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1.1 Nonrelativistic quantum mechanics

Schrodinger equation:
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Linear momentum

p = —ihV
Probability current density
(T(p¥)" + ¥'p

|
‘]_2m

Time-evolution of expectation values

d

’Lh%

(F)t = ([F, H])¢ + il
Commutator identities
[pi; 5] = —ihdy;

1.2 Harmonic oscillator

2
1
H = 2an + §mw2x2

E,=hv(n+1/2)

mw\1/4 1 mw
‘djn> = (ﬁ) \/ﬁHn (.73 h) exp |:

Creation and annihilation operators

v)

oF

ot )t

I L G
“ 2h . zmou)
h
T = 2mw(a+aT)
p=t m;w(@T*a)
aln) = /nln — 1)
afln) =vVn+1jn+1)

1 n
W‘i,(‘ﬁ) |0)
n!



Various matrix elements

(n|x|k) = \/7{\/>6kn 1+ \/mék n+l}

(n|z?|n) = — (n +1/2)
(n + 2|2%n) = i% {(n+1)(n+ 2)}1/2

(n— 2a?ln) = = n (n— )}

1.3 Feynman diagrams and propagators

Solution through the propagator
v )= [ Drla!tiw,0)(z0)

Free particle propagator

m m(z’ —z)?
Dg))(x',t;m,O)ze(t)HQMt exp <z ( 5 ) )

Feynman path integral

Dp(2',t;2,0) = /D[x(t)] exp ZS[S;L(t)]

summation is over all paths x(t) connecting the initial (z,0) and final (2/,¢)
points, S[z(t)] is a classical action along a given path x(t)

S[z(t)] = /: dt (;mi2(t) — V(x(t)))

Spectral decomposition in terms of H eigenfunctions :

Dp (2, t;2,0) Zq’)n On e Ent

The transition amplitude Amp,; = (f[U(t,0)|i) is expressed as a sum of all
possible pathes :

In this picture :
to
@t = exp(=iBa(ts— 1))
t



and each vertex is associated with

W = CoVied

a

For example the second order expression is

Amp) (1) = >~ /o /0 e =0 () Vydty e~ Fa ) (i) Yy, dtge Fr (1)
a

1.4 Pauli matrices (s =1/2 )

(0 1\ . [0 —i . (1 0
=\ 1 0 ) T\ i o =0 1

Identities with Pauli matrices

005 = 05 + €410k
(c0-A)(c-B)=(A-B)+ioc(A xB)

o(c-A)=A—i(o x A)

(0-A)o=A+i(o xA)

Rotation matrix [active rotation about axis 7 on angle ¢]
Ugr =c0s? —in - osin —
2 2
Density matrix p = |x) (x| and polarization vector P = (x| o |x)

p=50+(FP 0))

N | =



2 Dirac equation

Hp =ca-p+ pc+V(r)
(2 2) -3 )
Current density (Below ¢ is a charge, for electron ¢ = —|e|)
jr)= qc/\IITaé(r — ) Wdr’
Interaction with the EM field

Hy = —qco-A+q¢

2.1 Four-vectors

Contra-variant symbols
co-variant symbols

with metric tensor

Contraction (Lorentz invariant)
A'B,, = A,B" = A,B,n,, = A°"B" — A -B

Momentum operator

0 0
H -7 —— =1 H =9 H — _—
pl =1 oa, 10" =14V ? (31&’ V)

0" A, is a Lorentz invariant.



2.2 Dirac matrices

[ laxg O i_ (0 o
w=(0" . ) = (% )

Y+ =2
¥5 = —iy"y'y?
i

2

v

ot ", "]

v5 differs from Ref.[BD64] by the ”-” sign. Slash shorthand
f="a, ="A" - A

Dirac equation (spin 1/2)
(tp—eA=m)¢(z) =0

Klein-Gordon equation (spin 0)
{(z’c’) — cA), (i0 — eA)" — m2} ¥ (2) =0

3 Units and conversions
Fundamental constants

i = 1.054571596 x 1073* J s

h = 6.62606876 x 1073* J s
me = 9.10938188 x 103! kg
le] = 1.602176462 x 1072 C
kp = 1.3806503 x 1072% J/K

e2

= — =1/137.03599976
@ he /



Atomic units m, =h=le| =1

h2 .
ayp = —— = 0.529177249 x 10~ %cm ~ 0.5A

mee?
1fm = 10" Bem = 1.88973 x 10 °bohr

lbarn = 1072® m?

1
=1 a.u.(Gaussi
Tney a.u.(Gaussian)
Z—; = o? a.u.(Gaussian)
Ro1

" = ‘267|ne = 5au Bohr magneton (in SI)

e[ _ a : :
U = = —a.u. Bohr magneton (in Gaussian)

2mec 2

la.u.of time = 7/ F}, = 2.4188843265 x 10~ '7s

>
®
I

=2.4263 x 107'%m Compton wavelength
meC

pSd
o
I

p— ~ 386 fm reduced Compton wavelength

62 12 V .
F = — =10.51422082 x 10"“— Electric field
m

ao
E
B = ” *; o= 2.350518 x 10° tesla = 2.350518 x 10° Gauss Magnetic field
0
Energy:

2

1Hartree = laaw. = — = 43597438110 x 10187
agp

1Rydberg = 0.5a.u.
Lem™! = 4.556335252750(35) x 10~ %a.u.
leV = 3.67493260(14) x 1072 a.u.
1K = 3.1668153(55) x 107° a.u.
lem™t = 1.4387752K
la.u. = 6.579683920735(50) x 10'5Hz (Notice that this is v not w = 27v)

EM Fields and laser intensity

2
S = S = m?e /h* = 5.14220826 x 10° V/em
ao
Ep

B= =2.350518 x 10° tesla Magnetic field
eapac

Iy =& = XXX W/cm?

10



Conversions :

o 2me 455.634
A)=aqp—— x 108 = — "7
AA) = ao AFE(a.u.) x 10 AFE(a.u.)
45.5634
Alnm) = AE(a.u.)
11
-1y _ o+ L _
Aem™) = o 271_CAE(aLu) 219475 AE(a.u.)

Misc units

1 Tesla = 10* Gauss
my, = 1836.1526675 m,

3.1 Natural units
h=c=1,in QED in addition m, = 1.

3.2 Systems of units in electrodynamics

After Ref.[GR02], Supplement 4.2.
Three system of units: Gaussian, MKSA (part of SI), and Heaviside-Lorentz
("rationalized Gaussian system"). Coulomb’s law:

q192

F= k1r73r
ES =1
EMESA _ 1
! 47‘(50
1
pHD —
! 4

if the unit of charge is fixed (it depends on a system of units), then the k; is
defined from mechanical force.

Ampere’s force law
= kg//dTldT2J1 a J2 % I'12)

Units of charge density and current density are related via (system-of-units-
independent) continuity equation

. Op _

11



The convention is to fix ky ke = c?, leading to

1
G _
ky = 2
KMESA _ %
1
kHL —
2 47c?

Lorentz force on a moving charge
F:q(E—f—ng XB)
c
fixes units of electric and magnetic fields.

kS = kit =1

KMKSA _
The Maxwell’s equations
V-E =47nkp
V-B=0
VxE= _ks 9B
c Ot
4’/Tk1 1 8E
ksV x B = j+ ——
3V X + c Ot
Units of electric and magnetic potentials k§ = kK54 =1
ks OA
E=-Vo—-——
L™
B =Fk4V x A

4 Atomic Hamiltonian

Non-relativistic 1, 7 1 )
H:_EQV _;E+5%:E‘

Relativistic

1 1
H= Z (Cai'pi + IBiCQ + VHUC(”)) + A++§ Z 7.A++
K3

Ti
ij 3
Breit interaction - Static limit .

1 R R
bia=——(aq - ag +aq - F12 as - F12)
27’12

12



Alternative representation:

1 1
B=—(o- 042)@ - 5(041 -Vi)(az - Va)ris

Here the first term - Gaunt interaction, the second - retardation interaction.

4.1 Partial wave expansions of 1/r» and 7y

Coulomb interaction:

d l
r A
= E l+1 6050 E l—fl (7 ) Cl—m( 1)C£n(r2)
295 im >

r12 is useful for Breit interaction expansion. This expression has been obtained
from 10.1.46 of [AS74].

