/2 20.002108 20.00203 20.002110
4s 20.001418 20.00136 20.001415
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correlation diagrams, both the present calculation and
CCSD calculation are in close agreement with each ot
moreover, they are both in excellent agreement with exp
ment. We also compared our results for 3s, 3p, and 4s en-
ergies for Z511–14, and 16 with multiconfiguration
Hartree-Fock ~MCHF! calculations @23#. Differences be-
tween the nonrelativistic MCHF calculations and the pres
values of the 3s removal energies ranged from 54 cm21 for
Z511 to 1717 cm21 for Z516. Moreover, the estimates o
relativistic shifts given in Ref.@23#, which range from 48
cm21 for Z511 to 1850 cm21 for Z516, do not completely
account for observed differences.

In Table IV, we present the 3p3/2-3p1/2 and 3d5/2-3d3/2
fine-structure intervals. These values were calculated
trapolating the second-order energy only to avoid introd
ing extrapolation errors into the intervals. Our uncertaint
for the 3p intervals range from 0.2 cm21 for Z511 to 0.4
cm21 for Z516; the corresponding uncertainties for the 3d
splittings are 0.1–0.2 cm21. The third- and higher-order con
tributions to the splitting are less than 1%, and there is s
stantial cancellation between the second-order Coulomb
tribution and the full Breit contribution. The all-orde
calculations are in better agreement with experiment than
third-order calculations, as is to be expected. The ove
agreement with experiment is seen to be excellent, excep
the 3d interval in PV.

In Table V, we give some comparisons of our results
the 3p3/2-3p1/2 and 3d5/2-3d3/2 fine-structure intervals with
theoretical results from Refs.@24# and @25#. The value from
Ref. @24# for the 3p fine-structure interval in NaI was ob-
tained using nonrelativistic MBPT including the polarizatio
correction only. Omitted correlation corrections in Refs.@24#

TABLE IV. Comparison of theoretical and experimental fin
structure intervals (cm21) for 3p and 3d states in sodium and
sodiumlike ions,Z512–16. The experimental values are from R
@18#.

3p3/2-3p1/2 3d5/2-3d3/2

Z Theory Expt. Theory Expt.

11 17.15 17.20 20.04 20.05
12 91.33 91.57 20.90 20.87
13 233.13 233.67 22.32 22.29
14 459.93 461.10 21.06 21.19
15 793.96 795.38 8.10 7.05
16 1260.53 1264.10 31.22 32.50

TABLE V. Comparison of the present calculations of the fin
structure intervals (cm21) of 3p and 3d states with other theoreti
cal data.

Z Present Other Other Expt.

11 3p3/2-3p1/2 17.15 15.465a 17.20
11 3d5/2-3d3/2 20.048 20.0449b 20.0428c 20.050
14 3d5/2-3d3/2 21.06 23.32b 21.64c 21.19

aNR MBPT @24#.
bNR MBPT @25#.
cRel. HF @25#.
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and @25# explain the differences with the present work a
with experiment. The results in Ref.@24# for the 3d interval
were obtained by two different methods: nonrelativis
MBPT including core polarization to first order in the spi
orbit coupling and to all orders in the Coulomb interacti
~designated by superscriptb in Table V!, and a relativistic
central-field approach using the Pauli approximation~desig-
nated byc in Table V!. The differences betweenb and our
data are due to relativistic effects and omitted correlat
corrections. The agreement withc is unexpectedly good, ow
ing to a fortuitous cancellation between second-order C
lomb correlation corrections and Breit corrections.

IV. REDUCED DIPOLE MATRIX ELEMENTS
AND HYPERFINE CONSTANTS

A. E1 transitions

The SD wave functions are used to evaluateE1 reduced
matrix elements for 3p1/2-3s, 3p3/2-3s, 4s-3p1/2, 4s-3p3/2,
3d3/2-3p1/2, 3d3/2-3p3/2, and 3d5/2-3p3/2 transitions in so-
dium and sodiumlike ions withZ512–16. To evaluate thes
matrix elements, we followed the method outlined in S
II C. Single- and double-excitation amplitudes obtained fro
Eqs.~2!, ~3!, and~5!–~7! were used to calculate the twen
terms in Zval . Since the excitation amplitudesrmnab, etc.
occurring in the expressions forZval included partial waves
with l<6, the sums over excited states inZval were also
limited to partial waves withl<6. To estimate the truncation
error caused by limiting the number of partial waves, w
redid all calculations usingl<5, and found that resulting
matrix elements were unchanged to four digits.

