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Abstract

Removal energies and hyperfine constants of the lowest four ns, np1/2

and np3/2 states in Na, K, Rb and Cs are calculated; removal energies of the
n=7–10 states and hyperfine constants of the n=7 and 8 states in Fr are also
calculated. The calculations are based on the relativistic single-double (SD)
approximation in which single and double excitations of Dirac-Hartree-Fock
(DHF) wave functions are included to all-orders in perturbation theory. Using
SD wave functions, accurate values of removal energies, electric-dipole matrix
elements and static polarizabilities are obtained, however, SD wave functions
give poor values of magnetic-dipole hyperfine constants for heavy atoms. To
obtain accurate values of hyperfine constants for heavy atoms, we include
triple excitations partially in the wave functions. The present calculations
provide the basis for reevaluating PNC amplitudes in Cs and Fr.
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I. INTRODUCTION

Energy levels, transition matrix elements, hyperfine constants, and static polarizabilities
for low-lying s1/2, p1/2 and p3/2 states in alkali-metal atoms are studied systematically using
the relativistic single-double (SD) method in which single and double excitations of the
Dirac-Hartree-Fock (DHF) wave function are included to all orders of perturbation theory.
The SD method was applied previously to study properties of Li and Be+ [1], Li, Na, and
Cs [2], Cs [3], and Na-like ions with Z ranging from 11 to 16 [4]. In the latter study, the
theoretical removal energies for Na-like ions, when corrected for the Lamb shift, agreed with
experiment at the 1–20 cm−1 level of accuracy for all states considered, while theoretical
hyperfine constants and dipole matrix elements typically agreed with precise measurements
to better than 0.3%.

Energies of alkali-metal atoms have been calculated to high precision in [5] using the rel-
ativistic coupled-cluster (CC) method; however, there have been no systematic CC studies
of hyperfine constants or transition amplitudes for alkali-metal atoms. All-order methods
are needed for such studies since correlation corrections are large in alkalis and low-order
many-body perturbation theory (MBPT) does not give accurate results for atomic proper-
ties. In K, Rb, and Cs, third-order MBPT gives ground state energies in poorer agreement
with experiment than second-order MBPT, as illustrated in Table I where zeroth-order DHF
energies are tabulated together with second- and third-order MBPT corrections. The differ-
ences ∆(k), k = 0, 2, 3 between experimental energies and accumulated MBPT values shown
in Table I oscillate above and below the experimental values and show no sign of conver-
gence. In the SD approximation, an important subset of MBPT diagrams is iterated to all
orders in perturbation theory, leading to energies in excellent agreement with experiment.

During the last few years, lifetimes of the lowest p1/2 and p3/2 levels have been measured to
high precision for all alkali-metal atoms [6–12], yielding experimental dipole matrix elements
accurate to 0.1%–0.25%. In the present work, electric-dipole matrix elements for n′p − ns
transitions in alkalis from Na to Fr are evaluated for n = N,N + 1 and n′ = N, . . . , N + 3,
where N is the principle quantum number of the ground state. Matrix elements and energies
from the present SD calculation were used in Ref. [13] to study polarizabilities of alkali-metal
atoms.

In this paper, we discuss our calculation of static polarizabilities in detail and show that
the ab-initio SD results are in excellent agreement with the values recommended in [13]. We
also calculate Stark-induced scalar and vector transition polarizabilities for Ns − (N + 1)s
transitions. The accuracy of our calculations is discussed and recommended values of scalar
and vector polarizabilities are provided for Cs and Fr. These values are needed for the
interpretation of experiments on parity nonconservation in atoms [14].

A systematic study of hyperfine constants for s, p1/2 and p3/2 levels is also presented. The
accuracy of SD calculations of hyperfine constants for alkali-metal atoms decreases rapidly
from 0.3% for Na to 7% for Cs. To obtain more accurate values for heavy alkalis, it was
found necessary to include triple excitations to the wave functions partially. The derivation
of an approximate single-double partial triple (SDpT) wave function is given in the following
section.

In summary, we study low-lying s and p levels in alkali-metal atoms in the relativistic
SD and SDpT approximations and find excellent agreement with other high-precision cal-
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culations and with available experimental data. The SDpT wave functions from the present
calculations will be used later to evaluate parity nonconserving (PNC) amplitudes in cesium
and francium.

II. TRIPLE EXCITATIONS

The all-order single-double method was described previously in Refs. [1–4]. Briefly, we
represent the wave function Ψv of a one valence electron atom as Ψv ≈ ΨSD

v with

ΨSD
v =

[
1 +

∑
ma

ρmaa
†
maa +

1

2

∑
mnab

ρmnaba
†
ma
†
nabaa

+
∑
m6=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma
†
naaav

Φv, (1)

where Φv is the lowest-order atomic state function, which is taken to be the frozen-core
DHF wave function of a state v. In this equation, a†i and ai are creation and annihilation
operators, respectively, for state i. Indices at the beginning of the alphabet, a, b, · · ·, refer
to occupied core states, those in the middle of the alphabet m, n, · · ·, refer to excited
states, and v refers to valence orbital. Substituting the wave function (1) into the many-
body Schrödinger equation, where the Hamiltonian is taken to be the relativistic no-pair
Hamiltonian with Coulomb interactions [15], one obtains the coupled equations for single-
and double-excitation coefficients ρmv, ρma, ρmnva, and ρmnab. The coupled equations are
solved iteratively for the excitation coefficients. We use the resulting SD wave functions to
evaluate hyperfine constants and electric-dipole matrix elements. It was shown in [4] that
the SD energies are not complete in third order and that the missing third-order energy
contributions are associated with the omitted triple-excitations. In [4], we calculated the
missing third-order terms separately and added them to the final energies. It can be shown
that one-body matrix elements calculated using SD wave functions are complete through
third order. As mentioned in the introduction, hyperfine constants for heavy alkali-metal
atoms are not determined to high precision in the SD approximation. However, by adding
the two triple-excitation terms ρmnrvab and ρmnrabc to the SD wave function, we automatically
include the missing third-order energy and also substantially improve the accuracy of our
calculations of hyperfine constants. The corrected wave function is

Ψv ≈ ΨSD
v +

[
1

6

∑
mnrab

ρmnrvaba
†
ma
†
na
†
rabaaav

+
1

18

∑
mnrabc

ρmnrabca
†
ma
†
na
†
racabaa

]
Φv , (2)

where ΨSD
v is single-double wave function in Eq. (1). The addition of the core term ρmnrabc is

necessary to preserve the symmetry relation ρmnva = ρnmav. Carrying out the calculations,
we obtain the following equations for the energy, single- and double-excitation coefficients:

δEv = (SD) +
∑
mnab

gabmnρmnvvab , (3)
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(εa − εm) ρma = (SD) +
∑
nrbc

gbcnrρmnrabc , (4)

(εv − εm + δEv) ρmv = (SD) +
∑
nrab

gabnrρmnrvab , (5)

(εa + εb − εm − εn) ρmnab = (SD)