— 1 7ﬂl<+2 1 Tl< Ol Cl ~
T2 = ZZ 20+ 3 Tl>+1 - 29 —1 rl>—1 ( ) —m( 1) m(T2>

m

4.2 Angular reduction of Coulomb interaction

gabcﬁz(—l)”(—l)jamﬂ( o e () Xt

—mg M m,
IRy, a c d

Z Cleme  fCFNTE X1 (abed)

\/7 ]rmr,L]W LM, jpmyp

Yabed = Z G_MfXL (abcd)
L
c d

Here the Coulomb integral is

or

X (abed) = (=1)*(kal O |ic) (s3] || Kg) R (abed),

Ry (abed) being the Slater integral

L

Ry (abed) = /O°° dri[Pa(r1)Pe(r1)+Qa(r1)Qc(r1)] /OOO drz%[Pb(Tz)Pd(T2)+Qb(T2)Qd(7‘2)~

The anti-symmetrized combinations guped = Jabed — Jabde are reduced in a similar
way, except Xy (abed) is replaced with

gabcd - § a_ L _:)ZL(ade)a
L
c d

13



with

Zr(abed) = X (abed) + [L] Z {
T

b d L
a ¢ L }XL/(bCLCd)

Symmetry properties of X; and Zj

Zy(abed) = (—1)20retd 7, (cdab)

Recoupling

~

ztiim) =W L L i)

L’

otk ,
CU S~ ) 2 i)

Zr—o(ijkl) = 65 (5,1) 6 (k,i
L=o(ijkl) = 0,5 (j,1) 65 (K, 1) A >

Special case L =0

Xr—o(abed) = 0y, 1. 0nyk0V [a) [96) R (abed),

: . _1 btc+L’
Zr—o(abed) = 6y, O,y [l b Re (abed) + ()Mabdéwxy (bacd)
L/ b
5 Hydrogenic ions
5.1 Non-relativistic hydrogenic ions
Wave function: )
¥(r) = P(r)Yim (7) 5
Radial equation:
d*p I(1+1)
2B V() — ~S )P =0 (6)
Z2
=50
3n?
{r)~ <~

14



5.2 Relativistic hydrogenic ions

Wave function are represented as Dirac bi-spinors :

o= (i )L o

P(or G) -large , Q(or F) - small components. Notice that the notation G/F is
reversed compared to traditional textbooks. Further, the spherical spinors €.,
are coupled spherical harmonics Y}, (#) and spinors x,, of spin 1/2.

Qnm = Z C(la 1/2aj; m — [, W, m)yvl,m—uXu'
“w

The radial Dirac equation

(V (r)+ CZ) P (r)+c <(jf“ - :) Qnr (1) = €nnPrs (1)

(4 Pan 1)+ (V ()= ) Qu (1) = 0@ 0

with the normalization
o0
[ o+ eja-
0

In the non-relativistic limit (Pauli approximation)

1 /d «
nk ~ —5— |\ 7= - Pn/i-
@ 20<dr+r>

Hydrogenic ion energy levels:

c? , Z% a?z4

~
~

T VI @2(tn—k2 2 o

Eny, (1/k =3/(4n))  (8)

with v = \/k? — (aZ)2.

Kk, relativistic angular quantum number: |s| = 7+ 1/2,xk < 0if j =1+
1/2,k > 0 if j = | — 1/2. Another form x = (j+ 1) (=1)7+H+1/2 or i =
(I—7)(2§+1). Notice K (k+1) =1(1+1).

J K|l J K
1/2 -1
1/2 1| f 5/2 3
3/2 2| f T7/2 -4
3/2 2|g 7/2 4
5/2 -3|g 9/2 -5

LAV »|~

15



5.3 Atomic wave-functions in the limit » — 0

(After [Dra96] Ch.22, notice different convention for P/Q definitions. Here we

use the definition (7)). Here the energy F excludes the rest mass energy mec”.

Finite nucleus. For x < 0

PH ~ pOTlJrl
QK = q1rl+2
;% = —(E+21)/(c(2l+3))
and for k > 0
P, ~ pyritt
Qn = Q()Tl
D1

“© =(E+2Z1)/(c(2l+1))

Here Z; is the expansion coefficient in

Vi) = — Zﬁr)
Z(r)= Z Zpr™
n=0

For a uniform distribution Z; = 0.

5.4 Scalings

2

Non-relativistic energies in the nuclear Coulomb potential | Z2

e-e Coulomb interaction Z

Relativistic energy corrections (a2)%2?

Relativistic corrections to e-e interaction (a2)*Z

Breit interaction caused by transverse photons (a2)*Z

QED effects (Lamb shift) (aZ)3Z

Virtual pairs (aZ)3Z or sometimes (aZ)?

5.5 Matrix elements

see Bethe and Salpeter

3 12 —m?
1—1 L. m) = ——nag\/n? — 12 -
(n, ,m|zn,l,m) 570V n X S

16



6 Hartree-Fock equations

One typically distinguishes between “restricted” and “unrestricted” Hartree-
Fock method. The unrestricted HF is the method when the many-body wave-
function is approximated by a Slater determinant composed of single-particle
orbitals. When the energy functional of the system is minimized with respect to
the shape of these orbitals, one obtains a set of coupled equations (Ref. [Mer98])

Var |m) = Z Ip) Z (pa| V' |ma) — (pal V' |am))

agocc

(T + VHF) |’ITL> =Em |m>

The restricted HF (traditional in atomic physics) in addition assumes the central-
field character of the resulting potential, so that the orbitals are the eigen-
functions of the total momentum operator J and J, (nonrelativistic and rela-
tivistic) and only the radial components are varied.

Non-relativistic equations, closed-shell system:

1d%P, Z ., +1
(i 2 el

) Pu(r) = caPu(r)

2 dr? 2r2
Here
VHFP(T’) = VdirP(T) + ‘A/;XCP(T‘)
Vair P <2Zlbvobr> P(r)
Vexe P, (1) = =2 Z lv) ZAlbLl,,, v (b, a,m) Py, (1)
b L
1/l L &)\
A, = 3 ( 0 (I)’ )
v (a,b,r) = / dr' ( z+1> P (r') Py (')
0
> ’ 1 |2
vo (a,7) = / dr'—|P, ()]
0 r>
Relativistically
2
3 —
AnaLnb = < _]1/2 1.7/1)2 0 ) II (la + L+ lb)
0
An Ky — H?Nb
0%

For a valence system the potential is taken as the frozen core potential Vg
Frozen-core Hartree-Fock
VHF Z gza]a .

agccore

17



Angular reduction (relativistic case):

(Vi )y = 2 > V0l Zo(iaja).

[Z] agcore

6.1 Multi-configurational Hartree-Fock (MCHF)

Multi-configurational Hartree-Fock. A number of configurations is mixed with
coefficients. Minimize the energy, both radial functions and mixing coefficients
are subject to variations.(CI varies only mixing coefficients - the basis set must
be complete )

7 Coupling to EM field
Gaussian
V=—¢q (a : AG)

SI
V=—¢ (a . ASI)

An interaction of an electron with EM field (here e > 0). We use SI/MKSA
units
Vi =ce(a-A(rt)) —ed (rt)

For EM wave in the transverse gauge, the scalar potential ® = 0, and

VL =ec(a-A)
with

1 . .
A= iéLAoelkreﬂwt + c.c.

and the corresponding amplitude of the electric field Ey = Agw/c.Or
1 .
Vi = ecAoit (w,r)e ™ +c.c.,

where we introduced _
t(w,r) = (a-&r) e

This quantity may be expanded into multipole series (notice that WRJ omits

the complex conjugation of the vector spherical harmonics)

o) =dn 3047 (Y W) &) i

Here A = 0 for magnetic and A = 1 for electric multipoles and irreducible tensor

operators T](\j Nof rank J are related to the multipole operators as

y (I T+DN R oy
TM =1 qM
dmJ (27 + 1)

18



Notice that the operators qg\;[])‘) do not include charge! For example for E1 in

atomic units and for the electron,
1y _ . k K
T =3 ry = —i D
M Vo M Vor M

Specialized expression for our geometry: z-axis along wavevector k. Then
for A =0, 1, the non-vanishing components are

(Y‘(’Aj\)/f (éz))* = (eu)” giﬁ] 8 { (—1;i+1 % z —7—1

)

Further for linear polarization along the z-axis,

(YS>E\Z[ (éZ))* 8y = %

Length-form for electric multipoles

X ((71)A dpa + 5M,—1> 9)

(a5 = (sllColls) x [ 17 dr{GiG + FiFy)
0
Magnetic multipoles, long-wavelength approximation
(illg =0y = T

S nlClleg) % [ dr (G £ FGy)

7.1 Matrix elements

The theory of multipole moments can be found in the WR.J book. Limit z — 0
for spherical Bessel functions

. z"

()~ G

Electric-multipole transitions, long-wavelength approximation.
Length-form

(llaslli) = (rllCollws) [ rdr(GiGy + B,
0
Velocity-form ( absorption process, w > 0 )
‘ L_C >~
(illgslg) = E(M‘HC.IH’%‘> X/o r’ ldr{(ﬁj—/ii+J)GiFj+(l€j — ki —J)F;G,}.

Magnetic multipoles, long-wavelength approximation (2c is alredy taken into
account)

Ki+ Kj
J+1

in the non-relativistic limit

(@M ]l5) = 2¢

<—I<Li||c.]||/€j> X / TJdT‘{GiFj + FiGj}7
0

(a[|Ma]|5) =~ —% (ki + £5) (i + k5 — 1) (k4| |Ch]|r;) /OOO dr P; (r) P (r)

19



8 Rate formulas

Transition from state |a) to state |b)
o
P 30 —2 [J:] 2.1410 x 10"° {w (a.u.)}?

= |{allr[b)[?

5 SE! s _ 2.02613 x 10** SH!

Au ] OA)F Ta]

1/s

Here AP!, is Einstein A coefficient for spontaneous emission, S - line strength
expressed in atomic units.

8.1 Black-body radiation
The average electric field radiated by a black body at temperature T

T<K>r

(€%) = (831.9 V/m)? [300

9 Complex multi-electron atoms
9.1 Correlation Effects
1. Correlation effects decrease with Z.

2. Correlation effects decrease with n.

9.2 Coupling Schemes
9.2.1 L — S-coupling

For states formed from identical orbitals (e.g. (1s)?) L + S must be even.

