
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 81, 030302(R) (2010)

Entangling the lattice clock: Towards Heisenberg-limited timekeeping
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A scheme is presented for entangling the atoms of an optical lattice to reduce the quantum projection noise of
a clock measurement. The divalent clock atoms are held in a lattice at a “magic” wavelength that does not perturb
the clock frequency—to maintain clock accuracy—while an open-shell J = 1/2 “head” atom is coherently
transported between lattice sites via the lattice polarization. This polarization-dependent “Archimedes’ screw”
transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J = 0, clock
states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom
are used to engineer entanglement and for clock readout.
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Quantum entanglement is a crucial resource in quantum
computing and has the potential to improve precision mea-
surements [1,2]. Here we propose a scheme for entangling
an ensemble of several thousands of neutral atoms, with the
specific goal of demonstrating the power of entanglement for
improving frequency standards.

Measuring time intervals with atoms relies on the fact that
the quantum-mechanical probability of making a transition
between two clock levels depends on the detuning �ω of
the probe field ω from the atomic transition frequency ω0. By
measuring the probability as a function of ω, one can infer if the
two frequencies are equal and thereby “lock” a local oscillator
to the atomic transition. Counting the number of oscillations
of the local oscillator tells time. The precision of measuring
�ω is limited by the quantum projection noise [3]. For a
measurement of N unentangled atoms, the resulting signal-
to-noise ratio of �ω scales as

√
N : the standard quantum

limit (SQL). The use of entanglement holds the promise of
improving clock precision to the Heisenberg limit, with signal-
to-noise ratio scaling as N .

Measurements with uncertainty below the SQL may be
achieved with squeezed atomic states [4–6]. While this tech-
nique can address large-number samples of atoms, squeezing
experiments have attained signal-to-noise ratios far from the
Heisenberg limit. In other work, clock measurements at the
Heisenberg limit have been demonstrated for small numbers
of entangled ions in traps [7]. Those experiments created
maximally entangled states to achieve measurements at the
Heisenberg limit via a Ramsey-type measurement protocol: a
generalized π/2 pulse creates a Greenberger-Horne-Zeilinger
(GHZ) state, the atoms undergo free evolution, and a final
generalized π/2 pulse is used for readout. However, scaling
ion traps up to entangle increasingly larger numbers of ions
remains a work in progress.

Using atom-atom interactions to engineer entanglement
between neutral atoms trapped in a lattice may offer the best
of both worlds: maximally entangled large-number samples.
Previous proposals have noted the virtues of using alkaline-
earth-metal-like atoms in lattices for quantum information and
quantum computing [8–12]; here we focus on entangling atoms
for improving the atomic clock.

In optical lattice clocks, millions of divalent atoms (such
as Sr or Yb) are trapped in an optical lattice (register)

operating at a “magic” wavelength λm. At this wavelength,
both clock levels, 1S0 and 3P0, are shifted by the lattice lasers
equally, so that the clock frequency remains unperturbed [13].
These clocks have demonstrated long coherence times and
have already realized improvements in both accuracy and
precision over the current primary frequency standard [14,15].
Notably the signal-to-noise ratio of current-generation clocks
is approaching the SQL [14], so an “entangled clockwork”
may be of benefit.

We would like to entangle a string of strontium clock atoms.
Each Sr atom occupies an individual lattice site as shown in
Fig. 1. To maintain the clock accuracy we require all lattice
fields to be at the magic wavelength of strontium. Entangling
the atoms using short-range atom-atom interactions requires
the transport of atoms between lattice sites. While coherent
transport in optical lattices has been demonstrated before by
using lattice polarization [16–19], such techniques would not
work for the clock states of bosonic isotopes, which have
a scalar (F = J = I = 0) nature: the optical potential does
not depend on the polarization of the lattice lasers (be it
circular or linear). Instead, we use a single J = 1/2 “head”
atom, which is transported from site to site using the optical
polarization [20].

Consider the superposition of two spatially displaced
standing waves of opposite circular polarization (σ̂±). The
resulting E field reads

E(z) = E+σ̂+cos

(
2π

λm

z

)
+ E−σ̂−cos

(
2π

λm

z − ϕ

)
, (1)

where winding the phase ϕ similarly to the Archimedes’ screw
controls a relative displacement between the nodes of the two
standing waves. The resulting optical potential reads

U (z) = U+
0 cos2

(
2π

λm

z

)
+ U−

0 cos2

(
2π

λm

z − ϕ

)
. (2)

For an atom in an |F,MF 〉 state (with the quantization axis
taken to align with the lattice lasers),

U±
0 = −

(
E±
2

)2 [
αs(ωm) ± MF

2F
αa

F (ωm)