−
∑
rcd

gcdarρmnrbdc −
∑
rcd

gcdbrρnmradc −
∑
rsc

gcmrsρsnrbac −
∑
rsc

gcnrsρsmrabc , (6)

(εa + εv − εm − εn + δEv) ρmnva = (SD)

+
∑
rcb

gbcarρmnrvcb +
∑
rc

gbcvrρmnrabc +
∑
rsb

gbmrsρsrnvba +
∑
rsb

gbnrsρsrmvab . (7)

In the above equations, we write out only those terms arising from the triple excitations.
The quantities εi are single-particle energies and δEv is the correlation correction to the
valence energy. Below, we use the notations εmn = εm + εn, g̃abcd = gabcd − gabdc and ρ̃abcd =
ρabcd−ρabdc. The contributions from the single- and double-excitation coefficients, designated
by (SD) above, are given in Ref. [4]. We require that the triple-excitation coefficients ρmnrvab
and ρmnrabc be antisymmetric with respect to any non-cyclic permutation of the indicesmnr,
vab and mnr, abc, respectively, and we obtain the following equations for the triple-excitation
coefficients:

(εa + εb + εc − εm − εn − εr) ρmnrabc =∑
123 = {mnr}

1′2′3′ = {abc}

1

2

(
1

2
g121′2′ρ33′ −

∑
d

g1d1′2′ρ23d3′ +
∑
s

g23s3′ρ1s1′2′

)
+ [triples] , (8)

(εa + εb + εv − εm − εn − εr + δEv) ρmnrvab =∑
123 = {mnr}

1′2′3′ = {vab}

1

2

(
1

2
g121′2′ρ33′ −

∑
c

g1c1′2′ρ23c3′ +
∑
s

g23s3′ρ1s1′2′

)
+ [triples] , (9)

where [triples] groups together terms containing ρmnrvab or ρmnrabc. In the above equations,
the notation 123 = {mnr} designates symbolically that the indices 123 range over all six
permutations of the indices mnr; even permutations contribute with a positive sign while
odd permutations contribute with a negative sign. The relatively small contributions from
single- and triple-excitations on the right-hand sides of Eqs. (8) and (9) are omitted in the
present study.

The dominant triples corrections arise from the triple contributions to δEv and ρmv given
in Eq. (3) and Eq. (5), respectively. Solving the equation for ρmnrvab and substituting the
resulting expression into Eq. (3), we find

δEv ≈ (SD) +
∑
mnab

g̃abmn
εab − εmn

{∑
c

g̃cmavρ̃nvbc +
∑
s

g̃nvasρ̃msvb +
∑
c

g̃cvbvρmnca

+
∑
s

g̃mvsvρnsba +
∑
c

gcmabρ̃vnvc +
∑
s

gmnasρ̃vsvb +
∑
s

gmnvsρvsba +
∑
c

gcvbaρmnvc

}
. (10)

Repeating these steps for ρmv, we obtain from Eq. (5):
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(εv − εm + δEv) ρmv ≈ (SD)−
∑
nrab

g̃abnr
(εab − εnr)

{∑
c

g̃ncvaρ̃rmcb −
∑
s

g̃rmsaρ̃snvb +
∑
c

g̃mcvaρnrcb

−
∑
s

g̃rmsvρnsab +
∑
c

gncabρ̃rmcv −
∑
s

gnrsaρ̃smvb −
∑
s

gnrsvρmsab +
∑
c

gmcabρnrcv

}
. (11)

In our numerical studies, we use the approximation

g̃abmn
εab − εmn

≈ ρ̃mnab

in Eqs. (10) and (11). In the present calculations, we include triples in the ρmv and δEv
equations only. As discussed above, only double-excitation terms are considered in the
equations for the triple-excitation coefficients. Finally, explicit triple-excitation corrections
to matrix elements are omitted; only indirect corrections caused by modification of δEv and
ρmv are included. The modified matrix elements are evaluated as described in Ref. [4]. In
the approximation used here, all third-order corrections to δEv are automatically included.

III. RESULTS AND DISCUSSIONS

A. Removal energies and fine structure

The SD equations are set up in a finite basis and solved iteratively to give the single-
and double-excitation coefficients ρma, ρmv, ρmnab and ρmnva, and the correlation energy
δEv. The basis orbitals used to define the single-particle states are linear combinations of
B-splines [16]. For each angular momentum state, the basis set consisted of 40 basis orbitals
constructed from 40 B-splines of order 7. In our iterative calculations, we used only 35 of the
40 orbitals. The B-spline basis orbitals were interpolated onto a 250 point nonlinear radial
grid. All orbitals were constrained to a large spherical cavity; the cavity radii were chosen
to be 110 a.u. for Na, 100 a.u. for K and Rb, 75 a.u. for Cs, and 90 a.u. for Fr. Such large
cavities were needed to accommodate the highly excited states considered here. The DHF
energies of the lowest 3-4 s and p states were reproduced to five or more significant digits
by the B-spline basis functions. Generally, the larger values of n had lower accuracy, which
is unimportant owing to the decreasing size of correlation corrections with increasing n.
Terms in the angular-momentum decomposition with angular momentum l from 0 to 6 were
retained in the basis and the partial-wave contributions were extrapolated to give the final
values of the correlation energy. The extrapolation procedure is described in [4]. For the
case of Fr, only partial waves with l ≤ 5 were retained because of computational limitations,
and the extrapolation procedure was simplified, leading to somewhat lower accuracy.

Contributions to the energy from the Breit interaction (with all-order correlation correc-
tions) were obtained as expectation values of the Breit operator using SD wave functions,
as described in [4]. Breit corrections were found to be less than 15cm−1 in all cases.

In Fig. 1, values of δEv for the ground states of the alkalis, corrected for missing triples,
are compared with the second-order energy E(2), the third-order energy E(2)+E(3), and with
the experimental correlation energy Expt. Differences between δEv and E(2)+E(3) are from
fourth- and higher-order terms in the MBPT expansion. It is clear from the figure that the
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SD procedure resolves the problem of poor convergence of MBPT discussed previously and
shown in Table I, and that the SD ground-state correlation energies are in good agreement
with experimental values. Contributions from fourth- and higher-order corrections increase
from 8% of the total correlation energy for Na to 24% for Fr. Differences with measurements
for the ground-state correlation energy range from 0.1% for Na to 2.7% for Fr. The SD
approximation, therefore, accounts for a dominant fraction of the fourth- and higher-order
correlation energy. Correlation corrections for lowest p1/2 states are about 3 times smaller
than those for the ground states. The relative contributions of higher-order corrections are
found to be approximately the same for ns and np states.

