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1 Basics

1.1 Nonrelativistic quantum mechanics

Schrödinger equation:

i
@

@t
	 = H	 (1)

H = � ~
2

2m
�+ V (2)
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Linear momentum
p̂ = �i~r

Probability current density

j =
1

2m
(	(p	)� +	�p	)

Time-evolution of expectation values

i~
d

dt
hF it = h[F;H]it + i~h

@F

@t
it

Commutator identities
[pi; rj ] = �i~�ij

1.2 Harmonic oscillator

H =
p2

2m
+
1

2
m!2x2

En = ~! (n+ 1=2)

j�ni =
�m!
�~

�1=4 1p
2n2!

Hn

�
x

r
m!

~

�
exp

�
�1
2

m!

~
x2
�

Creation and annihilation operators

a =

r
m!

2~

�
x+ i

p

m!

�
ay =

r
m!

2~

�
x� i p

m!

�
x =

r
~
2m!

�
a+ ay

�
p = i

r
~m!
2

�
ay � a

�
ajni =

p
njn� 1i

ayjni =
p
n+ 1jn+ 1i

jni = 1p
n!

�
ay
�n j0i
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Various matrix elements

hnjxjki =
r

~
m!

(r
n

2
�k;n�1 +

r
n+ 1

2
�k;n+1

)

hnjx2jni = ~
m!

(n+ 1=2)

hn+ 2jx2jni = ~
m!

1

2
f(n+ 1) (n+ 2)g1=2

hn� 2jx2jni = ~
m!

1

2
fn (n� 1)g1=2

1.3 Feynman diagrams and propagators

Solution through the propagator

 (x0; t) =

Z 1

�1
DF (x

0; t;x; 0) (x; 0)

Free particle propagator

D
(0)
F (x0; t;x; 0) = �(t)

r
m

2�it
exp

�
i
m(x0 � x)2

2t

�
Feynman path integral

DF (x
0; t;x; 0) =

Z
D[x(t)] exp

iS[x(t)]

~

summation is over all paths x(t) connecting the initial (x; 0) and �nal (x0; t)
points, S[x(t)] is a classical action along a given path x(t)

S[x(t)] =

Z x2

x1

dt

�
1

2
m _x2(t)� V (x(t))

�
Spectral decomposition in terms of H eigenfunctions :

DF (x
0; t;x; 0) =

X
n

�n(x
0)�n(x)e

�iEnt

The transition amplitude Ampfi = hf jU(t; 0)jii is expressed as a sum of all
possible pathes :

In this picture :

= exp (�iEa(t2 � t1))
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and each vertex is associated with

= (�i)hbjV jaidt1

For example the second order expression is

Amp
(2)
fi (t) =

X
a

Z t2

0

Z t

0

e�iEi(t1�0)(�i)Vaidt1e�iEa(t2�t1)(�i)Vfadt2e�iEf (t�t2)

1.4 Pauli matrices (ŝ = 1=2 �̂)

�̂x =

�
0 1
1 0

�
�̂y =

�
0 �i
i 0

�
�̂z =

�
1 0
0 �1

�
Identities with Pauli matrices

�i�j = �ij + i"ijk�k

(� �A)(� �B) = (A �B) + i�(A�B)
�(� �A) = A� i(� �A)
(� �A)� = A+ i(� �A)

Rotation matrix [active rotation about axis n̂ on angle �]

UR = cos
�

2
� in̂ � � sin �

2

Density matrix � = j�i h�j and polarization vector P = h�j� j�i

� =
1

2
(1 + (P � �))
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2 Dirac equation

HD = c� � p+ �c2 + V (r)

� =

�
0 �
� 0

�
� =

�
1 0
0 �1

�
Current density (Below q is a charge, for electron q = �jej)

j(r) = qc

Z
	y��(r � r0)	dr0

Interaction with the EM �eld

HI = �qc� �A+ q�

2.1 Four-vectors

Contra-variant symbols

x� = (t; r)

p� = (E;p)

co-variant symbols

x� = ���x
� = (t;�r)

p� = ���p
� = (E;�p)

with metric tensor

��� =

0BB@
1 0
�1

�1
0 �1

1CCA
Contraction (Lorentz invariant)