9.2.2 j — j-coupling

For states formed from identical orbitals (e.g. (1s)?) J must be even.

9.2.3 Connection between j — j and L — S coupling

The transformation matrix from LS states coupled to J to j; — jo states coupled
to J:

TLSJl:jz = <[(l17 12)L7 (‘917 SQ)S}JH(ZD Sl)jh (127 SQ)jZ}J> =

li s L
[LaSajla.jQ] S1 52 S
g J
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9.3 Hund’s rules

Allowed terms for equivalent electrons (Landau-Lifshitz v.2)

configuration term

52 1S

p,p° ’p

p2’p4 19p 3p

p3 2pp 48

d,d’ D

a2, ds 1SDG 3PF

d3,d’ PDFGH “PF

d*, d° 'SDFGI 3PDFGH °D
d® 2SPDFGHI *PDFG ©¢S

10 Radiative corrections

Vacuum polarization. Uehling potential for a point-like charge

UbS (r) = 2oz dtW( 2t4>exp {—2;1&} . (10)

3n r J;

This potential has to be folded with the nuclear charge distribution,

Uvyp (7 /dr pouc(|r — ¥ ) UGS (') .

We approximated ppuc(r) with the Fermi distribution. Routine from Ref. [Hni94|
is useful in numerical evaluation.

0.00

-0.02
> -0.04-
=
= -0.06-
g
]
-0.08

-0.10+

T T T T 1
0o A 10 20 30 40 50
r, fm
nuclear radius
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11 Perturbative Approaches. General Formalisms
11.1 Textbook results (non-degenerate case, time-independent
PT)

Corrections to wave-function

(0) '(/Jk |V \ ¢ >
Z W} (0) (0)

Vit Vin ) Van Vien
ZZW’(O) ( (O)E,(fol)c; (l (¢ ) ZW’(O VN —El;k 2

k#n l#n

Corrections to the energy

E’I(Ll) = Vin

Vi Vie
5@ }: _ 'nkVkn
n 0 0
& B — B

Vi Vit Vi ViV,

3 nmVYmkVkn nmVYmn

B =2, O 20 (20 O 2 ©0) _ ()
el (Em .y )(Ek — g ) = (Em _ )

11.2 Dalgarno-Lewis method

Consider second-order correction to the energy

SE@ = -3 <\D0|V|;k><‘lge\‘/\\llo>
k— Lo

k

Introduce 1
|0W) = zk: m\‘l’k><‘1’k|w‘l’o>

Then
SE® = —(W,|V|6T)

Multiply by (HO — E0>
(0= 20) 99) = 32 5= (o~ ) [0y 0V 1)

=) W) (W |V [ W) = V[To)
o

i.e. one may solve an inhomogeneous equation for the correction
(1—}0 - Eo) 6T) = V| Ty)
and find the correction to the energy as

SE® = —(W,|V|6T)
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11.3 Time-dependent PT

11.3.1 Interaction picture
The Hamiltonian is split into two parts H = Hy + V (¢). The traditional
Schrodinger state |1 (t)) is transformed as
[ () =U @) ¢ #)
with _
U (t) = exp (;HM)

The modified S.E.
L d ~ o N
th v () =V @) ¢ (1)

V() = U@V 6 U () = exp (;Hot) V () exp <—;H0t>

The first-order probability

2

—— [ Vis () e at!

Z' t
Per)= |

11.4 Brillouin-Wigner (BW) vs. Rayleigh-Schrédinger (RS)
Advantages of BW vs RS:

1. Since the energy denominator contains E — E, (F is an exact energy)
instead of E, — FEg of RS there is no blowing up terms in the case of
(accidental) degeneracy.

2. The obtained matrix elements satisfy hermicity condition (a|Opl|b) = ((b|Op|a))*
, the RS, in general, does not have this important property.

3. £ Unlinked terms should disappear since they do not have correct linear
dependence on the number of particles in the system.

Advantages of RS vs BW:

1. Each order of energy has the right linear dependence on the number of
particles in the system, unlike BW.

2. For ¥V terms of RS there is a unique correspondence to diagrams.

3. No need to know the exact energy E a priory as in BW.
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11.5 Rayleigh-Schrédinger

Non-standard 0-order approximation: model space (P-space) to build a per-
turbed w.f from degenerate(or nearly degenerate ) basis. Possible criteria for
inclusion in P is a ratio of the matrix element of V' to the energy difference.
If the ratio is large ()1), then the PT would diverge, so try to treat more ex-
actly by including in P-space. Remaining functional space is labeled as @-space
(orthogonal space). Corresponding projection op.:

P=> la)al, Q=188

aeP BEP

Let d be the number of w.f. in the model space. Exact to model function
mapping ¢, = Pt,, {a = 1,d}, model to exact 1, = Qp,.  is a wave
operator. Correlation op. x : =1+ x.
Below {«, o, ...} span P-space, {8, f',...} - Q-space.
Useful identities:

(a|Qa’) = da,ar, (alx]a) = 0.

Vi = ¢i + Z<5|X|¢i> -1B)
B

11.5.1 Generalized Bloch Equation
[Q, Hy|P = QVQP — xPVQP

if the P-space is completely degenerate < original Bloch eq.:
(Eg — Hp)QP = QVQP — xPVQP

Two approaches (power of V' expansion or iterations ) to perturbative solution:
1.Order-by-order: Find an §2 expansion in powers of V'

QO=14+4004+0® 4 .

Gives
n—1

[Q(n)7 H()]P _ Qvﬂ(n—l)P _ Z Q(n—m)Pvg(m—l)

m=1

2. Iterative. Start with Q =1
[Qn+1), HolP = QV Q)P — X(n) PV Q) P

Explicitly orders-by-orders for V-powers solution:

W)y = BV
(812 |a) e B
0@1q) = (BIVIB") BV ]e) __ BIV]o ) |V ]y
(G =2 (Eg — E3)(Eg — Ey) 2 (Ey — EQ)(ES — Ef)

o’

B/
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11.5.2 Effective Hamiltonian

The eigenvectors of the effective Hamiltonian represent the model functions, the
eigenvalues are the exact energies of the exact w.f.

Hey = PHQP , Herpos = Eig;

The practical approach is to find the x(), build the second-order effective Hamil-
tonian:
HG) = P(Hy+V +VXW)P

and solve the eigenvalue problem in P-space to find the second order energies.
(Hi = E®)la) =0

The Hcyy is, generally, non-hermitian. The first order corrections disappear if
V = 1/7“12 — UHF'

11.6 Brillouin-Wigner

One has to know an exact energy F in advance, this leads to a necessity to carry
out the energy expansion self-consistently.

(Ho+ V)Y = Ev

We know the spectrum of Hy - a set of { ¢, Eé 1.
Projection operator P with respect to the reference function ¢y - zero order
approximation:

P = [¢o) (o]
the rest of the space is spanned by @Q-operator: @ =1 — P.

11.6.1 Wave Function

Intermediate normalization: (¢o|)) = 1. Recursion relation for the exact w.f.

(]
Y =q¢o+TVY

Ty = E_LHO is a resolvent. The expansion is obtained by iterating the above

relation.
Q ,. Q@ , Q

-1
v (+E7% E—H, E—H,

V + .)do

or by orders

PO = ¢y,
1) _ " 195)(051V o)
b ; BoE

Z |65) (D5 |V o) (Dr|V |do)

7,k#0 (E EJ)(E EO)

Also ¥ = Qg¢g, where wave operator Qg satisfies Qg =14+ TpVQE
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11.6.2 Energy Expansion

E = Eo + (¢0|VQr|¢o)

Def: "Effective interaction” Wy = VQg. It has the same result acting on ¢q
as V acting on ¢ : Wgog = V.
n-th order of energy expansion:

(n) Q n—1
ET = (¢o|V <E — H0V> |$0)

or explicitly

EM = (¢0[V|g0),

52 _ Z <¢O|V|E¢i><%i|‘/|¢o>
]

i£0
12 Second Quantization for Complex Atoms

12.1 Anti-commutators:

12.2 Physical operators

One-particle operator

F=>"(k|fll)a}a
kl

Two-particle operator

1
G = 5 Zgijklaja;alaka
ikl

here

Giji = (ijlglkl) = /d37‘1d37"2¢2(7’1)¢;(7"2)9(7“12)%(7’1)%(7"2)
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Any two-particle operator B can be represented as a sum of zero-body B,
one-body BM and two-body B® terms.

1 -
B(O) = 5 Zbababv
ab

BM = Z <Z Biaja : afaj e

j

1
B(2) = 5 Zbijkl : aja;alak .
igkl

12.3 Notation for subscripts

e ab.c,d ...- core orbitals;
e m,n ...,rs - excited (virtual) orbitals, including valence;
e v,w ...- valence orbitals;

e ij... .kl ...- any orbitals;

aiore|00> =0 ) aVirt|Oc> =0

12.4 Normal form of Operators :A:

The operators are rearranged so

T

vir

n

core AN Qyirt

Acore and a ;. appear to the left of a

The operators in normal form give 0 when acted on core.

12.4.1 Wick’s Expansion into Normal Products
A=A:+:A:

: A : is the sum of normal ordered terms obtained by making all possible single,
double, triple ... contractions within A. Contractions are defined as Ty = xy— :
xy .