A detailed comparison of removal energies for s and p1/2 states with experiment is given
in Table II. The experimental data used in this comparison are from Ref. [17] except for
Fr, where experimental energies compiled in [18] and results of recent measurements [19] are
used. For Na, our theoretical uncertainty (from extrapolation) ranges from 0.4 cm−1 for the
3s state to 0.04 cm−1 for the 6s state; this uncertainty increases for heavier alkalis. The
agreement with experiment is excellent for Na, where the 6s energy differs from experiment
by 0.14 cm−1 and the 3s energy differs by 2 cm−1. The corresponding differences are 5–
48 cm−1 in K, 7–42 cm−1 in Rb, 17–145 cm−1 in Cs, and 16–114 cm−1 in Fr. Agreement
with experiment improves substantially with n since correlation corrections decrease. Our
results for removal energies of np1/2 states are in excellent agreement with experiment for
all states considered. For np1/2 states, differences with experiment are 0.1–0.6 cm−1 in Na,
2–4 cm−1 in K, 1–7 cm−1 in Rb, 9–24 cm−1 in Cs, and 13–29 cm−1 in Fr. The removal
energies of np states are expected to be in better agreement with experiment because of the
smaller size of correlation corrections. We make predictions of 9p1/2 and 10p1/2 energies in
Fr (where there are no experimental values) in the last row of Table II. These predictions
are based on the comparison of SD energies with experimental energies for other np states
in Cs and Fr. We expect our predictions to be accurate to about 5 cm−1. Experimental
energies for all states, except the np states of Na, are larger than theoretical values; in other
words, correlation corrections are generally underestimated in the SD approximation.

The SD energies are compared with the relativistic CC calculations from Ref. [5] and with
MBPT calculations from [18] in Table III. The CC calculations agree better with experiment
for ns states except for the case of Na, where the CC energy differs from experiment by about
100 cm−1 for the 3s ground state. For the np states, the present calculations are in better
agreement with experiment than the CC calculations, especially for the 6p1/2 state of Rb,
and the 7p1/2 state of Cs.

The fine-structure intervals np3/2 − np1/2 are compared with experiment and with rel-
ativistic CC calculations [5] in Table IV. Predictions for the fine-structure intervals of the
8p and 9p states in Fr, based on comparisons of other intervals in Cs and Fr, are also given
in the table. The theoretical fine-structure intervals are seen to be in uniformly excellent
agreement with experiment.

In summary, the relativistic SD approximation gives accurate values for ns removal ener-
gies in alkali-metal atoms, the agreement with experiment being better for lighter elements.
Removal energies for np states and np3/2−np1/2 fine-structure intervals are also in excellent
agreement with experiment.
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B. Electric-dipole matrix elements

Electric-dipole matrix elements for n′p1/2 − ns and n′p3/2− ns transitions are evaluated
in the SD approximation using the formalism laid out in [1]. In brief, the one-particle matrix
element Z is represented in second quantization as

Z =
∑
ij

zij a
†
iaj, (12)

where zij is the matrix element of the dipole operator z between single-particle orbitals. In
the SD approximation, matrix elements of Z are obtained by substituting SD wave function
from Eq. (1) into the matrix element 〈Ψw|Z|Ψv〉. Correcting for normalization, one obtains:

〈ΨSD
w |Z|ΨSD

v 〉 = δwvZcore +
ZSD

val

[(1 + δNSD
w )(1 + δNSD

v )]1/2
, (13)

where the first term contributes for scalar operators only. The term ZSD
val is the sum

ZSD
val = zwv + z(a)

wv + · · ·+ z(t)
wv, (14)

where zwv is the DHF matrix element and the remaining 20 terms are linear or quadratic
functions of the single- and double-excitation coefficients ρma, ρmv, ρmnab and ρmnva. Ex-
pressions for the terms z(i)

wv and the normalization constant δNSD
v are given in Ref. [1].

Matrix elements for n′p1/2 − ns and n′p3/2 − ns transitions with n′ = N · · ·N + 3 and
n = N, N+1, where N is the principal quantum number of the ground state, are calculated
using this method. The resulting matrix elements are subsequently used to evaluate polar-
izabilities. In Fr, electric-dipole matrix elements of n′p − 9s transitions are also calculated
to provide additional data for this least studied alkali-metal atom.

In Table V, we compare SD matrix elements for the principal Np1/2−Ns and Np3/2−Ns
transitions in Na, K, Rb, Cs, and Fr with the high-precision experimental results from
[7,9,12]. The differences between the present SD calculations and experiment range from
0.1% in Na to 0.5–0.8% in Fr. The SD results for the principal transitions are in all cases in
better agreement with experiments than the third-order MBPT values from [20] because of
the more complete treatment of higher-order corrections. In Cs, which has been extensively
studied during the past fifteen years, all-order results from Refs. [21] and [22] are also
available. Comparison of our results with these theoretical calculations will be given below.
Reduced matrix elements for transitions from all n′p1/2 and n′p3/2 states to Ns and (N+1)s
states of Na, K, and Rb are given in Table VI. These matrix elements are used later to
evaluate polarizabilities. Except for the principal transitions, no high-precision experimental
values are available for these matrix elements.

It is possible to include effects of triple excitations indirectly by using valence single-
and double-excitation coefficients ρmv and ρmnva modified as explained previously to include
triples partially. Equation (14) itself is not modified in this procedure, thus, effects of
the triples are included only indirectly. We use this procedure to obtain SDpT values
for hyperfine constants. We found that including triples indirectly does not improve the
agreement with experiment for matrix elements of principal transitions, except for Na; for
transitions other than the principal ones the accuracy improves slightly.
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To improve the accuracy of the matrix elements further, one must include triple excita-
tions explicitly in the matrix elements, i.e. calculate matrix elements in Eq. (14) using the
SDT wave function given in Eq. (2). As a result, expressions for Zval will be modified:

ZSDT
val = ZSD

val + [triples], (15)

where [triples] are terms containing triple excitation coefficients ρmnrvab and ρmnrabc.
It is possible to estimate the contribution of some omitted higher-order terms. The

dominant correlation corrections to most of the transition matrix elements are from the
Brueckner-orbital (BO) terms defined in [4] and discussed in Refs. [3] and [20]. To estimate
the effect of omitted higher-order corrections to the BO terms, we scaled the single-excitation
coefficients ρmv, as described in Ref. [21]: the coefficients were multiplied by the ratios of the
experimental to theoretical correlation energies. In Table VII, scaled results for Cs matrix
elements are compared with our SD data, with the all-order calculations of Refs. [21,22],
and with experiment. The experimental data for 6p − 6s transitions in this table are from
the most recent measurement [12]. For the other transitions, with the exception of 7p− 7s,
the experimental data compiled in Ref. [22] are used. Matrix elements for 7p1/2 − 7s and
7p3/2−7s transitions can be determined accurately from a recent high-precision measurement
of the Stark shift [23]. Values determined in this way (described more completely in the
following section) are listed instead of experimental data for these two transitions since no
accurate experimental values are available. We also list matrix elements from Ref. [24],
where experimental and theoretical data were compiled to provide “best values”. As we can
see from the Table VII our ab-initio SD calculations provide accurate values for all of the
matrix elements with the exception of np−6s. For np−6s transitions, omitted higher-order
corrections are very large, but can be estimated using the scaling procedure described above.
Results from Refs. [21] and [22] were obtained using similar scaling procedures, however, the
relative importance of scaling is different in each case owing to the different treatment
of correlation corrections. In Ref. [21], scaling gave small (0.2-0.4%) contributions for all
transitions [3], while in Ref. [22] scaling led to 5.5% and 4% changes in 7p1/2−6s and 7p3/2−6s
matrix elements and 0.1% to 0.7% changes in the others. For our SD calculations, scaling
changes matrix elements for 7p1/2−6s and 7p3/2−6s transitions by 6% and 4% respectively,
and results for all other transitions by 0.5-1.2%. Our scaled matrix elements in Cs are in
excellent agreement with other accurate theoretical results and with experimental values
for transitions other than the principal transition. For the principal transition, the present
scaled values are in poorer agreement with experiment, since scaling does not account for
missing fourth- and higher-order RPA terms [4] that contribute significantly in this case. For
other transitions, scaling of the SD results substantially increases the accuracy, allowing us
to make reasonable predictions for the corresponding transitions in Fr where no experimental
results are available, and to estimate the accuracy of Fr polarizability calculations.