The level of agreement between length and velocity for
for electric-dipole transition matrix elements serves to m
sure the consistency of the theoretical formalism as wel

TABLE VI. Comparison of reduced dipole matrix elemen
~a.u.! in length and velocity forms for Na.

Transition Length Velocity

3p1/2-3s1/2 3.531 3.531
3p3/2-3s1/2 4.994 4.991
4s1/2-3p1/2 3.576 3.574
4s1/2-3p3/2 5.068 5.067
3d3/2-3p1/2 6.802 6.806
3d3/2-3p3/2 3.046 3.047
3d5/2-3p3/2 9.137 9.143

TABLE VII. Reduced dipole matrix elements~a.u.! in length
form for sodiumlike ions.

Transition NaI Mg II Al III Si IV P V S VI

3p1/2-3s1/2 3.531 2.369 1.845 1.523 1.314 1.154
3p3/2-3s1/2 4.994 3.351 2.611 2.165 1.859 1.634
4s1/2-3p1/2 3.576 1.693 1.092 0.7959 0.6209 0.505
4s1/2-3p3/2 5.068 2.404 1.552 1.133 0.8855 0.722
3d3/2-3p1/2 6.802 4.158 3.074 2.436 2.013 1.712
3d3/2-3p3/2 3.046 1.862 1.376 1.091 0.9013 0.766
3d5/2-3p3/2 9.137 5.587 4.130 3.273 2.705 2.301

.
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the accuracy of the numerical algorithms. A sample comp
son of length and velocity forms forE1 transitions in Na,
where the correlation contribution is most important, is giv
in Table VI. The length and velocity forms are seen to ag
to better than 0.05% for the seven transitions considered.
length-velocity agreement improves with increasing nucl
chargeZ along the isoelectronic sequence.

In Table VII, we list length-form reduced dipole matri
elements for ions withZ511–16 for each of the seven tran
sitions listed above. We estimate that the theoretical un
tainty is less than 0.05% for the data presented in this ta

New precise measurements recently became available
the 3p-3s transition in neutral sodium@9,26–28#. For a re-
view of the recent experimental results, we refer the reade
the paper by Volz and Schmoranzer@9#. Comparisons of our
results with the accurateab initio calculations of 3p-3s line
strengths in sodium from Refs.@2,10–12#, and with the re-
cent experimental line strengths from Refs.@9,26–28# are
given in Table VIII. These comparisons are based on l
strengths to amplify discrepancies and to facilitate comp
sons with nonrelativistic calculations.~The 3p-3s line
strength from the present relativistic calculation is the sum
the squares of the 3p1/2-3s and 3p3/2-3s reduced matrix el-
ements.! The SD values from Refs.@2,10# were obtained
from an all-order relativistic many-body calculation simil
to the present one. In Ref.@11#, an accurate nonrelativisti
calculation of the 3p-3s matrix element was obtained usin

TABLE VIII. Comparison of line strengthsS ~a.u.! for the 3p-
3s transition in sodium with other theoretical and experimen
data.

Method S (3p-3s)

Present SDa 37.39~1!

Theory SD@2# 37.51~2!

SD @10# 37.38~11!

MBPT @10# 37.65
CCSDb @11# 37.56
CI @12# 37.35
CIb @12# 37.26

Expt. C3 analysis@26# 37.31~4!

Beam-gas-laser spectroscopy@9# 37.26~5!

Linewidth @27# 37.30~8!