A�B� = A�B
� = A�B���� = A0B0 �A �B

Momentum operator

p� = i
@

@x�
= i@� = ir� = i

�
@

@t
;�r

�
@�A� is a Lorentz invariant.
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2.2 Dirac matrices


0 =

�
12�2 0
0 �12�2

�

i =

�
0 �i
��i 0

�

�
� + 
�
� = 2���


5 = �i
0
1
2
3

��� =
i

2
[
�; 
� ]


5 di¤ers from Ref.[BD64] by the �-�sign. Slash shorthand

6 a = 
�a� = 
0A0 � 
 �A

Dirac equation (spin 1/2)

(i 6 @ � e 6 A�m) (x) = 0

Klein-Gordon equation (spin 0)n
(i@ � eA)� (i@ � eA)

� �m2
o
 (x) = 0

3 Units and conversions

Fundamental constants

~ = 1:054571596� 10�34 J s

h = 6:62606876� 10�34 J s

me = 9:10938188� 10�31 kg
jej = 1:602176462� 10�19 C
kB = 1:3806503� 10�23 J=K

� =
e2

~c
= 1=137:03599976
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Atomic units me = ~ = jej = 1

a0 =
~2

mee2
= 0:529177249� 10�8cm � 0:5�A

1fm = 10�13cm = 1:88973� 10�5bohr
1barn = 10�28 m2

1

4�"0
= 1 a:u:(Gaussian)

�0
4�

= �2 a:u:(Gaussian)

�B =
jej ~
2me

=
1

2
a.u. Bohr magneton (in SI)

�B =
jej ~
2mec

=
�

2
a.u. Bohr magneton (in Gaussian)

1a:u:of time = ~=Eh = 2:4188843265� 10�17s

�e =
h

mec
= 2:4263 � 10�10cm Compton wavelength

�e =
~
mec

� 386 fm reduced Compton wavelength

E =
e2

a0
= 0:51422082� 1012V

m
Electric �eld

B =
Eh
ea0�c

= 2:350518 � 105 tesla = 2:350518 � 109 Gauss Magnetic �eld

Energy:

1Hartree � 1a:u: = e2

a0
= 4:3597438110� 10�18J

1Rydberg � 0:5a:u:
1 cm�1 = 4:556335252750(35)� 10�6a:u:
1eV = 3:67493260(14)� 10�2 a:u:

1K = 3:1668153(55)� 10�6 a:u:
1 cm�1 = 1:4387752K

1a:u: = 6:579683920735(50)� 1015Hz (Notice that this is � not ! = 2��)

EM Fields and laser intensity

E0 =
e2

a0
= m2e5=~4 = 5:14220826� 109 V=cm

B = Eh
ea0�c

= 2:350518 � 105 tesla Magnetic �eld

I0 = E20 = XXX W=cm2
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Conversions :

�(�A) = a0
2�c

�E(a:u:)
� 108 = 455:634

�E(a:u:)

�(nm) =
45:5634

�E(a:u:)

�(cm�1) =
1

a0

1

2�c
�E(a:u:) = 219475 �E(a:u:)

Misc units

1 Tesla = 104 Gauss

mp = 1836:1526675 me

3.1 Natural units

~ = c = 1, in QED in addition me = 1.

3.2 Systems of units in electrodynamics

After Ref.[GR02], Supplement 4.2.
Three system of units: Gaussian, MKSA (part of SI), and Heaviside-Lorentz

("rationalized Gaussian system"). Coulomb�s law:

F = k1
q1q2
r3
r

kG1 = 1

kMKSA
1 =

1

4�"0

kHL1 =
1

4�

if the unit of charge is �xed (it depends on a system of units), then the k1 is
de�ned from mechanical force.
Ampere�s force law

F = k2

Z Z
dr1dr2

j1 � (j2 � r12)
r312

Units of charge density and current density are related via (system-of-units-
independent) continuity equation

r � j+ @�

@t
= 0
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The convention is to �x k1=k2 = c2, leading to

kG2 =
1

c2

kMKSA
2 =

�0
4�

kHL2 =
1

4�c2

Lorentz force on a moving charge

F = q
�
E+ k3

v

c
�B

�
�xes units of electric and magnetic �elds.