In Table VIII, we compare our results for n′s−np1/2 and n′s−np3/2, matrix elements in
francium with theoretical calculations from Refs. [18,20,25], and with experiment [9]. As for
other alkali-metal atoms, the present all-order results agree better with experiment than the
MBPT results from Ref. [20]. The results from the all-order calculations of [18] are shown
in column (a) of Table VIII and the predictions from [18] are shown in column (b). Our
SD results for the 8s− 7p transitions are between the values shown in columns (a) and (b),
while SD data for 8s− 8p transitions are very close to values from (b). The only transition
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for which there is a large discrepancy between the SD values and those from Ref. [18] is
7s − 8p1/2. As previously noted, there is a large contribution to this matrix element from
triple excitations that can be estimated by scaling. The scaled SD matrix element for this
transition, listed in second column of Table VIII is in much better agreement with Ref. [18];
it differs by 5% from the result (a) and by 2% from the prediction (b). This transition
is particularly hard to calculate since the total correlation correction is about 40% (about
twice as large as for the 7s−7p1/2 transition), and a more accurate treatment of higher-order
corrections is required. Our SD result for the 7s − 8p3/2 transition agrees with Ref. [18] to
1%. Recently, a large number of n′p − ns matrix elements in Fr were evaluated using a
semi-empirical model potential method [25]. These semi-empirical values agree with the
ab-initio SD calculations to better than 1% with the exceptions of the 7s − 8p and 7s − 9p
transitions, where contributions from correlation corrections are very large. The scaled SD
data, which are more accurate for these four transitions, are in good agreement with [25].

In conclusion, the all-order SD method gives accurate data for a wide range of n′p− ns
matrix elements for all alkali-metal atoms with exception of some transitions, such as 7s −
8p in Fr, which have small dipole matrix elements and large correlation corrections. The
accuracy for such transitions is significantly improved by scaling single excitation coefficients.
To achieve higher precision for electric-dipole matrix elements and to improve the accuracy
of other matrix elements in Cs and Fr, a more complete treatment of triple excitations is
necessary.

C. Static polarizabilities

As mentioned in the introduction, SD matrix elements and energies were used to calculate
static polarizabilities, Van der Walls coefficients, and atom-wall interaction coefficients of
alkali-metal atoms in [13]. We discuss the calculation of the static polarizabilities in more
detail here. The polarizabilities of the ground states of alkali-metal atoms are given by the
sum of two terms, α = αv + αa where αv is the contribution from valence excited states
and αa is the contribution from core excited (autoionizing) states. The contribution of the
autoionizing states can be well approximated by αc, the polarizability of the ionic core. We
write αa = αc + αcv, where αcv is a counter term compensating for Pauli-principle violating
excitations from the core to the valence shell. For an alkali atom in its Ns ground state,
these contributions are given by,

αv =
1

3

∑
n′

(
|〈Ns||z||n′p1/2〉|2
En′p1/2

− ENs
+
|〈Ns||z||n′p3/2〉|2
En′p3/2

− ENs

)
, (16)

αc =
2

3

∑
ma

|〈a||z||m〉|2
Em −Ea

, (17)

αvc =
1

3

∑
a

|〈a||z||Ns〉|2
Ea − ENs

. (18)

The expressions for αc and αvc above are written in the single-particle approximation.
The dominant term is the valence contribution αv. This term is evaluated by summing

over the first few values of n′ in Eq. (16) explicitly and approximating the remainder. Thus,
αv = αmain

v +αtail
v . In the term αmain

v , we included n′p states with n′=3–7 for Na, n′=4–7 for
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K, n′=5–8 for Rb, n′=6–9 for Cs; and n′=7–10 for Fr. All matrix elements were calculated
using SD wave functions. These states account for more than 99% of αv; the small remainder
αtail
v was evaluated in the DHF approximation and is expected to be accurate to better than

15% for Na and 50% for Fr. The core polarizability αc which contributes less than 10% of the
total in all cases was calculated using the relativistic random-phase approximation (RRPA).
Values of αc for Na+, K+, Rb+, and Cs+ were taken from Ref. [26] and the RRPA value for
Fr+ was obtained in a separate calculation [13]. The resulting values of αc are expected to
be accurate to better than 5% based on comparisons with recommended values from Miller
and Bederson [27]. The much smaller valence-core contributions αvc were evaluated using
DHF wave functions.

A breakdown of contributions to ground-state polarizabilities is given in Table IX, to-
gether with a comparison with recommended values from [13] and experiment [28–30]. In
this table and in the paragraphs below, values of the polarizabilities are given in atomic
units (a3

0). The SD results for Na, K, Rb, and Cs are in excellent agreement with the values
recommended in Ref. [13] which were obtained using high-precision experimental matrix
elements for the principal transitions and experimental energies. In the case of Fr, the dif-
ference is 1%; however, the accuracy of the recommended value is 0.75%. The difference in
Fr is in part due to the lower accuracy of the SD dipole matrix elements for the principal
transition compared to the accuracy of these matrix elements for other alkalis.

Stark-induced scalar and vector polarizabilities αS and βS for transitions from Ns to
the (N + 1)s states were also calculated. The vector polarizability βS is important for the
interpretation of PNC experiments [14]. In addition, we evaluated differences ∆α between
polarizabilities of the (N+ 1)s states and the Ns ground states. Formulas for αS and βS are
given in [21]. Cesium is the only alkali-metal atom for which experimental data are available
for all three of these parameters. The present calculations provide useful reference data for
the lighter alkali-metal atoms and for Fr.

Contributions to αS and βS are listed in Table X together with comparisons with experi-
ment and with semi-empirical calculations from Ref. [24]. The core contributions vanish for
the Stark polarizabilities but the core-valence contributions αvc and βvc do not. The terms
αtail
S , αvc, βtail

S and βvc were evaluated in the DHF approximation, which is sufficient since
these terms give small fractions of the totals. The data in the rows labeled αSDS and βSDS
were obtained using SD data for energies and matrix elements. The SD value for the scalar
transition polarizability αS in Cs differs from the experimental value by 1.5%. As we see
from Table X, βS is very small for Na but increase rapidly with Z. Our value of 26.87 for Cs
is in good agreement with the latest experimental value βS = 27.024(43)expt(67)theory from
Ref. [31]. The vector polarizability βS is especially difficult to calculate precisely, since np1/2

and np3/2 terms contribute with opposite sign. For example, the 6p1/2 contribution is -154.90
and the 6p3/2 contribution is 171.74. As a result, even small uncertainties in the values of
matrix elements can lead to large errors. The principal uncertainties in βS are from 7s− 6p
and 7p− 6s matrix elements. It should be noted that it is sufficient to accurately know the
ratio of (np3/2 − n′s)/(np1/2 − n′s) matrix elements to significantly reduce the error.