The sign of : A :is (=1)? (p is a number of permutations to bring A in normal
form). Same rule holds for terms in : A : - we count permutations necessary
to bring the contracted operators together + the permutations to bring the
obtained term in normal form. Notice that moving a string of two operators
simultaneously does not change the sign of the total string.

The only nonvanishing contractions are

ama:rrz = 6mn; CLZCL[, = 5ab~

All contractors between core and excited states vanish.
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12.4.2 Wick’s Theorem for Operator Products
tA:-:B:=:AB:+: AB:

Here : AB : represents the sum of the normal-ordered terms with all possible
contractions between the operators in A and those in B.

12.5 Evaluation of Matrix elements in Second Quantiza-
tion
12.5.1 Real Vacuum

Operators in normal form : A : with respect to real vacuum:

All ag are on left side, all ax are on the right side.

Then : A : |0) = 0, provided there is at least one a; in A. Also (0| : A :=
0, provided there is at least one aI in A. Using Wick’s expansion in normal
products ( 12.4.1) we see that

(0]A]0) = terms w/o normal products

The terms w/o normal products are those where the maximum number of con-
tractions is achieved.

12.5.2  Quasi-vacuum [0.)

Rules for evaluating products : A :: B : |0,)
1. Several rules for evaluating (0.|A|0.).
(0c|Al0) = 0 if

1. the number of operators is odd.

2. the number of virtual orbitals is odd.

3. the number of core orbitals is odd.

4. the number of aiirt # the number of ay;r+.
5

. the number of af,,.. # the number of a.ore

core

After such selection one uses the Wick’s theorem. In the Wick’s expansion
only the terms w/o operators in normal form remain. They correspond to the
maximum number of contractions in A.

Suppose we deal with a matrix element containing two normal products: M =
(0] : A:: B:]0.). Then M = 0 unless the number of operators in : A : equals
that of in : B :. This fact immediately follows from the Wick’s theorem of
expansion of operator products.

When dealing with matrix elements of several operators in normal form the
following observation is valuable:

M = (0. :A: B:C:|0.) can be obtained by calculating only contractions
between : A:and : B: (or: B:and:C:) having a number of operators equal
to that of in : C': (: A:).
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13 Many-Body Perturbation Theory

Arrange the expansion terms according to the number of particles excited, in-
stead of powers of V. It allows for all-order treatment of the expansion.

13.1 Atomic Hamiltonian in Normal Form
The indexing scheme is def. in ?7.
H = H0 LV,

core + Z‘Ek : akak o

V:‘/core+Z(VHF_U)ij : D= Zgukl al a aay
j ’ijl
Here
Eore = Ze s Veore = Z[ QV,gF — Usa)
and

(VHF)ij = Z(gibjb — gibbj)

b

13.2 Wave Operator Expansion
General expression
1
*1+Z al NP p]Jr Z a alak pkl+3!z~“
zgk:l
For closed shell systems (explicit indexing)
= 1+Za Qqpy + = Za Tapaapls + - -

abr@

From PT one gets ( (k) superscript is the order of V) :

pr(l) _ (r|v|a)
@ €q — Er
rs(l) Grsab
ab €a+Ep—Er —Es

13.3 Random Phase Approximation

RPA (Random Phase Approximation) corresponds to shielding of the ex-
ternal applied field.
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& RPA
RPA __ 2 : b garnnb gaban b
Zan = Zan + m + — MY

Ep —Em — W Ep —Em tw

bm bm

Pt RPA
RPA bm gnmab gnbamZmb
Zna = Zna t+ E + —_—
Ep —Em — W 5 Ep—Em t+w
m

W= Ey — Ey

13.4 Brueckner orbitals

Brueckner orbital corrections correspond to valence electron polarizing the
core. Then the valence electron gets attracted to the polarized core, reducing
size of its orbit. Self-energy operator corresponds to core polarizability term in
the model-potential Hamiltonian

Qe
S(r'r) — ﬁé(r -r)

14 Angular momentum

14.1 Spherical basis vectors
(8-1—&41)

1
V2

. [ .

€y = /2 (-1 +&41)
&

and vice versa

From these definitions
(en)" =(-1"e_,

Notice that the scalar product (with complex conjugation)

However, the conventional scalar product does not include the complex conju-
gation.
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14.2 Properties of angular momentum

Jy = Jp +idy
J_=Jp =iy
Jo=(Jy+J-)/2
Ty = (Je — J_) [ (20)
[Jey J4] = +hJ,
[J., J_] = —hJ_
etz J+e_i"/¢]z — J+ei7

ez J_em e = J ™™

1
J? = 3 (JydJ_+J_J)+J?

Eigenvectors
J.|JM) = M|JM)
Tl TMY = {J (J +1) = M (M + 1)}"/? ], M + 1)
J_|IMYy ={J(J+1) = M (M —1)}"?|J,M - 1)
(JM|T|TM) = {J (J + 1) = M (M + 1)} 630 ara
(JM|J|TM) = {J (J + 1) = M (M = )} 60 02

14.3 nJ-symbols and Clebsh-Gordan coefficients
Properties of 3j-symbol

J1 72 73 o -
( mip M2 M3 ) x A (j1j273) 0 (m1 + ma + mg = 0)

Even number of permutations of the columns does not change the value of a
3j-symbol, while odd permutation introduces a phase factor of (—1)”* 172773,

J1 J2 J3 — (1)t Ji Ja 3
—m1 —T19 —ms myp Mmoo M3
Relation between CG and 3;j

J1 J2 J3 _ (_1\J3tms+25 1 Jjams
(ml mo M3 ) = (=1 mcﬂ'lfmljzfmz (11)

s (—qyintms \/[j3]< i s ) (12)

my m2 —Mg
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Special cases

(50 2)-C "
T A N A S A W 1 .
( 1) ( -m 0 m) {j(]+1) (2j+1)}1/2 (14)
gokod_ (25)!
( 0 ) {@I R kDD (15)
C;)loml jama = (_1)j1—m1 6j1j25m1,—m2\/%

JM s
leml 00 — 6JJ16m1,M

Properties of 6j-symbol The triangular conditions between the following
momenta must be satisfied

172 %00 %b0 %ol 0 0]

Columns may be interchanged freely, and also any two numbers in the bottom
row of a 6j-symbol may be interchanged with the corresponding two numbers
in the top row.

One of the angular momenta is zero

jl j2 j3 (71)j1+j2+j3 ) )
=-——5(j1,02) 0 (Jo,l1)
{ Lol 0 } [j1, jo]

Sum rules

Properties of 9j-symbol

J1 J2 Js
Ja Js Je
J7 Js Jo

swap of any two columns or rows leads to to a phase factor (—1)22:1“. It is
invariant under reflection through one of the diagonals. The following selection
rules have to be satisfied: i.e. we have triangles for each row and column of the
9j-symbol.

A (jl,j27j3) A (j4aj5aj6) A (j77j83j9)
A (41,71, J7) A (52, 35, J8) A (73, 6> Jo)
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Jima J2mz2 — 45 . 5
—— - 6.71.725’"111’772
Jjimi_ jema . jama2  Jimi _ (_1\J2—ma2g§. . §
—_— - —— - ( 1) 5j1]2()7m,1mz

Jama = —

JiooJ2 g\ _
mi Mz M3

W JM — i T _
Cslmy jams = C (1, J2, Jyma, ma, M) =

(1. | TP |2, ma2) = - R

14.4 Angular momentum diagrams

Wigner-Eckart theorem: or

. . i —m j k j . .
Gy [T oy ma) = (~1)7 ( ok g )<31|T’“||32> (16)

—mi1 q M2

14.5 Transformation rules

"+" to "F" and reverse vertex rules:

Jjams Jams
+ Jameo = (—1)71+y2+]3$ Jamo
Jima Jima
Jjsms Jjams

Jjama = jama F

Jimy Jima
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15 Spherical Tensors

Relation between extended (stretched) matrix element and reduced matrix ele-
ment

: ) GITEG

Lo )l
Coupling of spherical tensors: Similar to coupling of angular-momentum
eigen-states

o
GITS ) exe = (Gm = §|TE|im = j) = (_j J

Jimijama ml ma

{A(]l) ® B (J2 } Z cJM A1) gG2)

mi1msa

Recoupling formula (M = m; + ms)

, ) Jitj2 ) ]
A%II)B%? = Z C?1m1]2m2 {A(Jl) & B(]Q)}JJ\[ .
J=|j1—j2|

For spherical harmonics the above formula may be simplified

Y21m1 (97 ¢) Yl2m2 (6’ (b \/E Z (

lla l2

) O oG L Vit (6.9)

(17)
Scalar product and rank 0 tensor

(Aw .B<J>) — Z(— ) ACVBY)

(100 87} - O 40 30)

For vectors in particular: scalar product

{Au) ® B(l)}oo _ _% (Au) . B(1)>
vector product
{A(l) ® B(l)}m — % {Au) % B(l)L

tensor of the second rank

{A(l) ® B(l)} =AnBn
2,42

1
{A(l) ® B(l)} — (A41Bo + ApB41)

241 V2
1
(1) 1) _
{A ® B }270 \/6(A+1B,1+2A0B0+A,1B+1)
1
AV g B = (A_1By+ AyB_
{ & }27_1 \/5( 1Bo + AoB_1)
{Au) ® B(U} —A_B_,
2,—2
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15.1 Reduction Theorems
Following Edmonds [Edm85].

