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Large Contributions of Negative-Energy States to Forbidden Magnetic-Dipole Transition
Amplitudes in Alkali-Metal Atoms
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The influence of negative-energy states (NES) on forbidden magnetic-dipole ns1�2 2 �n 1 1�s1�2

transitions in alkali-metal atoms is investigated. We find that the NES contributions are significant
in almost all cases and, for rubidium, reduce the transition rate by a factor of 8. We tabulate
magnetic-dipole �M1� transition amplitudes for the alkalis. Our M1 value for cesium, where accurate
measurements are available, differs from experiment by 16%. We briefly discuss the feasibility of an
experimental test of NES effects.

PACS numbers: 31.30.Jv, 31.15.Md, 32.70.Cs
It is well known (see, for example, the discussion
by Brown and Ravenhall [1]) that the Dirac-Coulomb
Hamiltonian has no bound state eigenfunctions in the
presence of the electron-electron interaction. The no-pair
Hamiltonian Hn.p. derived from quantum electrodynamics
has been advocated by Sucher [2] for use in relativistic
atomic calculations. Although Hn.p. leads to very accurate
energies, the omitted effects of electron-positron pairs
can be significant for the forbidden magnetic-dipole
�M1� transition amplitudes. The first discussion of pair
corrections to the M1 decay rate for the 2 3S1 state in
helium was given by Feinberg and Sucher [3] in 1971.
Later, when new lifetime measurements of the 2 3S1
metastable state of heliumlike ions became available,
more accurate calculations of M1 were performed by
several theoretical groups. Lindroth and Salomonson [4]
numerically demonstrated the detailed cancellation of one-
pair diagrams in the case of heliumlike argon. The decay
rates of the same transitions for heliumlike ions with Z �
2 100 were calculated within a relativistic configuration-
interaction approach by Johnson, Plante, and Sapirstein
[5]. They treated contributions of negative-energy states
(NES) using second-order many-body perturbation theory
(MBPT). Indelicato [6] considered the effects of NES
for 2 3S1 M1 decay in the multiconfiguration Dirac-Fock
approach. Recently we studied NES contributions to
transition amplitudes in more detail [7]. In the Pauli
approximation, we derived an effective one-pair operator
that explicitly reveals cancellation between Coulomb and
Breit two-body diagrams and, by using it, found a
transition without such cancellation: the neutral helium
2 3S1-3 3S1 transition has a very large NES contribution
which reduces the M1 rate by a factor of 2.9.

There have been no other calculations treating NES
contributions to M1 transitions systematically in multi-
electron systems, except for He- and Be-like transitions
[8]. In this Letter, we report second-order MBPT calcula-
tions of magnetic-dipole ns1�2 2 �n 1 1�s1�2 transitions
in the alkalis including the analysis of one-pair effects.
We have discovered an unusually large NES contribution,
14 0031-9007�99�83(15)�2914(4)$15.00
which reduces the transition rate by a factor of 8 in Rb,
and propose measurements to test NES effects. The re-
sults of our calculations for Cs are compared to a previous
theoretical determination [9] and to experimental values
[10,11]. For the other alkalis, no measurements exist.

We can argue that forbidden magnetic-dipole am-
plitudes are the most sensitive among electromagnetic
transition amplitudes to the accuracy of the relativistic
description of an atomic system. As we will demonstrate,
several factors contribute to the result: correlation effects,
spin-orbit interaction, Breit interaction, retardation effects,
and, finally, the negative-energy contributions.

The interaction of an electron with external electromag-
netic field in transverse gauge is represented as (atomic
units are used throughout the Letter)

HI � ca ? êeik?r , (1)

where ê is the photon polarization and k is its wave vec-
tor. Multipole expansion and angular reduction (see, e.g.,
Ref. [5]) lead to the following expression for the relativis-
tic retarded magnetic-dipole reduced matrix element:

�mjjM1jjn� � c�2kmjjC1jjkn� �km 1 kn�
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j1�kr� �GmFn 1 FmGn� dr .

(2)

Here G and F are the radial parts of large and small com-
ponents of atomic orbitals, k is the photon wave num-
ber, k � �j 1

1
2 � �21�j1l11�2, and C1 is the normalized

spherical harmonic [12]. In the long-wavelength limit and
Pauli approximation this relativistic expression reduces to
a conventional nonrelativistic operator

M1 � L 1 2S . (3)

Even if the general angular selection rules for the M1
operator are satisfied, this matrix element vanishes when
the radial wave functions are orthogonal, i.e., if ki � kj ,
but ni fi nj . The Einstein A coefficient for the M1
transition jI� ! jF� is expressed in terms of the reduced
© 1999 The American Physical Society
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matrix element as

AM1 �
k3

3c2

j�FjjM1jjI�j2

2JI 1 1
.