To estimate the accuracy of the SD value and to provide recommended values for scalar
and vector transition polarizabilities in Cs and Fr we also calculate αS and βS using ex-
perimental energies and matrix elements for the principal transitions and scaled SD matrix
elements for the other transitions listed in Table VII. This semi-empirical calculation leads
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to the recommended values in Table X with the exception of the value of βS in Cs, which
is listed in the separate row. The accuracy of the value of αS is calculated assuming in-
dependent uncertainties in all matrix elements, where the uncertainties are based on the
comparisons with experiment. The main contribution to the error in αS comes from un-
certainties in the 7p3/2 − 6s matrix element, which is accurate to 2%. The contribution
of other uncertainties is insignificant. The resulting value of αS is in excellent agreement
with the experimental value. To estimate the accuracy of vector transition polarizability, we
calculate βS using our recommended value of αS and the high-precision experimental ratio
αS/βS=9.905(11) [32]. The resulting value of βS, which is listed as the recommended value
of Table X is 27.11(22) with error coming dominantly from the calculation of αS . As we
see, this value is consistent with our direct calculation of βS=27.16. Further improvement in
the accuracy of values of scalar and vector polarizability will be possible when an accurate
experimental value of the 7p3/2 − 7s matrix element is obtained. Our recommended values
of αS and βS in Cs are in excellent agreement with values obtained by Dzuba, Flambaum,
and Sushkov [24]. Uncertainties in the values of αS and βS in Ref. [24] are lower than the
uncertainties of our recommended values owing to the fact that a 0.7% uncertainty to the
experimental value of 7p3/2 − 6s matrix element is assigned in Ref. [24].

We also carried out calculations of αS and βS in Fr using both methods described above.
The results from the rows labeled “Recomm.” are obtained by using experimental values
of energies and principal transition matrix elements together with scaled SD data from
Table VIII. The SD results αSDS and βSDS agree with our recommended values within 0.8%
for αS and 1.4% βS. As in the case of Cs, the uncertainty in the value of αS is dominated by
assuming that errors in all the transitions are independent. The uncertainties are obtained
by the uncertainty of the 8p3/2 − 7s matrix element, which is 2% based on comparison with
Cs data. The final uncertainty in αS in Fr is 1%; the uncertainty in βS is also 1% based on
a comparison with Cs.

Table XI gives the contribution to ∆α, the difference between the static polarizabilities
of the (N + 1)s states and the Ns ground states of alkali-metal atoms. The SD value
∆αSD of the scalar transition polarizability for Cs differs from the recent experimental
result 5837(6) [23] by 0.4% and agrees within the error limits with the theoretical result
5833(80) from Ref. [21]. As noted previously, the experimental value of ∆α can be used to
derive 7p − 7s matrix elements to high accuracy, since ∆α depends almost entirely on the
values of these matrix elements. The values of 7p1/2 − 7s and 7p3/2 − 7s matrix elements
were varied to yield experimental value of ∆α within experimental precision. Ratio of
these matrix elements D(7p3/2 − 7s)/D(7p1/2 − 7s) is taken to be 1.3892(3) based on the
theoretical calculations. Experimental data were used for 6s − 6p, 6s − 7p, and 7s − 6p
matrix elements and theoretical values were used for all others. The results are D(7p1/2 −
7s)=10.308(5) and D(7p3/2 − 7s)=14.320(7) assuming uncertainty only in the experimental
value of ∆α. The only other significant uncertainty is from the 0.5% error in the value of
6p − 7s matrix elements (which results in a 0.1% variation in the value of ∆α). The final
results, accounting for the uncertainties in all matrix elements and in the experimental value
of ∆α, are D(7p1/2−7s)=10.308(15) and D(7p3/2−7s)=14.320(20). We give a recommended
value for ∆α in Fr obtained in the same way as recommended value for αS . The uncertainty
in this value comes almost entirely from the uncertainty in the 8p − 8s matrix elements,
which is taken to be 0.3%.
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D. Hyperfine Constants

Results of our calculations of magnetic-dipole hyperfine constants A (MHz) for ns, np1/2

and np3/2 states in Na, K, Rb and Cs are given in Table XII together with experimental
values from [33–37]. The nuclear magnetic moments used in the calculations are weighted
averages of values taken from the tabulation by Raghavan [38]; they are listed in Table XIII.
The calculations include corrections for the finite size of the nuclear magnetic moment dis-
tribution, which is modeled as a uniformly magnetized ball. The magnetization radii Rm

are obtained using nuclear parameters given in Ref. [39] and are also listed in Table XIII.
The rows labeled DHF in Table XII give results calculated in the lowest-order DHF ap-
proximation. The all-order results, including triple contributions as described in section II,
are listed in the rows labeled SDpT. As stated in the introduction, the SD method gives
poor results for ground-state hyperfine constants in alkalis, except for Na. In fact, the SD
result for the 6s hyperfine constant in Cs, without corrections for triples, overestimates the
experimental value by 7%, which is worse than the corresponding third-order MBPT result.
As can be seen, the SDpT values are generally in excellent agreement with experiment for
ns and np1/2 states. For the ground state of Cs, the agreement with experiment improves
to 1% using SDpT wave functions. Differences between SDpT results and experiment are
greater than 1% for np3/2 states of Rb and Cs. Further improvements of the accuracy of the
hyperfine constants will require a more complete treatment of triples.

In the calculations described above, corrections due to the finite size of the nuclear
magnetic moment distribution (FS) in Na, K, and Rb are very small and are included in
zeroth-order only. However, FS corrections to hyperfine constants are significant for Cs and
Fr and are, therefore, included to all orders. The relative size of the FS contributions to the
correlation correction in ns states in these cases is found to be the same as in the lowest-
order DHF calculation. Breit corrections to the hyperfine constants are calculated in second
order following the method outlined in [40]. These corrections are negligible for Na and K,
but grow rapidly from 0.1% for 5s state of Rb to 0.5% for the 7s state of Fr.