15.1.1 Tensor product of two tensor operators

/ ki ke K
(n'J'||(Tiy © i)l Ind) = VIK](=1)F 7+ Z{} 7 J"}

n!J

(' T[T |In"" I ) (0" J"|| T, || ])
15.1.2 Tensor product of two tensor operators acting on different
subsystems

T(k1) acts on part 1 of system, U(ks) on part 2. System angular momentum
JM is composed from jimy of part 1 and jams of part 2.

Ji o ki
(nyjr1naged ||(Th, ® Uky)k|InajinegeJ) = /[, ', KIS 5 j2 ko
J J K

(111 Ty | In11) (51| Uk, | Im272)

For scalar product

(7j172d2) TM||Ti - Uy || (V141745) I M"Yy = (=172 65 106 { iz 1 J

J2
(V31| TklIV171) (v2d2 | Uk l1v2Ja)

15.1.3 Tensor operators acting on subsystem 1

g -/ 7
<7’L/1jin/2jéJ/||Tk||TL1]17’L2_]2J> = (_1)J1+J2+J+k [J, J/] { {]1 ;I .7/3 }
1

(' 3111 Tkl [751) Oy, G5 s

. o o o
(NajarjazTal| Tkl [ nodorfsaJo) = (—1)Jertivatotk (7770 Jat da Jb2
oo g1k

(NaJarl|Tk|Inbge1)

In particular, for the electric-dipole operator

2
|<”/81/2||D||n101/2>’ = \/;|<n’s|D||np>|
/ 4 /
[(n"s1/2||Dllnp1/2)| = 3 [(n'sl| DlInp)]
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15.2 Various Reduced Matrix Elements

An excellent collection of matrix elements is compiled by Varshalovich et al. [VMKS88].
Angular momentum operator:

(GillT1172) = 8j1ja Vi1 (G2 + 1)(251 + 1)

Normalized spherical harmonic C’,’; is defined as

[ 4m

B o

Cq - 2k +1 qu(’f‘),
cY =1,

Ch (7) = T,

and
lh k1
alicHie) = o VETE (4 5 6 ).
Symmetry property:
{allC¥[1l) = (=1)" =" (1) |C*|1a)-

For states coupled to a given j :

<’{aHCk||:‘€b> = (—1)ja+1/2 []aM]] < _{11/2 13;72 lg ) H(la+/€+lb),

where II(I) = 1 for even [, and II(l) = 0 for odd I.
Symmetry property
(kal|C* k) = (=1)72 77 (k|| C*| | ).
Special cases:
(G'1C°5) = 835 V1)
ClCoNn) = w1l
(GallC*Is1/2) = G, (=112 V/Tj] /Tla]

Matrix element of a unit vector 7 (rank 1) :

@l = VA (] 1§ )
Vq (rank 1):
UValll) = ={VT+ 181 + (L + D)V 1}
o (rank 1):

(1/2||o]1/2) = V6

Cllollin) =, (-2 Gl {0 fry 3 e
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15.3 LS-coupling

(n(LS)IS|In' (L'S") 1) = (DS 44 VT TT/S(S + @S +1) { s

15.4 Spherical harmonics
le:n (97 ¢) = lem (97 _¢) = (_1)m le,fm (97 (b)

Normalized spherical harmonics C,’;(f) are defined as

47
k(s "
C;(7) Gy Yiq(7),
o) =1
C;, (1) = T

d(n—n')=05(p—¢') §(cosf — cos ) ZY}m ) Yim (n)

(11, 1]\
nlml (97¢) }/2277742 (97¢ \/7 Z ( } ]2 ) C£8120011m1l2m2YLM (97¢)
LM
(18)

15.5 Vector spherical harmonics

Y0P (8, 0) = #Yo (6, 9)

(0) 1
YW (0, ¢) = ———LY;u (6,
yir (0,0) o) g (0, 9)
Y3 (6,6) = ————VYsu (6,0) = —i [2,Y (), (6,0)
J(J+1)
Normalized harmonics
N _ AT
qu 2% +1 qu (T)

Apparently - -
t=(4m) " Yq  (£) = Cqy

Matrix elements of normalized vector spherical harmonics times o :

(Kpmplo - Cé;l)hiama) = —(—Kpmp| Cf;| KaMq)
(0) __Ka—hkyp k

(Kpmp| o - qu | Kamg) = m (Kpmep| C’q\ KaMaq)
1) _ _Ka Tt Ky k

(Kpmp| o - Crq | kKamg) = T—i—l) (—rpmp| Cf| Kama)
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16 Rotations

16.1 Wigner D-functions

The wave-function in the initial (6, ¢) and the rotated (¢, ¢’) frames are related
as

J
Wy (0',¢",0") = Z U (0,6,0) Dipa (o, 8,7)
M=——J
J

\I,J]W (03¢7 U) = Z [D]{/[M’ (a7ﬁa’7)]* \IIJM’ (9/7¢/’0J)

M=—J

where «, 3,7 are the Eurler angles of the rotation. Spherical tensors transform
in the same way

T 0, ¢, Z T8 (0,6, 0) Dl (o, B,7)
M=—J

[D]{ﬂ? (Oé,ﬂ,’}/)]* = D]{/[Q (_7767_04) = (_1)M_Q DZM,Q (0175”7)
Clm (oa(b) = Dé),—m (0797¢)
d(n—n')=05(p—¢) §(cosf — cos ) ZY}m ) Yim (n)

1,1 1/2
Y21m1 (9,¢) Yl2m2 ’ Z ( 2 ) ChOlgOCZI;nN{llzngLM (97¢)
LM
(19)

17 Goldstone Diagrams

Rules:
1. Interaction - dotted horizontal line with vertex.

2. Particle ( excited orbital) - arrow up (positive time)
Hole ( core state) arrow down (negative time)

3. Initial state - incoming arrow, final state - outgoing arrow , matrix element

(V).
a\/r “ ot >( r|V]a)
—x e —&r
Vv
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Q

\1\/7‘@ _ |a£> Z <Tbl1/ilz|ab>
b @ r

Qa b r r Z <b’l‘|1/7’12|ab>
\/\/ T aa> Ea —Er
b
\/ vb L sl riclad)
Y aab>
o 2 €at+Epb—Er —Es

18 Numerics

18.1 B-Splines

Advantage is that a set is finite, reasonably complete, and the continuum spec-
trum is mocked up to be discreet.

Properties: B-spline B; j (r) number ¢ of order k is a piecewise polynomial
of degree k — 1 inside t; < r < t;5k. It vanishes outside this interval.

Big(r) #0, t; <r <ty
Supporting grid {¢;} is defined as

t1:t2:...:tk:0
tn:tn+1:"':t7z,+k:R

19 Molecules

19.1 Classification of molecular levels for diatomics
19.1.1 Zoology of various angular momenta
N is the unit vector along the internuclear axis

1. Electronic orbital momentum L, projection A = L - fi.

2. Spin S, projection ¥ = S - 1.

3. Total electronic momentum J. = L + S, projection Q@ = (L + S) - .

4. Mechanical rotation of the molecule as a whole, R. Notice that by defini-
tion R-i=0

5. Total nuclear spin T =1; + I,
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6. Total molecular momentum J, notice projection on the nuclear axis
J=(L+S)-a)n+R= Qa+R
Due to the angular momenta addition rules, J >
7. “Spinless” total ang. momentum K=L+R =J - S.
8. “Super”-total momentum F =J + T

Hund’s case (a). Relativistic effects are small, A is a projection of L onto
the molecular axis, ¥ is the projection of spin S, = |A 4+ ¥|. Term symbol
(notice multiplicity based on S,not X)

25’+1AQ

Electronic energy of the multiplet

T, = Ty + AAY

19.1.2 Eigenstates:

Hund’s case (a).

|JM Q) = —= (M55 Q) |A, X) + & |[TMy; =) [-A, =)

B
V2
where the rotational part [LBF86, Miz75]

(2J+1)

1/2
JMJ§Q>:|: ]2 :| DéMJ (¢797X)

and € = £1 denote parity of the states (Wang transformations). The Wigner
functions (same as in Edmonds)

DéMJ (a,0,9)

are simultaneous eigenstates of J2 , lab-frame J, (eigenvalue M) and J, in
the rotating body-frame (eigenvalue ). Useful formula for computing matrix
elements

Jl (j2) (3) (7 g2 Js Ji J2 Js
& 2/d D () Dy, (90) D () = ( my mg g ) ( my mly m )

2 T 27
/dw:/ da/ sinﬁdﬁ/ dy
0 0 0

Using this formula and the transformation of the spherical tensor into the
body frame,

T]&]/) 01 I Z T(J ) D}\]/[M’ (avﬁ,’y)
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and . .
[DJJ;IQ (a767'y)] :<_1) B D{M—Q (041857)
we relate the matrix element in the lab frame with the mel in the body frame

<J/M3; Q/| Tq(/k) |JM Q>(lab) — (_1)Qlfo, [J] [J’] Z <Q’| Tq(k) |Q>(b0dy) %
q

J ok J J k J
- q Q -M, ¢ My

19.1.3 Symmetries:

gerade/ungerade etc ...
Symmetric Top
The moments of intertia perpendicular to the internuclear axis Ip = pR?
are much larger than I4 about the axis. The exact energy levels
F(J)=BJ(J+1)+(A-B)A?
_h _h
T 8n2cly’ T 8m2clp

19.2 Transformation from the laboratory to body-fixed
frame

F' is the super-total angular momentum

/2

F.M (2F +1) ' " F.K

‘I)lab f= Z { { 872 DJ\/I;;KF (6,0, x) ‘I)bod;
Kr

Ty =) Dy (6,00 1%
q
The spherical angles ¢ and 6 correspond to the Eurleur angles a are § of the
body frame with respect to the lab frame.