]
, (3)
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FIG. 1. (Color online) Schematic of the entanglement process.
(a) With φ = 0 a single head atom (light orange circle) and several
clock atoms (dark blue circles) are trapped in the minima of a one-
dimensional (1D) optical lattice, with one or fewer atoms per site.
Due to an intensity differential of the underlying lattices, the clock
atoms couple strongly to the σ+ lattice (solid blue line). The head
atom is placed in a superposition of atomic states: one which couples
strongly to the σ+ lattice and one which couples strongly to the
σ− lattice (dashed orange line). (b) As φ is increased, the latter state
spatially separates and is transported along the lattice. (c) This portion
of the head atom is then brought into contact with a clock atom to
entangle the two atoms. (d) The head atom is transported further
to obtain entanglement with the remaining clock atoms in a similar
manner.

where αs(ωm) and αa
F (ωm) are frequency-dependent scalar and

vector (axial) polarizabilities. Neglected tensor contribution is
suppressed [21] for J = 1/2 atoms.

The two clock states |0〉 = |1S0〉 and |1〉 = |3P0〉 will
experience the same trapping potential; at λm the two ac
polarizabilities are the same. Note that the vector part of the
polarizability is zero for the scalar clock states. If two states
of the head atom, |↑〉 = |F,MF 〉 and |↓〉 = |F ′,M ′

F 〉, have
different vector polarizabilities, they will experience different
potentials. For an appropriate choice of lattice parameters,
discussed below, the |↓〉 state couples preferentially to the
σ+ permanent sublattice, while |↑〉 couples preferentially
to the moving σ− sublattice. Unfortunately, the commonly
employed lin � lin transport lattice algorithms [16–19] cannot
be employed here directly, as the potential will wash out for
the clock atom in the lin ⊥ lin configuration. However, for the
appropriate choice of lattice intensities (discussed below), the
clock atoms remain pinned to the σ+ permanent sublattice.
This state-selective transport enables the entanglement of the
clock atoms with the head atom state, as shown in Fig. 1 and
described below.

We describe the system as the product of the state of
the clock register and the state of the head atom. For
example, a possible basis state of N = 3 clock atoms and a
head atom in the spin-up state is |	〉 = |110〉|↑〉 = |6〉|↑〉.
We require two gates: a single-qubit Hadamard gate H

(an analog of a π/2 pulse) and a two-qubit phase gate.
No individual addressing is required. The phase gate Pi

involves the head atom being state-selectively transported
to overlap with the target clock atom at position i in the
lattice register, Pi | . . . , 0i , . . .〉|↑〉 = + | . . . , 0i , . . .〉|↑〉 and
Pi | . . . , 1i , . . .〉|↑〉 = −| . . . , 1i , . . .〉|↑〉.

A practical realization of the Hadamard gate involves
interaction with a near-resonant pulse of optical frequency
ω for the clock qubits and a near-resonant pulse of microwave

frequency ω′ for the head atom. We want to measure the clock
frequency ω0 by tuning the driving frequency ω. Later we
show that, as in the conventional Ramsey-type clock frequency
measurement, the probability of making a clock transition
depends on the detuning �ω = ω − ω0, allowing one to
lock the optical frequency to the clock transition. Theoretical
analysis is simplified by transforming into a rotating reference
frame; the relevant chain of operators for the compound wave
function involves a product of N clock-state rotation operators
at frequency ω and a rotation operator for the head atom at
frequency ω′.

We start by filling a 1D lattice with a single head atom
and N clock atoms, |	0〉 = |000 · · ·〉|↓〉. Next we apply the
Hadamard gates to the head atom and to all the clock atoms:

|	1〉 =
(

1√
2N

∑
p

|p〉
) [

1√
2

(|↓〉 + |↑〉)
]

,

where |p〉 = |0 · · · 00〉, |0 · · · 01〉, . . . , |1 · · · 11〉 is the compu-
tational (binary) basis set for the clock register. In the next step
we use the transport lattice and move the |↑〉 state of the head
atom along the clock register to perform a collisional phase
gate at each site.

We presume that the |0〉 and |1〉 clock states will have
different scattering lengths for their interaction with the |↑〉
state of the head atom and, thus, a different mean-field
interaction. The transport lattice will be moved in such a way
that the head atom will remain onsite with each clock atom for
a sufficient period of time to produce a relative phase shift of
π [16]. This generates the entangled wave function

|	2〉 = 1√
2N+1

[∑
p

|p〉|↓〉 +
∑

p

(−1)kp |p〉|↑〉
]

,

where kp = ∑
j pj , p = ∑N−1

j=0 pj 2j (i.e., it is the number of
raised bits in the binary representation of p). By applying the
Hadamard gate to the clock register we obtain the GHZ state

|	GHZ〉 = 1√
2

(|000 · · · 000〉|↓〉 + |111 · · · 111〉|↑〉).