The SDpT values of hyperfine constants A for the 7s, 7p1/2, 7p3/2, 8s, 8p1/2, and 8p3/2

states in 211Fr are given in Table XIV, where comparisons are made with experimental
[19,41,42] and other theoretical data [43]. It should be noted that FS corrections contribute
2.5% to the 7s hyperfine constant. The values of 7s and 7p1/2 hyperfine constants for 211Fr
differ from experimental values by 1.4% and 1.8%, respectively; however, the accuracy of
the magnetic moment µ = 4.00(8)µN [41] is 2%. It should be noted that the SDpT result
for the 6s state of Cs underestimates the experimental hyperfine constant by 1% but the
SDpT result for the 7s state of Fr overestimates the experiment value by 1.4%. The relative
contribution of correlation for the Fr 7s hyperfine constant is about the same as for the Cs
6s hyperfine constant. Possible reasons for the anomalous differences with experiment are
uncertainties in the Fr magnetic moment or magnetic moment distribution; a more precise
value of the magnetic moment is required to draw conclusions about the accuracy of the
correlation correction. The value of A for the 7p3/2 state in Fr differs from experiment by
3.2%; however, it is lower than the experimental value, unlike values for 7s and 7p1/2 states.
The main source of theoretical uncertainty for the 7p3/2 hyperfine constant is the correlation
correction, as it is for the Cs 6p3/2 hyperfine constant. Our results are in good agreement
with theoretical calculation of [43], where the Fr hyperfine constants were calculated using
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MBPT. It should be noted that our results include Breit correction and a more complete
treatment of the correlation and, thus, are expected to provide more accurate results for Fr
hyperfine constants.

The dependence of the FS correction on the value of magnetization radius was investi-
gated in lowest order. Values of A(7s) for Fr obtained with magnetization radii Rm=6.5 fm
and Rm=7.0 fm but with the same charge radius Cnuc=6.71 fm differ by 0.2%. The 7s
hyperfine constants calculated with Cnuc=Rm=6.5 fm and Cnuc=Rm=7.0 fm differ by 0.5%
of the total value.

E. Conclusion

We have presented a systematic study of properties of alkali-metal atoms using relativistic
single-double wave functions. These wave functions give accurate values of removal energies,
fine-structure intervals, electric-dipole matrix elements, and polarizabilities for alkali-metal
atoms from Na to Fr. The SD wave functions, however, lead to hyperfine constants for
heavier alkali-metal atoms that differ substantially from precise measurements. To obtain
accurate values for hyperfine constants, it was necessary to include triples (partially) in the
wave function. This was done using the SDpT wave functions described in Section II and
leads to accurate values of hyperfine constants. Energies and transition matrix elements in
Na determined here agree with those from the earlier SD calculation of Ref. [4]; similarly, the
present energies and matrix elements in Cs are in close agreement with the SD calculations
of Ref. [21]. The SD calculations for K, Rb, and Fr presented here are completely new.

The theoretical SD ground-state removal energies differ from experiment by amounts
ranging from 2 cm−1 in Na to 114 cm−1 in Fr, and the SD removal energies for np states
agree with experimental values better than 30 cm−1 for all states considered. The theoretical
SD matrix elements for principal transitions agree with recent high-precision experiments
to 0.1-0.5%, with exception of the 7s − 7p3/2 transition in Fr where the difference is 0.8%.
The agreement with experiment is better for lighter systems because of the smaller size
of the correlation corrections. A large number of matrix elements, which were used to
calculate polarizabilities, are tabulated for all alkali metal atoms; these matrix elements
should provide useful reference data. The SD approximation gives excellent results for
static polarizabilities and for Stark-induced transition polarizabilities. Supplementing our
theoretical calculations with experimental energies and experimental matrix elements for
the two principal transitions, allowed us to predict values of the Stark polarizabilities αS
and βS for in Cs and Fr to high accuracy. The predicted values for αS and βS in Cs are in
excellent agreement with experimental values. Hyperfine constants, calculated using SDpT
wave functions, are in excellent agreement with experiment for ns and np1/2 states of alkali-
metal atoms from Na to Cs. Differences between theoretical SDpT ground-state hyperfine
constants and experiment ranges from 0.3% in Na to 1.4% in Fr. The contributions of Breit
and FS corrections to the ground state hyperfine constant in Fr are found to be significant. A
more precise experimental value for the Fr nuclear magnetic moment is necessary to evaluate
the accuracy of correlation correctionc to Fr hyperfine constants.

The methods developed in this work will be used in the future to evaluate PNC ampli-
tudes in Cs and Fr.
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FIG. 1. Comparisons of MBPT and SD correlation corrections to ground state energies for
alkali-metal atoms.
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TABLES

TABLE I. Zeroth- (or DHF), second- and third-order MBPT removal energies E(k) in cm−1

and energy differences ∆(k) = Eexpt −E(k).

K (4s) Rb (5s) Cs (6s)
k E(k) ∆(k) E(k) ∆(k) E(k) ∆(k)

0 32370 2640 30571 3120 27954 3453
2 35104 -94 33878 -187 31865 -458
3 34655 355 33200 491 30529 878

Eexpt 35010 33691 31407
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TABLE II. Comparison of SD calculations of ns and np1/2 removal energies with experimental
energies from [17–19] in units of cm−1.

Na 3s 4s 5s 6s
Theory 41447.3 15708.8 8248.48 5076.68
Expt. 41449.4 15709.4 8248.76 5076.82
Na 3p1/2 4p1/2 5p1/2 6p1/2

Theory 24493.9 11183.0 6409.31 4153.22
Expt. 24493.3 11182.4 6409.06 4153.12

K 4s 5s 6s 7s
Theory 34962 13958 7548 4730
Expt. 35010 13986 7559 4735
K 4p1/2 5p1/2 6p1/2 7p1/2

Theory 22023 10304 6008 3938
Expt. 22025 10308 6010 3940

Rb 5s 6s 7s 8s
Theory 33649 13527 7365 4637
Expt. 33691 13557 7380 4644
Rb 5p1/2 6p1/2 7p1/2 8p1/2

Theory 21111 9969 5852 3854
Expt. 21112 9976 5856 3856

Cs 6s 7s 8s 9s
Theory 31262 12801 7060 4479
Expt. 31407 12871 7089 4496
Cs 6p1/2 7p1/2 8p1/2 9p1/2

Theory 20204 9621 5687 3760
Expt. 20228 9641 5698 3769

Fr 7s 8s 9s 10s
Theory 32735 13051 7148 4522
Expt. 32849 13106 7168 4538

Fr 7p1/2 8p1/2 9p1/2 10p1/2

Theory 20583 9712 5724 3782
Expt. 20612 9736 5738 a 3795a

aPrediction based on SD calculations.
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TABLE III. Comparison of SD calculations of ns and np1/2 removal energies with the CC
calculations from Ref. [5] and many-body calculations from Ref. [18] in units of cm−1.

Na 3s 4s 3p1/2 4p1/2

SD 41447 15709 24494 11183
CC 41352 15690 24465 11172

K 4s 5s 4p1/2 5p1/2

SD 34962 13958 22023 10304
CC 35028 13983 22016 10306

Rb 5s 6s 5p1/2 6p1/2

SD 33649 13527 21111 9969
CC 33721 13564 21117 9857

Cs 6s 7s 6p1/2 7p1/2

SD 31262 12801 20204 9621
CC 31443 12876 20217 9549

Fr 7s 8s 7p1/2 8p1/2

SD 32735 13051 20583 9712
CC 32839 13112 20574 9736
[18] 32762 13082 20654 9742
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TABLE IV. Comparison of SD fine-structure intervals in Na, K, Rb, Cs, and Fr with experiment
and with theoretical CC values from [5]. Units: cm−1.