C3 analysis@28# 37.33~12!

aError estimate is based on difference of length and velocity for
bCorrected for relativistic effects using the ratio between DHF a
HF values.
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the CCSD approach; this nonrelativistic matrix element w
corrected for relativistic effects using a scaling factor det
mined by comparing relativistic and nonrelativistic Hartre
Fock matrix elements. Accurate nonrelativist
configuration-interaction~CI! calculations of the 3s-3p line
strengths were performed in Ref.@12#, and corrected for rela-
tivistic effects as explained above. Line strengths from
present calculation are in fair agreement with these ot
theoretical calculations. Moreover, our calculated li
strength agrees with the most precise experimental valu
better than 0.2%. The corresponding difference for the dip
matrix element is about 0.1%, which is smaller than the d
ference between theory and experiment for the 3s hyperfine
constantA in sodium, discussed below. It is worth notin
that the accuracy could possibly be improved by includin
set of triple excitations, since the CI calculations@12# of line
strengths for NaI, which include a limited set of triples, give
results closer to the most precise experimental value@26#.
Comparing the scaled relativistic and nonrelativistic resu
from Ref. @12#, one finds that relativistic corrections ar
about twice as large as the error estimate in the most pre
experiment@26#. Thus, at this level of agreement betwe
theoretical and experimental data, relativistic and high
order correlation corrections are approximately the sa
size, emphasizing the importance of anab initio relativistic
approach.

Comparisons of our results with available experimen
data Refs.@9,26,29–31# for 3p1/2-3s1/2, 3p3/2-3s1/2, and
3d5/2-3p3/2 transitions in sodiumlike ions are given in Tab
IX, where we list reduced matrix elements to eliminate t
strong dependence of decay rates on photon energy. Our
culations agree with experimental values to within the e
perimental error bars for all three transitions in MgII, Si IV,

l

s.
d

TABLE X. Comparison of lifetimes~ns! of 4s1/2 and 3d3/2 lev-
els in sodiumlike ions with available experimental data.

Z 4s1/2 3d3/2

Present Expt. Ref. Present Expt. Re

Mg II 2.88 2.45~30! a @34# 2.07 1.9~2! @29#

Al III 0.721 0.905~30! a @32#

Si IV 0.281 0.31~4! @30# 0.392 0.42~5! @30#

P V 0.136 0.263 0.32~2! b @33#

S VI 0.0754 0.086~15! @31# 0.198 0.20~1! @31#

aThe value is obtained by averaging over two decay branches.
experimental error quoted is due to a single branch.
bThe lifetime of the 3d2D level.
ef.
TABLE IX. Comparison of reduced dipole matrix elements~a.u.! for sodiumlike ions with available
experimental data.

3p1/2-3s1/2 3p3/2-3s1/2 3d5/2-3p3/2

Ion Present Expt. Ref. Present Expt. Ref. Present Expt. R

Na I 3.531 3.5267~17! @26# 4.994 4.9875~25! @26#

3.5246~23! @9# 4.9838~34! @9#

Mg II 2.369 2.376~9! @29# 3.351 3.366~16! @29#

Si IV 1.523 1.53~3! @30# 2.165 2.17~5! @30# 3.273 3.1~2! @30#

S VI 1.154 1.19~2! @31# 1.634 1.64~3! @31# 2.301 2.2~1! @31#
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TABLE XI. Magnetic dipole hyperfine constantsA ~MHz! for 23Na.

3s1/2 3p1/2 3p3/2 4s1/2 3d3/2 3d5/2

DHF 623.5 63.39 12.59 150.7 0.5883 0.2522
SD 888.1 94.99 18.84 204.8 0.5314 0.1137

SDa 884.5~1.0! 92.4~2! 19.3~1! 202.2~3!

CIb 882.2 94.04 18.80
CCSDc 883.8 93.02 18.318
MBPTd 860.9 91.40 19.80
Expt. 885.81e 94.42~19! f 18.79~12!g 202~3!h 0.527~25!i 0.1085~24!i

94.44~13!j 18.534~15!k

aReference@2#. gReference@39#.
bReference@12#. hReference@41#.
cReference@11#. iReference@42#.
dReference@7#. jReference@38#.
eReference@36#. kReference@40#.
fReference@37#.
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and SVI, except for the 3p1/2-3s1/2 transition in SVI. For
Na I, where high-precision experiment data are available,
data differ from experiment by about 0.1%.

In Table X, we compare our theoretical lifetimes for tw
branch transitions, where the energy cannot be factored,
experimental values from Refs.@29–34#. The theoretical and
experimental lifetimes agree to within the experimental er
bars, except for 20% differences found for the 3d3/2 states of
Al III and PV. We attribute these differences to experimen
errors, since the accuracy of the SD calculation is expec
to improve with increasing nuclear charge along the isoe
tronic sequence.