19.3 Zeeman effect
First-order energy correction
EY) = —iB

Here [ is the expectaion value of the molecular magnetic moment in the direc-
tion of the field. Unless the molecule is in '¥ state, the magnetic moment is
dominated by that due to electron (i.e. nuclear magnetic moment and rotation
of the molecule as the whole may be disregarded (pp/pn ~ 1/2000)).

Case (a), M is the projection of the total angular momentum J on the

B-field At 25 (At 3
(A + +
A= Fg+n  Mws

Footnote: for 21_[1/2, A+2¥=0,and g =0.
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19.4 Stark effect

Linear Stark effect arises if the molecular state has the electric dipole moment
D, then disregarding A-doubling,

EN=-Dé&

where
D—LMD
J(J+1)

19.5 Long-range interactions of molecules

According to Ref. [Arr81], if two space-fixed parallel coordinate frames are in-
troduced in the molecules A and B, their centers being at ¢ and b, and R points

from a to b
2pIP> Ll
RL +Ly+1
Lo,=0Ly,=0

where

Y2 ()l 1/2 L X
VWQQ )X M () ) T e

with L = L, 4+ Ly and

and

[Tr, (ra) ® To, ()5 = > (LaMa; LyMy| LM)YTM (ro) T2 (1)
M, M,

For two parallel reference frames with z-axis fixed along R

L«

Vi, = Z WLAbeTLAf (ra) Ty, M (rp)
M=—TL.

wM (—=1)" (La + L)!
LaLs {(La — M)! (Lo + M)! (L, — M)! (Ly + M)1}/?

with Lo = min (L,, Lp). In particular

Vid = ——5 > wPDP @D 1)

R3
m

with w, = 1+ d,,0 and the dipole operator

DY = elZn ) (#:)
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Voo = 3 e i O O, (20)

p=—2 ’

with quadrupole moment tensor QE?) defined as
QP = —le| Y _riC (i)

The double-atom basis. For homonuclear molecules the symmetry-adapted
basis formed from atomic states centered at the nuclei I and II

25 (1) 18) 1+ (VP 18) ) ) a#p
P\ _ V2 1P/ 11 r
‘¢a6> { ) la) a=08,p=g

The completeness relation

-y

(a>B),p

®ha) (%
Useful Casimir-Polder identity

1 2 [
2 a> 050
0

Y |Pha) (Bhal-
«

atb 7w a? + w? b2 +w?’

Higher multipole dispersion coefficients for two spherically-symmetric atoms
From [SC85]

Cs =Caup(1,1)
Cs =Cap(1,2) +Cap(2,1)
C10=Cap(2,2)+Cup(1,3)+ Cap(3,1)

QL +2L) 2\ [® ., . .
Cap (l1,1l2) = 120 ()] (w) /0 it (iw) af (iw) dw

with

e.g.
Cap (1,1) = %/ o (iw) o (iw) dw
0

Cap(1,2) = 15/ it (iw) o (iw) dw

2m J
35 [

Cap(2,2) = — g (w) ag (iw) dw
T Jo
4 [~

Cap(1,3) = — oy (w) ag (iw) dw
T Jo
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20 Applications
20.1 EM moments

Dipole moment of the system

D= Z%‘I‘i = —\€|Zri

Interaction with the electric field
V=-D-¢&

The Hamiltonian of interaction of a magnetic dipole p with a static uniform
magnetic field B is given by
H=—-u-B

Magnetic moment nonrelativistically may be expressed as

p=—pp(L+g.S),

where the Bohr magneton is
_ leln
HUB = om’
and gyromagnetic ratio for electron g. = 2.002.
In a magnetic field, the energy levels are given by

Enx, = ppgsBMy, (21)

where mup is the Bohr magneton, gy, is the Lande factor, and M is the projec-
tion of the angular momentum along the B-field. For an atom in a state 2511z,
the Lange factor is given by

(] + 9)|nJ) _1+J(J+1)—L(L+1)+S(S+1)
TTVIVItIViteT 27 (J+1)

For ground state of alkali-metal atoms g (251 /2) =2.

For a hyperfine state, the Zeeman effect in a weak field (when the Zeeman
corrections are much smaller than the HFS splitting between the energy levels)
{See HAKEN, WOLF, Atomic and Quantum Physics, Springer, Berlin }

Eny = ppgrBMp , (22)
with the modified Lande factor
F(F+1)+J(J+1)—-I(I+1)

gr =97 oF (F+1) +
oW FFE+D+HI(I+1)-J(J+1)
" 2F (F+1)
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The second contribution (nuclear moment) is about 2,000 times smaller since

:uN/NB = me/mp-
Disregarding this term we obtain for J = 1/2

1
9F=1+1/2 = ng

1
9F=1-1/2 = —ng

i.e. for the lower HFS state the g-factor is negative.

20.2 Cooling and trapping
20.2.1 Optical lattices

In a lattice, the electric field is formed by two counter-propagating waves (orig-
inal laser and the reflected wave, which is then absorbed? on the other, laser,
end, so there is only one reflection)

E (z,t) = Egcos (wt — kz) + Eg cos (wt + kz) = 2Eg cos kz coswt

we see that the effective field strength is 2FE,. It means that given a formula
for a single laser, we can upgrade to the lattice by multiplying Ey by 2. Or
intensity /power by a factor of 4.
1D-lattice potential for far-off resonance trap
V (r,2) = 4Vipax €xp {—2r2/w (z)2} cos? (27z/))
4
VmaX: a(W) 2P:1(X(W)I,
ceomw (2) c

where P is the laser power and w (z) is the radius of the laser beam.
Lamb-Dicke regime: the spacing of vibrational levels exceeds the photon
recoil energy

hwho > ER = ~53

20.2.2 Static polarizabilities

Polarizability is defined as
(D,) =at,

(alternative definition through second order energy correction 6E,, = —1/2 « £2).
For non-polar gasses (Clausius-Mossotti equation see Section 4.5 of Ref.[Jac99])

a—§ gleg — 1
- n\g/eo +2
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where ¢ is dielectric constant and n is the number density. The zz component
of the polarizability tensor for the state 15 is

(V5| D |vw) (i | D2 |bs)
22 E, — E,

This tensor may be decomposed into the scalar and tensor (rank 2) parts

@ = a9 4+ o

a0 — (s D|vk) - (Y [D]ebs)
: 3 Z E, — F,

a® =2 Z S (14 6y ¢s|DA|1/Jk><1/Jk\D7A|¢s>

E. — F
k A=0,41 k s

E, - E,
a,’fl(w):2Z—E RE 5
b ( b (l) —w

For ground states of alkali-metals 2.5; /2

|(¥al D [Y0) |

1 E. - FE
o C8ipw) =33 o WDl
e € g

20.3 Nuclear distributions
20.3.1 Fermi-type distribution

c-nuclear radius cutoff

_ Po
plr) = 1+exp|(r—-c)/al’

where normalization constant pg is found from

/ 4rr?p(r)dr = 1.
0

A typical value of ¢ =fm.
Moments of Fermi distribution

e 1 c
Fule,a)= [ ro—idr = a1, (£)
(c;a) /0 Tl r e/ T a

o0 1 123 oo xn
In(u):/ x"dx—(/ +/ )d:c—
0 ex_“—i-l 0 w ex_”—i—l

- an =yt
—d ———d
/0 er—H 41 x—l—/o 1+ev Y

46

with



The integrals may be expressed in terms of polylogarithms Li,, (2)

Li,(z) =Y =
k=1

and Rieman (-function. Particular values

k
poup

T

72 1 4 . -
I (M):?#WL 3H —2Lig(—e™"),
Tt w2 1 . _
Ig (,u) = W + 7,le2 + Z,LL4 + 6 L14(76 ’“L),
7t 272 4 1 o . _
Iy (p) = 5 Ht TMS tEn - 24 Li5(—e™*).

In terms of these integrals, the normalization factor is given by

1 _
Po= - [F3 (c,a)] "

20.3.2 Uniform distribution

(r) = 3 1, <R
P = 1ZR31 0, r>R

Here the nuclear radius R is related to the r.m.s value as

R= \/§<r2>1/2

Fitting formula from [JS85], A > 9

(r?)!/? = 0.836 A"/ + 0.570 (+0.05) fm.