The entire procedure may be considered a generalized π/2
pulse in the space of maximally polarized states.

As in traditional Ramsey spectroscopy, we let the GHZ
state evolve freely for a time T . In the rotating reference
frame, a phase χ = (N�ω + �ω′)T is accumulated during the
free evolution. Notice that �ω is the detuning for the optical
clock frequency, while �ω′ is the detuning for the microwave
transition of the head atom. Therefore, �ω′ � N�ω. Finally,
we repeat the generalized π/2 pulse, arriving at

|	final〉 = |0 · · · 0〉
(

cos
χ

2
|↓〉 − i sin

χ

2
|↑〉

)
,

where the N -enhanced phase is encoded into the state of the
microwave head qubit.

For readout of the clock, the state of the head qubit can
be read directly via laser-induced fluorescence. In the event
that the light collection efficiency is insufficient to read out the
state with high efficiency [22], the state of the head atom can
be transferred to many alkaline-earth-metal atoms (as done
in the first stage of the entanglement algorithm) for efficient
readout.
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We start with a detailed analysis of the transport lattice,
which dictates the choice of the head atom. We introduce
the fractional intensity misbalance for the two circularly
polarized sublattices of Eq. (1): δ ≡ (E2

+ − E2
−)/(E2

+ + E2
−).

This misbalance does not depend on atomic properties, and
|δ| � 1. For the clock atoms, the minimum depth of the optical
potential—which occurs at ϕ = (n + 1/2)π , or positions (b)
and (d) in Fig. 1—is proportional to |δ|. However, the larger
|δ| is, the weaker the lattice becomes for one of the head-atom
states. The fixed value of δ = +1/4 is used in all the following
calculations.

We further introduce a ratio of the vector and scalar
polarizabilities,

ρ = M

2F

αa
F (ωm)

αs(ωm)
. (4)

The ability to translate the |↑〉 state while holding the |↓〉
state stationary is determined by this ratio. For example, for
ρ↑ = −1, U+

0 = 0 and the atom does not see the stationary
σ+ lattice. Similarly, for ρ↓ = +1, the atom has no coupling
to the moving σ− lattice. In general, for a positive value
of δ, we must satisfy the criteria −1/δ < ρ↑ < −δ and
ρ↓ < 1/δ or ρ↓ > δ.

Qualitatively, for the head-atom transport, one needs
|αa

F (ωm)| ∼ |αs(ωm)|. It turns out that, at the magic wave-
lengths specific to divalent atoms (see Ref. [23]), none of the
commonly used alkali-metal atoms satisfies this constraint.
Alkali-metal atoms have the nS1/2 ground states, and the vector
polarizability (rank 1 tensor) arises only due to relativistic
effects. Fortunately, atoms with nP1/2 ground states (group
III) have large vector polarizabilities. Aluminum is a suitable
choice for the head atom.

27Al has a 3p1/2 ground state. The nuclear spin of 5/2
gives rise to two hyperfine structure levels: F = 3 and
F = 2, separated by 1.5 GHz. Cooling Al has already been
demonstrated [24] with the goal of atomic nanofabrication.
The laser cooling was carried out on the closed 3p3/2−3d5/2

transition with the recoil limit of 7.5 µK. Once trapped, the
atoms can be readily transferred from the metastable 3p3/2

cooling state to the ground (head) state. Lattice-trapped Al
was also considered for quantum information processing [25]
and for a microwave lattice clock (microMagic clock) [21].

To evaluate the dynamic polarizabilities for Al, we em-
ployed ab initio methods of relativistic many-body theory.
To improve on the positions of atomic resonances, for low-
lying energy levels we replaced the ab initio energies with
experimental values. The resulting dynamic polarizabilities of
Al are shown in Fig. 2.

We focus on the promising case of the Sr “blue” magic
wavelength [26] at λb

m = 389.9 nm. Here the clock atoms
are confined to minima of laser intensity, reducing photon
scattering. Scalar polarizabilities are αs

Sr(ωm) � −470 a.u. and
αs

Al(ωm) � −340 a.u. 27Al offers many viable |F,MF 〉 states
to implement transport: |↑〉 = |2, 2〉, |3,−3〉, or |3,−2〉 (ρ ≈
−0.84, −1.25, −0.84, respectively) and |↓〉 = |2,−2〉, |3, 3〉,
or |3, 2〉 (ρ ≈ 0.84, 1.25, 0.84), for example. We choose
|↑〉 = |3,−3〉 and |↓〉 = |2,−2〉.