B. Hyperfine constantsA and B

Calculations of hyperfine constants follow the same p
tern as the calculations of reduced dipole matrix eleme
described in Sec. IV A. The magnetic moments and nuc
spins used in the present calculations are taken from
@35#. In Table XI, we give the present SD values of t
magnetic-dipole hyperfine constantsA for 23Na, and com-
pare our values with available theoretical@2,7,11,12# and ex-
perimental@36–42# data. The present SD value forA3s dis-
agrees with the very precise experimental value from R
@36# by about 0.25%. The agreement with other experime
values is at the level of 0.5%, except forA3d5/2

. For this case
the disagreement is 5%, and theoretical and experime
values differ by two standard deviations. The reason for

TABLE XII. Magnetic dipole hyperfine constantsA ~MHz! for
sodiumlike ions.

State 25Mg II 27Al III 29Si IV 31P V 33S VI

3s1/2 2597.6 4885 26060 18407 4910
3p1/2 2103.4 1013 21388 4488 1250
3p3/2 219.29 182.4 2245.2 783.4 216.8
4s1/2 2163.4 1462 21919 6070 1667
3d3/2 21.140 19.75 239.65 165.4 55.02
3d5/2 0.1196 22.757 3.238 22.520 2.358
r
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relatively large disagreement is difficult to judge, since the
are no other theoretical or experimental values for 3d states
in sodium.

The magnetic-dipole hyperfine constantsA of the six
states considered in sodiumlike ions are presented in T
XII. The precise experimental value for the 3s state in sodi-
umlike 25Mg, given in Ref.@43#, A(3s)52596.254 MHz,
differs by 0.2% with the value2597.56 MHz from the
present work.

Values of electric quadrupole hyperfine constantsB for
3p3/2, 3d3/2, and 3d5/2 states in23Na can be found in Table
XIII, where we list ratios ofB to the nuclear quadrupole
momentQ. The present SD calculation gives a higher val
of ratio B/Q for the 3p3/2 state of23Na than found in previ-
ous accurate atomic calculations@11,12#. A possible reason
is that our calculations areab initio relativistic calculations,
in contrast to the previous calculations of theB/Q ratio. The
electric quadrupole interaction contains a factor 1/r 3, which
amplifies the behavior of wave functions near the nucle
The motion of an electron in that region is relativistic, a
the consequent increase of electron densities at smallr leads
to larger values ofB/Q compared to nonrelativistic calcula
tions. Thes1/2 and p1/2 states are those most affected; th
the correlation contribution is modified by relativity mor
than the 3p3/2 DHF contribution. ForB3p3/2

, the correlation

TABLE XIII. Quadrupole hyperfine coupling constants2B/Q
~MHz/b! for 23Na.

3p3/2 3d3/2 3d5/2

DHF 15.76 0.2458 0.3502
SD 26.85 1.238 1.768

CIa 25.79
CCSDb 26.14

aReference@12# with included relativistic correction using the rati
of DHF and HF values.
bReference@11#. Relativistic correction was estimated by using fa
tor from Ref.@44#.
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contribution is about 40% of the total value. It follows that
scaling procedure based on the DHF value alone@44#, such
as used in nonrelativistic calculations@11,12#, would under-
estimate the size of the relativistic corrections.

Combined with the experimental valueB52.724(30)
MHz from Ref. @40#, we obtain for 23Na a nuclear quadru
pole momentQ5101.4(11) mb. The error in the value ofQ
is experimental. The theoretical error is 1% or less, based
the comparisons between theoretical and experimental va
for removal energies, dipole matrix elements, and magn
dipole hyperfine constantsA. The ‘‘atomic’’ value of nuclear
quadrupole moment obtained in this way is in agreem
with the valueQ5100.6(20) mb obtained in muonic exper
ments @45#, and resolves the long-standing disagreem
@12,46# between ‘‘atomic’’ and ‘‘muonic’’ values of the
nuclear quadrupole moment of23Na. The values of theB/Q
for 3d states given in Table XIII may aid in the experimen
determination ofA for these states.