We start by utilizing second-order MBPT built on the
“frozen-core” Dirac-Hartree-Fock (DHF) potential. This
approximation includes both leading correlation and NES
effects. We consider matrix elements of the magnetic-
dipole operator z between two valence states y and w. For
the purposes of this paper, the valence state y represents
the ground state orbital ns1�2 and the state w represents the
first excited s state �n 1 1�s1�2. The first-order value is
given by the matrix element taken between DHF orbitals
zwy . The second-order correction including both Coulomb
�gijkl� and Breit �bijkl , bij� interactions, is given by
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Here antisymmetrized matrix elements are defined asegijkl � gijkl 2 gijlk . The one-body matrix element of

the Breit interaction is bij �
P

a
ebiaja. In the above

expressions, index a runs over core orbitals and n extends
over virtual orbitals. It is important to note that virtual
states include both excited positive- and negative-energy
orbitals. Corresponding Feynman diagrams are given in
Fig. 1. We emphasize that in the no-pair approximation
the summation over virtual states would be limited only to
the positive-energy states, i.e. include only the diagrams
in the upper panel of Fig. 1. The inclusion of the Breit
interaction in our analysis is crucial, because its contribu-
tion to the matrix element is of the same order as for the
Coulomb interaction. We use a static limit of the Breit
interaction, since the energy of the transverse photon is
determined by the energy difference of the real electrons,
not by that of the virtual electron. The numerical calcula-
tions were performed with a relativistic B-spline basis set
representation [13] obtained in a cavity of radius 40 atomic
units and included 40 positive-energy and 40 negative-
energy wave functions for each partial wave.

The results of our calculations are presented in Table I.
Note that the first-order Dirac-Hartree values dominate
for lighter atoms and become less significant for cesium
and francium. This is due to larger second-order no-pair
contributions. The values of NES contributions (in the
third row) appear to be roughly proportional to Z. In the
case of cesium they constitute only a small fraction (4%)
which is even smaller for francium (0.6%) due to large
no-pair second-order contributions. However, the NES
fraction reaches 19% in potassium. The rubidium case is
the most surprising: there is cancellation of the two no-pair
(a) (b) (c)

(d) (e) (f)

FIG. 1. Principal Feynman-like time-ordered diagrams con-
tributing to M1 amplitude in the second order. The wavy lines
represent photons and the straight lines represent atomic elec-
trons. The double vertical solid lines designate inactive (ob-
serving) electrons. Diagrams (a) and (d) are due to Coulomb
interaction, (b) and (e) are due to two-body static Breit in-
teraction, and (c) and (f ) due to one-body static Breit in-
teraction. The upper panel of diagrams represents no-pair
contributions, and the lower panel represents contributions from
negative-energy states.

terms and, consequently, a strong dependence of the total
value on the negative-energy corrections. Although such
cancellation in second order may be coincidental, and more
accurate calculations may be necessary, we conclude that
a measurement of the M1 transition in rubidium could
provide an excellent test of the NES contributions.

The large relative contribution of NES for forbidden
magnetic-dipole transitions is caused by several factors.
First, due to unique properties of the M1 operator (3), the
no-pair amplitude is severely suppressed (by a factor of a2

in the lowest order). Second, the magnetic-dipole opera-
tor �M1�ij in Eq. (2) contains an integral of large and small
components of Dirac wave functions. For positive-energy
states the small component is significantly weaker than the
large component (by a factor of aZ for hydrogenlike ions).
For NES, the situation is reversed, and the small compo-
nent is much larger. In addition, the Pauli approximation
expression (3) with its particular d-function-like properties
is no longer valid and one obtains much larger values for
M1 matrix elements between negative and positive states
than from positive-positive matrix elements. Finally, the
energy denominators of order 2mc2 bring the NES con-
tributions to the same level as the contribution from the
“regular” positive-energy states. As seen from Table II,
NES contributions from the Breit interaction are com-
parable to those from the Coulomb diagrams because the
Breit operator mixes large and small components.

We note that, for Rb, Cs, and Fr, correlation effects
are very important, leading to contributions larger than
the lowest-order DHF values. The mechanism has been
discussed by Dzuba et al. [9]. In the Pauli approximation,
2915
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TABLE I. Contributions to reduced matrix elements of the M1 operator in atomic units
multiplied by a factor of 105. Row 1, lowest-order DHF value; row 2, second-order no-pair
contribution; row 3, negative-energy state contributions in second order; row 4, total value of
M1 matrix element.

Li Na K Rb Cs Fr
Z 3 11 19 37 55 87

I 0.91 1.16 1.15 1.38 1.51 2.09
II, no-pair 0.12 0.03 20.08 21.86 210.69 2116
II, NES 0.02 0.13 0.20 0.31 0.40 0.64
Total 1.05 1.06 1.27 20.17 28.78 2113
the M1 matrix element is proportional to the integral of
the product of the large components between the states
involved. In the first-order forbidden transitions ns1�2 2

�n 1 1�s1�2 between states with different principal quan-
tum numbers, the radial wave functions are orthogonal
and the M1 rate is zero. Although it is not zero beyond
Pauli approximation, it is strongly suppressed. The sit-
uation is quite different for p1�2 and p3�2 matrix ele-
ments which are nonzero due to overlapping radial wave
functions caused by the spin-orbit interaction. As a re-
sult, the second-order contributions dominate due to such
matrix elements connecting core and exciting states. This
correlation effect becomes overwhelming for heavier ele-
ments where spin-orbit coupling is important.