Due to λb
m being “blue-detuned” for both Al and Sr, the

atoms are confined to regions of intensity minima. While
the transport lattice provides axial confinement, the radial

FIG. 2. (Color online) Dynamic polarizability of Al as a function
of lattice laser frequency. All values are given in atomic units.
Marked points on the plot correspond to magic wavelengths for clock
transitions in divalent atoms [23,26].

confinement is provided by two transverse blue-detuned magic
lattices with polarization parallel to the transport lattice’s
k-vector (to avoid interference with the transport lattice).
The transverse blue lattices create a series of tubes [27],
each containing a transport lattice. This provides tight radial
confinement and enables many transport lattices to be run in
parallel. We note that to prepare the initial states in the resulting
three-dimensional (3D) lattice, both species can be prepared
in the ground vibrational states of individual lattice sites using
3D Raman sideband cooling [28,29].

The depth �U of the optical potentials is criti-
cal, as it determines the rate of unwelcome diffusion
out of sites [8]. The depth varies with the displace-
ment phase ϕ. For our choice of |↑〉, the depth is
weakest when it is on-site with Sr. At this maximum-
overlap position, �U (|↑〉) = 2ILπ/c|αs

Al(ωm)|(1 + δρ↑) and
�U (clock) = 2ILπ/c|αs

Sr(ωm)|, where IL = c
8π

(E2
+ + E2

−)
and c is the speed of light. We require �U > 5ER , where
ER = (2πh̄/λm)2/(2M) is the recoil energy for an atom of
mass M . This translates into a minimum intensity of IL ∼ 20
kW/cm2, determined by the lighter Al.

The number of clock atoms which may be entangled will
be limited by decoherence and phase-gate times. The main
sources of decoherence are anticipated to be inelastic collisions
between the clock atoms and the head atom and light scattering.

The decoherence rate due to the photon scattering is τ−1
h =

η 8π
3c4 ω

3
m|αs(ωm)|2IL. Here η ≈ 1/2

√
ER/�U is a suppression

factor [8] accounting for atomic wave functions being centered
at zero intensity. We find τh ≈ 10 s for Sr and τh ≈ 8 s for Al.

To estimate the time required for a phase-gate operation,
we note that the interaction energy of two particles in over-
lapped ground states of independent 3D anisotropic harmonic

potentials is given by δE = 2ascatt
m

√
h̄
π

∏
i=xyz(mω)1/2

i , where
ascatt is the scattering length, m is the reduced mass, and (mω)i
is defined analogously to the reduced mass where ωi are trap
frequencies.

The axial trap frequencies may be determined from the
aforementioned parameters (IL, δ, etc.) at overlap. The radial
trap frequencies are determined assuming the transverse lat-
tices are operated at the same intensity as the transport lattice.
Estimating the difference in the excited- and ground-state
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scattering lengths to be ascatt ≈ 100 a.u. yields an estimated
gate time of τ ≈ 20 µs and a transport time of τ ≈ 10 µs.

With the pessimistic assumption that a single photon-
scattering event will decohere all the clock atoms, we expect
that, within each 1D lattice, one would be able to put ∼103 Sr
atoms into the maximally entangled GHZ state with high
probability. This would enable a reduction in the projection
noise of lattice clocks. Moreover, we note that many of
the usual requirements for producing highly entangled states
between atoms—such as single-site addressability, single-site
readout, and unity site occupation—are absent in this scheme.

Possible improvements would include the use of entangled
states less sensitive to photon scattering as a source of
decoherence. Moreover, it is possible that combining these
techniques with more sophisticated gate operations could lead
to the development of a full quantum computer. In that case,
error correction techniques could potentially be used to further
increase the number of atoms while maintaining high fidelity.

But even without these improvements, we note that this
scheme occupies an interesting “middle ground” of experi-

mental schemes for clock entanglement. It holds promise for
use with larger numbers of atoms than have been demonstrated
to date with ion traps. And while it cannot entangle samples
as large as those used in spin-squeezing experiments, it may
be able to produce greater levels of entanglement.

Unanswered questions remain, such as the value of the
Al-Sr scattering length (which determines the gate time) and
the rate coefficient for inelastic Al-Sr collisions (which is
an additional source of decoherence). With three naturally
occurring bosonic isotopes of Sr, it is likely that a favorable
scattering length can be found. The inelastic rate is unknown,
but we note that measurements of Al-group atoms in the 2P1/2

ground state have shown slow hyperfine relaxation in collisions
with J = 0 noble gas atoms [30].
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