C. Breit corrections in the SD approximation

We give a breakdown of various contributions to the e
pectation value of the Breit operator for the 3s1/2 state of Na

TABLE XIV. Contributions to the expectation value of the Bre
operator~a.u.! for the 3s1/2 state of Na.a@2b#5a3102b.

BDHF 2.63@25#

B(1) 21.83@25#

B(2) 22.37@26#

BSD 5.60@26#
on
es
ic
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in Table XIV. The Breit correction, as discussed in Ref.@4#,
is significantly reduced by correlation contributions. T
Dirac-Hartree-Fock valueBDHF52.6331025 a.u. is reduced
to 0.79731025 a.u. by the one-body correlationsB(1), and
further to 0.5631025 a.u. by the two-body correlationsB(2).
Moreover, the resulting SD value is about two times sma
than that given by third-order MBPT, 1.1531025 a.u. Thus,
higher-order diagrams contribute substantially to the B
correction. To illustrate this point further, we plot DHF
MBPT, and SD calculations of the 3s Breit energy shift
along the isoelectronic sequence in Fig. 6. It can be seen
the MBPT and SD results approach each other as the i
charge increases. Values of the Breit energy shift calcula
in the DHF, MBPT, and SD approximations are given for t
six states studied here in the rangeZ511–16 in Table XV.

FIG. 6. Comparison of energy contributions due to Breit int
action for 3s1/2 states along the sodium isoelectronic sequence.
DHF values are the first-order Dirac-Hartree-Fock contributio
The MBPT values are determined using the method given in R
@4#. The SD values are results of present work.
TABLE XV. Expectation values of the Breit operator for sodiumlike ions.

3s1/2 3p1/2 3p3/2 4s1/2 3d3/2 3d5/2

Na I

DHF 2.63@25# 1.27@25# 8.79@26# 6.33@26# 0.59@27# 0.34@27#

MBPT 1.14@25# 0.87@25# 2.84@26# 2.53@26# 22.30@28# 22.60@28#

SD 0.56@25# 0.65@25# 0.58@26# 1.55@26# 22.69@27# 22.73@27#

Mg II

DHF 8.43@25# 6.91@25# 4.77@25# 2.35@25# 2.08@26# 1.16@26#

MBPT 4.06@25# 4.64@25# 1.80@25# 1.09@25# 20.29@26# 20.93@26#

SD 3.16@25# 4.05@25# 1.22@25# 0.91@25# 22.04@26# 22.65@26#

Al III

DHF 1.70@24# 1.72@24# 1.18@24# 5.15@25# 1.29@25# 7.09@26#

MBPT 0.90@24# 1.17@24# 0.51@24# 2.66@25# 0.05@25# 24.13@26#

SD 0.79@24# 1.09@24# 0.42@24# 2.42@25# 20.36@25# 28.39@26#

Si IV

DHF 2.87@24# 3.24@24# 2.23@24# 9.13@25# 4.12@25# 2.25@25#

MBPT 1.64@24# 2.27@24# 1.07@24# 5.11@25# 0.70@25# 20.91@25#

SD 1.51@24# 2.15@24# 0.96@24# 4.82@25# 0.03@25# 21.60@25#

P V

DHF 4.38@24# 5.32@24# 3.67@24# 1.44@24# 9.36@25# 5.09@25#

MBPT 2.65@24# 3.82@24# 1.90@24# 0.86@24# 2.45@25# 21.35@25#

SD 2.51@24# 3.68@24# 1.78@24# 0.83@24# 1.59@25# 22.24@25#

S VI

DHF 6.27@24# 8.01@24# 5.52@24# 2.12@24# 1.75@24# 9.53@25#

MBPT 3.99@24# 5.89@24# 3.06@24# 1.33@24# 0.59@24# 21.41@25#

SD 3.83@24# 5.74@24# 2.93@24# 1.29@24# 0.49@24# 22.44@25#
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V. SUMMARY

The relativistic SD method includingEv extra
(3) gives re-

moval energies of 3s, 3p, 3d, and 4s states in NaI accurate
to better than 2 cm21 and, for ions withZ512–16, gives
energies that agree with experiment at the level 1–20 cm21,
assuming Lamb-shift corrections are included for 3s states.
We find thatEv extra

(3) increases withZ for Z,20, and ac-
counts for a substantial fraction of the correlation energy
this range. It is about 85% of the total third-order energy
Z520–35. The fourth- and higher-order correlation corre
tions decrease withZ beyondZ515, and become negligible
~less the 1% of the correlation energy! for Z520. Therefore,
for Z.20, accurate third-order calculations are sufficient
obtain high-precision results. The Breit correction is det
mined by evaluating the expectation value of the Breit o
erator using SD wave functions. Such a consistent calc
tion is important, considering the relatively large size
correlation corrections for this operator.