This work Expt. [5]
Na 3p3/2− 3p1/2 17.15 17.20 18.35

4p3/2− 4p1/2 5.58 5.63 5.99
5p3/2− 5p1/2 2.46 2.52
6p3/2− 6p1/2 1.26 1.25
7p3/2− 7p1/2 0.75 0.74

K 4p3/2− 4p1/2 57.3 57.72 59.45
5p3/2− 5p1/2 18.5 18.8 19.3
6p3/2− 6p1/2 8.5 8.4
7p3/2− 7p1/2 4.4 4.5

Rb 5p3/2− 5p1/2 236.5 237.6 240.3
6p3/2− 6p1/2 76.5 77.5 87.7
7p3/2− 7p1/2 34.8 35.1
8p3/2− 8p1/2 18.6 18.9

Cs 6p3/2− 6p1/2 552.2 554.1 554.5
7p3/2− 7p1/2 178.6 181.0 198.4
8p3/2− 8p1/2 81.4 82.6
9p3/2− 9p1/2 43.9 44.7

Fr 7p3/2− 7p1/2 1676 1687 1670
8p3/2− 8p1/2 536 545 560
9p3/2− 9p1/2 244 250(3)a

10p3/2− 10p1/2 132 136(2)a

aPrediction based on SD calculations.

TABLE V. Comparison of SD calculations of reduced dipole matrix elements (a.u.) for the
principal transitions in alkali-metal atoms with experimental values.

Na K Rb Cs Fr
3p1/2 − 3s Ref. 4p1/2− 4s Ref. 5p1/2− 5s Ref. 6p1/2 − 6s Ref. 7p1/2 − 7s Ref.

Present 3.531 4.098 4.221 4.478 4.256
Expt. 3.5246(23) [7] 4.102(5) [7] 4.231(3) [7] 4.4890(65) [12] 4.277(8) [9]

3p3/2− 3s Ref. 4p3/2− 4s Ref. 5p3/2− 5s Ref. 6p3/2 − 6s Ref. 7p3/2 − 7s Ref.
Present 4.994 5.794 5.956 6.298 5.851
Expt. 4.9838(34) [7] 5.800(8) [7] 5.977(4) [7] 6.3238(73) [12] 5.898(15) [9]
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TABLE VI. SD values of reduced dipole matrix elements (a.u.) in Na, K, and Rb.

Na K Rb
3p1/2 − 3s 3.531 4p1/2 − 4s 4.098 5p1/2− 5s 4.221
4p1/2 − 3s 0.305 5p1/2 − 4s 0.275 6p1/2− 5s 0.333
5p1/2 − 3s 0.107 6p1/2 − 4s 0.084 7p1/2− 5s 0.115
6p1/2 − 3s 0.056 7p1/2 − 4s 0.039 8p1/2− 5s 0.059

3p1/2 − 4s 3.575 4p1/2 − 5s 3.866 5p1/2− 6s 4.119
4p1/2 − 4s 8.376 5p1/2 − 5s 9.461 6p1/2− 6s 9.684
5p1/2 − 4s 0.943 6p1/2 − 5s 0.892 7p1/2− 6s 0.999
6p1/2 − 4s 0.377 7p1/2 − 5s 0.335 5p1/2− 6s 0.393

3p3/2 − 3s 4.994 4p3/2 − 4s 5.794 5p3/2− 5s 5.956
4p3/2 − 3s 0.435 5p3/2 − 4s 0.406 6p3/2− 5s 0.541
5p3/2 − 3s 0.154 6p3/2 − 4s 0.128 7p3/2− 5s 0.202
6p3/2 − 3s 0.081 7p3/2 − 4s 0.061 8p3/2− 5s 0.111

3p3/2 − 4s 5.066 4p3/2 − 5s 5.510 5p3/2− 6s 6.013
4p3/2 − 4s 11.840 5p3/2 − 5s 13.358 5p3/2− 6s 13.592
5p3/2 − 4s 1.341 6p3/2 − 5s 1.292 5p3/2− 6s 1.540
6p3/2 − 4s 0.537 7p3/2 − 5s 0.491 5p3/2− 6s 0.628

TABLE VII. Comparison of SD reduced dipole matrix elements (a.u.) for Cs with other theo-
retical values and with experiment.

Transition SD scaled Ref. [21] Ref. [22] Expt. Ref. [24]
6p1/2 − 6s 4.482 4.535 4.510 4.494 4.4890(65)
6p3/2 − 6s 6.304 6.382 6.347 6.325 6.3238(73)

7p1/2 − 6s 0.297 0.279 0.280 0.275 0.284(2) 0.2825(21)
7p3/2 − 6s 0.601 0.576 0.576 0.583 0.583(10) 0.5820(44)

8p1/2 − 6s 0.091 0.081 0.078
8p1/2 − 6s 0.232 0.218 0.214

6p1/2 − 7s 4.196 4.243 4.236 4.253 4.233(22) 4.237(22)
6p3/2 − 7s 6.425 6.479 6.470 6.507 6.479(31) 6.472(31)

7p1/2 − 7s 10.254 10.310 10.289 10.288 10.308(15)a 10.285(31)
7p3/2 − 7s 14.238 14.323 14.293 14.295 14.320(20)a 14.286(43)

aPredictions based on the experimental value of the Stark shift [23].
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TABLE VIII. Comparison of SD reduced dipole matrix elements (a.u.) for Fr with other theo-
retical values and with experiment.

SD scaled Ref. [25] Ref. [18] a Ref. [18] b Ref. [20] Expt. [9]
7p1/2− 7s 4.256 4.279 4.304 4.179 4.277
8p1/2− 7s 0.327 0.306 0.304 0.291 0.301
9p1/2− 7s 0.110 0.098 0.096
101/2− 7s 0.055

7p3/2− 7s 5.851 5.894 5.927 5.791 5.898
8p3/2− 7s 0.934 0.909 0.908 0.924
9p3/2− 7s 0.436 0.422 0.420

10p3/2− 7s 0.271

7p1/2− 8s 4.184 4.237 4.230 4.165 4.219 4.196
8p1/2− 8s 10.02 10.10 10.06 10.16 10.00
9p1/2− 8s 0.985 0.977

10p1/2− 8s 0.380

7p3/2− 8s 7.418 7.461 7.449 7.384 7.470 7.472
8p3/2− 8s 13.23 13.37 13.32 13.45 13.26
9p3/2− 8s 2.245 2.236

10p3/2− 8s 1.049

7p1/2− 9s 1.016 1.010
8p1/2− 9s 9.280 9.342
9p1/2− 9s 17.39 17.40

10p1/2− 9s 1.822

7p3/2− 9s 1.393 1.380
8p3/2− 9s 15.88 15.92
9p3/2− 9s 22.59 22.73

10p3/2− 9s 3.876

aIncludes contributions from non-Brueckner diagrams extrapolated from Cs results.
bPredictions given in [18].
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TABLE IX. Contributions to static polarizabilities (a.u.) of alkali-metal atoms and comparisons
with recommended values from [13].