In Table III, we compare our cesium results for the
magnetic-dipole reduced matrix element with calculations
of Dzuba et al. [9] and with measurements from several
experimental groups. The transition amplitude used in
[9] is related to the reduced matrix element expressed in
atomic units as

�M1�ampl �
1
p

6
�nws1�2jjM1jjnys1�2� 3

Ç
mB

c

Ç
.

The experimental entries for the M1 matrix element in
Table III were obtained from measurements of Mhf

1 �M1
and a semiempirical value [11] of the off-diagonal hyper-
fine mixing amplitude Mhf

1 � 0.8094�20� 3 1025jmB�cj.
The result of our work, despite approximate treatment of
correlation effects, is in reasonable agreement (16%) with
the experimental results. Since the negative-energy ef-

TABLE II. Breakdown of negative-energy state contributions
to the reduced M1 matrix element in atomic units, multiplied
by a factor of 105. The column “Coulomb” represents
contributions from Fig. 1(d), column “Breit two body”— from
Fig. 1(e), and column “Breit one body”— from Fig. 1(f).

Breit
Coulomb two body one body Total

Li 20.015 0.067 20.029 0.024
Na 20.020 0.106 0.047 0.133
K 20.022 0.112 0.106 0.197
Rb 20.025 0.154 0.174 0.303
Cs 20.026 0.183 0.239 0.395
Fr 20.035 0.221 0.450 0.636
fects are marginally smaller than these deviations, it is not
possible to draw definitive conclusions about NES effects
from available experiments in cesium. The second-order
expression (4) is a leading term of the random-phase ap-
proximation (RPA). The calculations of Dzuba et al. [9]
implicitly included the effect of negative-energy states
due to the reduction of RPA-like diagrams to the form
of a differential equation. However, their analysis did
not take into account the Breit interaction. Such an ap-
proach misses an important negative-energy contribution.
Indeed, we demonstrate in Table II that the NES contri-
bution from the Breit interaction is much larger than that
arising from the Coulomb interaction.

The theoretical calculations of the M1 transition am-
plitudes in the alkalis clearly demonstrate the important
role of negative-energy states. We now discuss experi-
mental possibilities to test these contributions. We com-
pare the NES fractional contributions, defined as the ratio
of NES to no-pair contributions, in different alkali-metal
atoms in Fig. 2. In the light alkalis (Li, Na, K) the effect
is proportional to Z and is maximal for K (19%). For
heavy atoms such as Cs and Fr, it is small because of
large no-pair contributions. Rubidium, in the middle, has
a very large relative effect (65%) and is the most promis-
ing. If measurements in the other alkalis reach the pre-
cision achieved in Cs, then all alkalis except Fr will be
good candidates for testing NES contributions. The ac-
curacy of the calculations, on the other hand, can impose

TABLE III. Comparison of theoretical and experimental
values for Cs 6s-7s reduced magnetic-dipole matrix element in
atomic units, multiplied by a factor of 105. The experimental
errors are given in parentheses.

Reference �6skM1k7s� 3 105

Theory
This work 28.78
Dzuba et al. [9], 1985 213.7

Experiment
Bennett and Wieman [10], 1999 210.40 �0.03�
Bouchiat and Guéna [11], 1988 a 210.5 �0.1�
aThe average of previous experimental results corrected for the
electric-quadrupole contribution.
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Li 3s−2s

Na 4s−3s
K 5s−4s

Rb 6s−5s
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FIG. 2. The relative contributions to the magnetic-dipole �M1�
matrix element ns 2 �n 1 1�s in alkali atoms: the ratio of
the NES contributions (row 3 of Table I) to the total no-pair
contributions (sum of rows 1 and 2 of Table I).

even more severe restrictions than experiment. The ac-
curacy of our calculations, as seen in the deviation from
the experiment for Cs, is about 16%; it is expected to be
better for lighter elements. More accurate (1%) no-pair
calculations are possible, for example, in the relativistic
single-double approximation [14]. For Li, precise no-pair
configuration-interaction calculations [15] are also pos-
sible with an accuracy much better than 1%.

In conclusion, we have presented the results of the
second-order MBPT calculations for the forbidden M1
transitions in the alkalis. Comparisons with experimental
and theoretical data for cesium have been made. We have
found very large negative-energy state contributions to
the M1 transition amplitudes in the alkalis. The NES
amplitude is dominant in the case of rubidium, which
could provide the best experimental test of negative-
energy contributions in atomic structure.
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