Magnetic-dipole hyperfine structure constantsA, electric-
quadrupole hyperfine constantsB, and E1 matrix elements
were evaluated using SD wave functions for sodiumlike io
with Z511–16. For each ion considered,A hyperfine con-
stants were evaluated for 3s, 3p1/2, 3p3/2, 4s, 3d3/2, and
3d5/2 states, and electric-dipole matrix elements were eva
ated for the seven possibleE1 transitions between thes
states. Furthermore,B hyperfine constants were determin
for the 3p3/2, 3d3/2, and 3d5/2 states of neutral sodium. Ou
comparison ofE1 transition amplitudes and hyperfine co
stants with available experimental data suggests that an
curacy of better than 0.3% was obtained for all of the
matrix elements. We infer from our calculations of theB
coefficient of Na that the value of electric-quadrupole m
ment of the23Na nucleus is 101.4~11! mb, somewhat highe
than all previous atomic calculations, and in good agreem
with the value of 100.6~20! mb obtained in muonic atom
measurements. To improve the accuracy of the present
culations of energies and matrix elements, it will be nec
sary to include triple excitations in the SD equations.
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APPENDIX

We used two methods to extrapolate the partial-wave
quences fordEv . In the first, we extrapolated all-order re
in
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sults using the scheme described in Ref.@1#. Briefly, we fit
the partial-wave contributionsd l5dEv( l )2dEv( l 21) to a
polynomial,

d l5
a1

l 4
1

a2

l 5
1

a3

l 6
, ~A1!

and found the remainder of the sequence by summingd l over
the rangel 57 to ` using the fit in Eq.~A1!. In the second
method, we made use of the fact that the second-order te
dominate the energy. We subtracted the second-order co
butionsEv

(2)( l ) @calculated with the basis set used to evalu
dEv( l )# from the all-order resultdEv( l ), and extrapolated
the differences using Eq.~A1!. This extrapolated tail was
then added to a precise second-order energy calculated s
rately using a much larger basis set.

In Table XVI, we illustrate these two methods for the ca
of the 3p1/2 state in AlIII (Z513), where the precise second
order energy isE3p1/2

(2) 520.009 067 a.u. In the first column

we list the number of partial waves included in the calcu
tion; in the second column, we give the partial wave s
quence fordE3p1/2

; in the third, we give the partial-wave

sequence forE3p1/2

(2) ; and in the final column, we list the

differences between the data in the second and third
umns. In the row labeled~4-5-6!, we give the extrapolated
limit of the previous rows using the three-parameter fit to
values in rowsl 5 4, 5, and 6. The value given at the botto
of the second column was found by direct extrapolation
dE3p1/2

. The value listed at the bottom of the final colum
was found by extrapolating the differences and adding
precise second-order energy,20.009 067 a.u. We define ou
uncertainty to be the difference between the results of th
two extrapolation schemes; in this case we findEcorr5
20.009 661(4) a.u. The uncertainty in this case is abou
cm21. It should be emphasized that this is the numeri
uncertainty only, and does not reflect missing physical
fects.

TABLE XVI. Extrapolation of the partial-wave sequence for th
3p1/2 state of AlIII .

l dE3p1/2
E3p1/2

(2) Diff.

0 0.000430 0.000472 20.000041
1 20.000769 20.000587 20.000182
2 20.008137 20.007445 20.000692
3 20.009181 20.008506 20.000674
4 20.009479 20.008834 20.000644
5 20.009570 20.008947 20.000623
6 20.009607 20.008995 20.000611
~4-5-6! 20.009657 20.000594
Total 20.009657 20.009661
. A
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