20.3.3 Woods - Saxon potential for nucleons

1d
Vivs = Vo f (1) + Vis (5'5)7"3;67{

f@)(1+emﬂraR}>]

Here R = 79AY? | ro = 1.27 fm, a = 0.67fm, Vy = (=51 £ 33%) MeV (
upper sign for neutrons, lower for protons ), and Vs = —0.44V}

For protons add Coulomb potential (uniformly charged ball)

_ ] 32Z2-1)%0-4), <R
Vo(r) = { 7 1)% R 3R . (24)



20.4 Fundamental symmetries

e Parity transformation: (After [Hol95])

r— —r (25)
oc—0 (26)
1—1 (27)
e Time reversal:

t— —t (28)
r—r (29)
P— P (30)
L— —L, (31)
o— —0 (32)

Also in the scattering processes the initial and final states are swapped
[Hol95], p. 90. T-revesrsal for molecules: "in the abscense of the exter-
nal B-field the Hamiltonian would contain only even combinations of the
angular momentum operators, e.g. FoFg, FyLg, F,Sg. Thus changing
the signs of all the angular momentua should result in the same wave
function." (Wigner group theory + p.396 of Drake)

e Charge conjugation:

There is a nice table (Table 6.1) in the Jackson (Jac99) IIIrd edition with
the transformation properties of various E&M-related quantities.

20.5 Parity violation in atoms (PNC/APV)

Leading effect are neutral current interactions.
Fermi constant Gz = 2.22 x 10~1* a.u.
Notations

=87 = @ =iV 6 = (0) T
Weak charge

Qw = Z(1 — 4sin?0y) — N,

where Z is the number of protons, N number of protons, and 6y is Weinberg
angle, sin® @y ~ 1/4 , so that Quw ~ —N.
Interactions :
The dominant effect is the exchange of virtual Z° boson b/w quark in the
nucleus and atomic electron. Time-like part dominates

Gr
hw = —= nuc\T)75
W= \/?QWP (r)v
Angular reduction

() = —i%czwaﬁm,ﬁnammmn /0 " e (1) (=G () Fo (1) + G (1) Fin ()} dir
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20.6 Nuclear spin-dependent effects

1. Interaction b/w the nuclear axial-vector current and the electron vector-
current from Z° exchange :
G k—1/2

2 _ _~ -
hy = \@KQI(I‘*‘UO[ Ip(r)

2. Anapole-electron interaction :

G K

hyy = ﬁKama Ip(r)

Electron-electron weak interaction : Z(°) exchange b/w e. Contact
interaction.

1
Cie ~ —5(1 — 4sin’ Oy ), (33)

1

Only cross term C1.Co. contributes to PNC.

Gij = ﬂG/ng‘(%Cm + 7,75 C2e) 00 (Y Che + Y 5C2 ) prd>w

20.7 Permanent electric-dipole moments
Permanent electric-dipole moments (EDM) may arise due to
1. nuclear Schiff moment,
2. intrinsic dipole moment of electron,

3. P,T-odd electron-nucleon interactions.P,T-odd semileptonic interactions

20.7.1 Schiff moment

Schiff moment S is aligned along the nuclear spin, S = S % The corresponding
Hamiltonian of interaction of atomic electron with the nuclear Schiff moment is

Hgspy = 47S - Vp(r) = Z (-1)"S_, (HSn)
m
Hg, =4nVp (r)

where p (1) is the nuclear density. An alternative expression, more suitable for
relativistic calculations has been introduced in [FGO02]

e/

1
Hgy = EP(T) r,
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where By = fooo r4p (1) dr is the fourth-order moment of the nuclear distribution.
For a closed-shell atom, at the HF level the induced dipole moment is

alle[[m){m||H @)

2 'a_'rn <
MZ—Sgg(—l)J !

€a — Em
Taking into account that
dp
\Y% = —T7,
p(r) = Li
Ty = Cipu (7)),

the relevant reduced matrix element is given by
e d
(nakal [HgnrlInpr) = 47T<f€a\|01||/’»b>/ (Ga (r) Gy (1) + Fu (r) Fy () ﬁdr-
0

The nuclear density is parametererized as the Fermi distribution

Po

pr) =1 T e((r—o)/a)

Numerically the integration will be unstable, because the derivative of p(r) will
behave like a d-function centered about cutoff radius ¢. More stable is the
reduced matrix element of the finite nucleus SM

, 1 >
(nakal[HgnrlInprn) = 3<%a||01||ﬁb>§4/ rp(r)(Ga (r) Gy (r) + Fo (r) Fy (1)) dr
0
20.7.2 P,T-odd electron-nucleon tensor interaction
Parametrization [MP85]

hT = \/iGF CTN ON (i’}/o’}/5 J)e PN (I‘e) . (35)

Here Gp = 2.22254 x 10~1* a.u. is the Fermi constant and Cpy is the coupling
constant of interest. The induced atomic EDM is

U, | DU (U, |hr| T Wolhr| W) (¥, |D|W
_ 5 (RIDIZ) il ) | 5~ (Bl 8)(EIDIT)
; Ey— E; - Ey— E;
At the Hartree-Fock level
D
_ g~ Dlm)imitrla) |, -

am €a —Em

where a runs over occupied and m over excited single-particle orbitals and c.c.
term is obtained by swapping D and h”.
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The result of angular reduction for closed-shell atom

ix = (on)y V2Gr Crn é S (1) {alDllm)ml| (ivors oe) pv (re) la)

am €a —Em
(38)
2 da—im Lallr[lm)(ml] (iv07s 0e) piv (re) [|a)
—(oN)y \@GFCTNggn:(_l) e
(39)
where we took into account that D = —|e|r. Reduced matrix element of a

combination (7975 o) pn (re) is given as
(nakall (17075 o) prv (re) [Inprin) =
- / pn (1) dr {(rallol| = kp)Ga (r) Fy (r) + (=kallol[r) Fa (r) Gy (1)} (40)
0
Here G(r) and F(r) are the large and small components of the radial wavefunc-
tions. Since (K, ||o||kn) x 01,1, and I_, = 25 — I,;, the selection rule for the
first term is I, 4+ I, = 27, and for the second term [, + I, = 2j,. Apparently, the

states a and b must have opposite parities. Another selection rule is A (jq, 1, jp)-
Also

<,<;a||a||nb>:&alb(—l)laﬂ'a1/2\/[1'@,.75]%6{ i 1% 19}’2} (41)

20.8 Intrinsic dipole moment of the electron

The SM limit
dsm (e_) =10"3% cm

Best present (2004) limit
d(Tl,e”) ~1.6 x 107*"e cm

Matrix elements for the electron EDM operator.
The coupling of the electron EDM d, with the E-field is

Hd:2d6< 8 (09E) )

We assume that the field is produced by the spherically-symmetric charge dis-
tribution inside the atom. Then

d_\ .

(U . f) Qnm (72) = _Q—Hm(’f‘)a

Using
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and the orthogonality of the spherical spinors, we arrive at

altta) = {2d. [ ar Qu0) (5 ) @0} o

The angular selection rules in this integral are simply due to the fact that Hy
is a pseudoscalar.

21 Scattering theory

21.1 Asymptotic expansion

(+) ) eikr
a9 (02 1))

r

fr (7) is the scattering amplitude. Differential scattering cross-section

#of scattered particlesinto 27r2dQ
total # of incident particles

do 12
a0 | fi (F)]
Total scattering cross-section

o= /|fk (7)2 a2

The # of particles per unit time per unit area is found using current-density
formula

Jzﬂ;(lﬁ Vi) —pVep™) .

Optical theorem: the scattering amplitude in the forward direction and the total
x-section are related as

U:%Im fk(O)

21.2 Lippman-Schwinger integral equation and Green’s
functions

(V2+ k)T (r)=U(r) T (r)
U(r)th—TV(r)
ik-r 1 / ! / /
¥ = Ne'k fE/G(r,r)U(r)\Il(r)dr
)

(V2+ k)G (r,x') = —4rs (r — 1’
exp (Lik [r — 1))

'

G (r,r')

r —r
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21.3 Born approximation

S (Rl) ~ _2:;12

For spherically symmetric potentials V (r) = V (|r|) this expression simplifies to

/e—ik/-rv (r/) 6ik'I‘/drI

2m [ )\ singr

JO)==%7 | Ve = Sm e ar,

where 6 is the angle between k and k', q =k’ — k
0
=2k sin —
q sin 5
21.4 Partial wave expansion

21.4.1 Spherical waves

Free particles (relativistic expansion):

‘ _ 1 Ve+m Ry (r) Qjim (7) P
L2%T (I‘) = ( —Je—m Rpll/ (T) Qi'l’m, (7:) ) , =251

2e

€= +y/p? +m?