Na K Rb Cs Fr
αmain
v 162.06 284.70 308.43 383.8 294.0
αtail
v 0.08 0.07 0.14 0.2 1.4
αc 0.95 5.46 9.08 15.8 20.4
αvc -0.02 -0.13 -0.26 -0.5 -0.9
αSD 163.07 290.10 317.39 399.3 314.9
Recomm. [13] 162.6(3) 290.2(8) 318.6(6) 399.9(1.9) 317.8(2.4)
Expt. 162.7(8)a 293.6(6.1)b 319.9(6.1)b 403.6(8.1)b

aRef. [28].
bWeighted average of experimental data from Refs. [29,30].
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TABLE X. Contributions to scalar and vector polarizabilities αS and βS (a.u.) for alkali-metal
atoms.

Na K Rb Cs Fr
3s− 4s 4s− 5s 5s− 6s 6s− 7s 7s− 8s

αmain
S 149.66 176.74 235.39 271.00 374.29
αtail
S 0.32 0.28 0.68 0.87 4.22
αvc -0.01 -0.05 -0.11 -0.20 -0.37
αSDS 149.97 176.97 235.96 271.67 378.14
Recomm. 268.6(2.2)a 375.3(3.6)a

Dzuba et al. [24] 269.0(1.3)
Expt. 267.6(8)b

βmain
S 0.35 1.95 9.18 26.77 72.63
βtail
S 0.00 0.00 0.04 0.10 0.65
βvc 0.00 0.00 0.00 0.00 0.01
βSDS 0.35 1.95 9.22 26.87 73.29

27.16a

Recomm. 27.11(22)c 74.3(7)a

Dzuba et al. [24] 27.15(13)
Expt. 27.02(8)d

aValues obtained by using experimental values of energies and matrix elements for the principal
transitions and scaled SD data for the 8 other transitions listed in Table VII for Cs and Table VIII
for Fr.
bValue obtained by combining the measurement of βS [31] with the accurately measured ratio α/β
from Ref. [32].
cValue obtained by using our recommended value of α and the experimental α/β ratio from
Ref. [32].
dRef. [31].

TABLE XI. Contributions to the differences in static polarizabilities (a.u.) of (N + 1)s and the
Ns ground states of alkali-metal atoms.

Na K Rb Cs Fr
∆αmain 2938.6 4673.7 4851.0 5857.1 4419.5
∆αtail 1.9 1.5 2.9 3.0 11.1
∆αvc 0.0 0.1 0.2 0.4 0.8
∆αSD 2940.5 4675.3 4854.1 5860.5 4431.4
Recomm. 4517(26)a

Expt. 5837(6)b

aValue obtained using experimental energies and either experimental or scaled SD matrix elements.
bRef. [23].
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TABLE XII. Comparison of SDpT values of hyperfine constants A (MHz) of ns, np1/2, and
np3/2 states of alkali-metal atoms with experiment. Experimental values are from Ref. [33], unless
noted otherwise.

Na 3s 4s 5s 6s
DHF 623.8 150.5 58.04 28.21
SDpT 888.3 204.3 77.68 37.51
Expt. 885.8 202(3) 78(5)

Na 3p1/2 4p1/2 5p1/2 6p1/2

DHF 63.4 21.0 9.3 4.9
SDpT 95.1 30.7 13.5 7.1
Expt. 94.44(13)a

Na 3p3/2 4p3/2 5p3/2 6p3/2

DHF 12.6 4.16 1.85 0.98
SDpT 18.8 6.04 2.66 1.40
Expt. 18.534(15)b 6.01(3)

K 4s 5s 6s 7s
DHF 146.8 38.85 15.75 7.89
SDpT 228.6 54.81 21.61 10.68
Expt. 230.85 55.50(60) 21.81(18) 10.85(15)

K 4p1/2 5p1/2 6p1/2 7p1/2

DHF 16.61 5.74 2.62 1.41
SDpT 27.65 8.95 4.02 2.14
Expt. 28.85(30) 8.99(15)

K 4p3/2 5p3/2 6p3/2 7p3/2

DHF 3.23 1.11 0.512 0.276
SDpT 5.99 1.93 0.866 0.462
Expt. 6.09(4) 1.97(1) 0.866(8)

Rb 5s 6s 7s 8s
DHF 642.6 171.6 70.3 35.5
SDpT 1011.1 238.2 94.3 46.9
Expt. 1011.9 239.3(1.2) 94.00(64) 45.5(2.0)

Rb 5p1/2 6p1/2 7p1/2 8p1/2

DHF 69.8 24.55 11.39 6.19
SDpT 120.4 39.02 17.61 9.45
Expt. 120.7(1) 39.11(3) 17.65(2)

Rb 5p3/2 6p3/2 7p3/2 8p3/2

DHF 12.4 4.37 2.03 1.11
SDpT 24.5 7.98 3.61 1.94
Expt. 25.029(16) 8.25(10) 3.71(1)

Cs 6s 7s 8s 9s
DHF 1425.2 391.6 163.5 83.6
SDpT 2278.5 540.6 217.1 109.1
Expt. 2298.2 545.90(9) 218.9(1.6) 109.5(2.0)
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Cs 6p1/2 7p1/2 8p1/2 9p1/2

DHF 160.9 57.62 27.08 14.84
SDpT 289.6 93.40 42.43 22.76
Expt. 291.89(8)c 94.35 42.97(10)

Cs 6p3/2 7p3/2 8p3/2 9p3/2

DHF 23.93 8.64 4.08 2.24
SDpT 48.51 15.88 7.27 3.93
Expt. 50.275(3)d 16.605(6) 7.626(5) 4.129(7)

aRef. [34].
bRef. [35].
cRef. [36].
dRef. [37].

TABLE XIII. Nucleon numbers A, nuclear spins I , magnetization radii Rm(fm) from [39], and
magnetic moments µI in units of µN from [38] used in the preparation of Table XII.

A I Rm µI
Na 23 3/2 2.89 2.2176
K 39 3/2 3.61 0.39149
Rb 85 5/2 4.87 1.3534
Cs 133 7/2 5.67 2.5826

TABLE XIV. Comparison of SDpT values of Fr hyperfine constants A (MHz) with experiment
and other theory. gI=0.888, Rm=6.71fm

7s 7p1/2 7p3/2 8s 8p1/2 8p3/2

DHF 5785.7 622.7 49.30 1482.8 220.91 18.03
SDpT 8833.0 1162.1 91.80 1923.3 362.91 30.41
Expt. 8713.9(8)a 1142.0(3)b 94.9(3)a 1912.5(1.3)c

Ref. [18] 9018 1124 102.2 1970 363.6 35.2

aRef. [41].
bRef. [42].
cValue obtained by rescaling experimental value for 210Fr 1577.8(1.1) MHz from Ref. [19] using
µ(210)=4.40µN and µ(211)=4.00µN . The uncertainty includes experimental uncertainty of 210Fr
value 1577.8(1.1) MHz only.
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