2
Ry (r) = \/ Tle—H/Z(pT)

kT = i (2 + 1) i'j, (kr) Py (12 : r)
=0

Plane wave

exp [ik - r] = 47 Z it (kr) Y5, (l%) Yim (7)
m

exp [—ik - r] = 47 Z iy (k) Yo, (i@) Yir (7)

lm

20+1
Yig (6.6) = \/ =P (cos0)

‘We have to solve

HYW) = 2,k20 )
U (+) is expanded into a complete set of sperical harmonics and radial wavefunc-

tions Ry = “

U = "¢ Ry (r) Yig () (42)
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uy; are solutions of radial S.E. regular at the origin ( ug; (0) — 0)

1 d? 9
Toudr? +U(r) ) uk = 2pk~ ug
At large r

U ~ Sin (kr - lg + (5;)
d; are the phase shifs due to (short-range) potential U, and —[7 is a free-particle

phase-shift. By matching partial-wave expansion of Eq.7? with Eq. 42 at large
r, one obtains

F0)=> 1] fiPi(cos0)
with
(21 + 1) €' sin

w\»—‘

Total cross section -
4
=2 Z sin (55
1=0

The stationary scattering wavefunction is represented as ( plane wave + outgo-
ing spherical wave)

v =N

As a check if the potential is absent §;; = 0,
fi=0,0=0, and

\Ifgimmde = NZ [] 71 (kr) exp {z (gl)] P (cos6)

r) exp {z (gl + §lk)] P, (cos )

ukl(T) = j; (kr), and we obtain

i.e. the partial-wave expansion of the plane wave N e*7,
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22 Electrostatics

Uniform magnetic field (Both MKSA and Gaussian units)

1
A=-Bxr
2

23 Electrodynamics & lasers

Maxwell’s equations (Gaussian units. See Section 3.2 for other system-of-units)

V-E=4nmp
10E 4r
H=-—4+—j
VX cc')t+c‘]
V-H=0
VxE:—la—H
c Ot

Energy density W and energy flux (Poynting vector) S

8871/}5/ +V-S=0
W= % (E* + H?)
c
S = EE x H
Vector A and scalar ¢ potentials
H=VxA
10A
o VY

Electromagnetic wave

A = Apé cos (wt — kr)
kE=w/c
[€o] = [Hol| = kAo

C &
I=(S)= gszg = gsg

Here I is the laser intensity (notice averaging of the flux over time). Atomic
units of electric field and intensity

Eo = m?e® /h* = 5.14220826 x 10* V/m
Iy =cE = 777 W/em?
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Relation b/w intensity and the field strength of the laser

Io {2:‘2’] — 133 (£ [V /em))?

Relation b/w CGSE and SI units of electric field

lesu (F) = 300 V/cm

Polarization vector:

1 1
E=ezpcos0+ie,sinf = ——— (cosh +sinf)e ;1 + — (cosd —sinf) e_
Y \/5( ) +1 \/5( ) 1

1
7 (cosf —sinf)esq + 7 (cosf +sinf)e_y

The parametric angle # may be related to ellipticity parameter ¢, employed in
Ref.]MORS6] as

€" = ez cosb —ieysinf = —

cosf = ;
VI1+¢?
sinf = ¢

Viie

These authors also introduced degree of linear

l= 1;22 = cos 26
and circular %
e = sin 26
polarization. Notice (Scalar product is without complex conjugation!)
(- é=1
[€* x €], = du,0sin20 (43)
(& ® é}zu = —%6,,70 + ; 0820 6, 42

24 Laser-atom interaction
Two-level system.

Level 0 lives forever and k has radiative lifetime of 7, due to radiative decay
to level 0. The x-section of absorption of the photon is given by

C2 Ok FQ

:2 _—
T T2 g A2+ T2 (14 x)
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where

A=w—wp
11
QTk

=2 (%) Dy B
Steady-state population of the excited state
X r?
2A24+T2(1+)

Level 0 and k have lifetimes 79 and 7. Txo is the lifetime of k due to decay
to 0. The x-section of absorption of the photon is given by

Prk =

g Tk 2
O =T———

w? go Tko A? + 12 (14 x)
where detunnig from the resonance

A =w—wy

X is called saturation parameter and D is the El-mel, E is the laser field
strength. Degeneracies g; = 2J; + 1.

24.1 Stark effect in the laser field

Following Ref.[MORS6]. For a linearly polarized laser, the level shift is

3M?2—J(J+1)
2J (2J — 1) )

52
AE,jpm = —— (OZEJ (W) + gy (W)

4

where scalar and tensor dynamic polarizabilities

a%(w)zﬁzb’;{}( w)

J!

2J 2J— 1) ’ 1 1 2 '
T 1 J+J J

Here the reduced sums are defined as

E, —E
S (w) =23 |(nJ||D||n J’ n n .
Z [|[D]n"J")] {(En/En)sz}

n'

Notice that depending on the detuning of the laser from the position of the
atomic resonance, the reduced sums may accept both negative and positive
values.
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25 Hyperfine interaction

The coupling with the nuclear fields

Hy =Y (Nu«) : Tw)

k

Here ITOs N*) and T(®) act in the space of nuclear and electronic coordinates
respectively, k being their ranks. The nuclear magnetic moment is convention-
ally defined as

_ v (T 11 W7y — 21 (1)

and the nuclear electric quadrupole moment as (notice the factor of 2)
(21)!
V(2T = 2)1 (21 + 3)!

Q=2(I,M; =IINPI M =1)=2 IINP||1)

The (one-particle) electronic tensors are

le| iv2 (a . ng\) (f'))

T(l) - _
A 4reg cr?
Cx (#)
T(Q) _ le| A
A 471'60 r3

25.1 Interaction with the static electric field
A typical strength of laboratory E-field

Elab = 1 kV/em = 10°V/m = 10°/ (0.51422082 x 10'?) a.u. = 2 x 10~ "a.u

26 Commutator identities
Uncertainty relation. For two Hermitian operators with non-vanishing commu-
tator [A, B] = iC
1
AAAB = Z|(C)]

where AA = \/((A— (A))?).
A and B are operators, A is a c-number.

[A, B"] = nB""![A, B]
[A", B] = nA" " [A, B]
[AB,C] = A[B, [A,C]B

Cl+
[A, BC] = [A,B]C + B[A,C]
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DALY Bl =) [Ai, By
i k ik
(A=AB) ' =A"1' £ XA'BA' + N2A7'BAT'BA™ ...
exp(A)Bexp(—A) = B+ [AB] + %[A[ABH + %[A[A[AB]]] +---
The identity below holds only if [A, [C, A]] = [A,[C, B]] = [B,[C, B]] = 0, with
C = [A, B] (Ref. [Hol95]).

A, B
2

[4,[A, B]]

exp(A + B) = exp(A) exp(B) exp(— 221 exp )

27 Abbreviations

CC - Coupled Cluster
MCHEF - Multi-Configurational Hartree-Fock
MCSCF - Multi-Configurational Self-Consistent Field

CI - Configuration - Interaction

28 Mathematics

28.1 Dirac ¢ function and friends

/OO et de = 2m6 ()
0
sy e

x—a—10

dlo(a)) = Y eibla =)

Ola z] = ﬁd () , 0(—z) =0 (x)

/ &k explik -r] = (27)° 6 (r)

1 _ 1 1 n 1
(e—E)" 2\(e—E+i0)" (¢—E—i0)"
m—1
_ 1 d p 1
(n—1ldE"1" ¢e—F
§(r)=..r%(r)
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Derivatives of the § function

+oo
[ i@ @ =1 o)

28.2 Legendre polynomials

Any function of the angle may be expanded in terms of the Legendre polynomials
P (cos8)

:ZblPl(cosﬁ)
b= 2l+1/f ) P, (cos ) sin 0.6

Notice the additional factor in front of the integral; it arises because the P, are

not normalized.
4
Py (cosf) = Cio (0, 9) = 1/ ST 1Y10(9 ®)

Spherical Bessel j;, Neumann n;, and Hankel h; functions

) I
Ji(2) =4/ gJH-l/Z (2)
Asymptotic formulae

Ln
Ji () ~ (22l+l1'z +0(2'?), z<1
1cos(zf(l+1)g) z>1

(21— 1)!!
n(z)~q ;. , #2317 <l
Lsin(z—=(+1)%) z>1

z K1

h'? (2) = hE (2) = i (2) £imy (2) = { Frexp[i(z— (1+1)7/2)] z2>1

Useful identity (20 — 1)!! = (20)!/(241").

28.3 Vector analysis

The following identities are useful for an arbitrary regular function of r = |r|.
(see, e.g., Jackson)

v-[Er o) =25y + 220



In particular

1 r

Vo — ——

r r3
V?"ZE
r

Also from the Gauss’ law 1
V2= = —476 (r)
r

Taylor series
A(r+a)=e®Y) A(r)

/v-jdvzfj-ds
1% S

_ o
/V(¢v2w+v¢~w) dv = fgqb%dS,

Divergence theorem

Green’s first identity

where % is the normal derivative (directed outwards from inside the volume

V).

Green’s second identity (Green’s theorem)

_ Op 99
/v (¢VZh — pV?¢) dV = jzi ( 5 wan) ds.

28.4 Vector identities
A x (B x C)=B(A-C)- C(A B)

28.5 Cauchi’s residue theorem

If f(2) is analytical function, except for a finite number of singularities a1, as,
...ay, inside a region bounded by a curve C, then

f(z)dz= QWiZRes f(2)
c k

o
For a function

FG)= ot g T ek (e )

(2 —a) k=0

the residue is the coefficient c¢_;. It may be computed as

dm—l m
ey i o (G- ) £ ()

C_1 =
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28.6 Groups (following Edmonds[Edm85])

Designations for common continious groups

1. GL (n) all linear transformations in n-dimensional space (complex n x n
matrixes a);

2. U (n) all unitary transformations, a are unitary matrixes;

3. SU (n) special unitary group, det a = +1;

4. O (n) orthogonal group: real matrices a (rotations and reflections, det a =

+1);

5. SO (n) real unitary matrices a, det a = +1

Representation of degree n of a group G : to every element a is assigned
n X n matrix T (a) so that

T (a)-T (b) = T (ab)

Equivalent representation is obtained via linear transformation S, then the
group element a may be represented by S~! -7 (a) - S
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