kG3 = kHL3 = 1

kMKSA
3 = c

The Maxwell�s equations

r �E = 4�k1�
r �B = 0

r�E = �k3
c

@B

@t

k3r�B =
4�k1
c
j+

1

c

@E

@t

Units of electric and magnetic potentials kG4 = kMKSA
4 = 1

E = �r'� k3
c

@A

@t
B = k4r�A

4 Atomic Hamiltonian

Non-relativistic

H = �
X
i

1

2
r2 �

X
i

Z

ri
+
1

2

X
ij

1

rij
(3)

Relativistic

H =
X
i

�
c�i�pi + �ic2 + Vnuc(ri)

�
+ �++

1

2

X
ij

1

rij
�++ (4)

Breit interaction - static limit :

b12 = �
1

2r12
(�1 � �2 + �1 � r̂12 �2 � r̂12)
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Alternative representation:

B = �( �1 � �2)
1

r12
� 1
2
(�1 � r1)(�2 � r2)r12

Here the �rst term - Gaunt interaction, the second - retardation interaction.

4.1 Partial wave expansions of 1=r12 and r12
Coulomb interaction:

1

r12
=

1X
l=0

rl<
rl+1>

Pl(cos�) =
1X
lm

rl<
rl+1>

(�1)m Cl�m(r̂1)Clm(r̂2)

r12 is useful for Breit interaction expansion. This expression has been obtained
from 10.1.46 of [AS74].

r12 =
X
lm

 
1

2l + 3

rl+2<

rl+1>

� 1

2l � 1
rl<
rl�1>

!
(�1)m Cl�m(r̂1)Clm(r̂2)

4.2 Angular reduction of Coulomb interaction

gabcd =
X
LM

(�1)L�M (�1)ja�ma

�
ja L jc
�ma M mc

�
(�1)jb�mb

�
jb L jd
�mb �M md

�
XL(abcd)

=
X
LM

1p
[a] [d]

Cjama

jcmc;LM
Cjdmd

LM;jbmb
XL(abcd)

or

gabcd =
X
L

XL(abcd)

Here the Coulomb integral is

XL(abcd) = (�1)Lh�ajjC(L)jj�cih�bjjC(L)jj�diRL(abcd);

Rk(abcd) being the Slater integral

RL(abcd) =

Z 1

0

dr1[Pa(r1)Pc(r1)+Qa(r1)Qc(r1)]

Z 1

0

dr2
rL<
rL+1>

[Pb(r2)Pd(r2)+Qb(r2)Qd(r2):

The anti-symmetrized combinations ~gabcd = gabcd�gabdc are reduced in a similar
way, except Xk(abcd) is replaced with

~gabcd =
X
L

ZL(abcd);

13



with

ZL(abcd) = XL(abcd) + [L]
X
L0

�
b d L
a c L0

�
XL0(bacd)

Symmetry properties of Xk and Zk

Xk(abcd) = Xk(badc)

Xk(abcd) = (�1)a�cXk(cbad)

Xk(abcd) = (�1)a+b+c+dXk(cdab)

Zk(abcd) = Zk(badc)

Zk(abcd) = (�1)a+b+c+dZk(cdab)

Recoupling

ZL(ijkl) = [L]
X
L0

�
j l L
i k L0

�
ZL0(jikl)

ZL=0(ijkl) = �J (j; l) �J (k; i)
(�1)j+kp
[j; k]

X
L0

(�1)L
0
ZL0(jikl)

Special case L = 0

XL=0(abcd) = ��a�c��b�d
p
[ja] [jb]RL(abcd);

ZL=0(abcd) = ��a�c��b�d
p
[ja] [jb]RL(abcd) +

X
L0

(�1)b+c+L
0p

[b; c]
�bd�caXL0(bacd)

5 Hydrogenic ions

5.1 Non-relativistic hydrogenic ions

Wave function:
 (r) =

1

r
P (r)Ylm(r̂) (5)

Radial equation:
d2P

dr2
+ 2(E � V (r)� l(l + 1)

2r2
)P = 0 (6)

En = �
Z2

2n2

hri � 3n2

2Z

14



5.2 Relativistic hydrogenic ions

Wave function are represented as Dirac bi-spinors :

u(r) =
1

r

�
iPn�(r) 
�m(r̂)
Qn�(r) 
��m(r̂)

�
=
1

r

�
iGn�(r) 
�m(r̂)
Fn�(r) 
��m(r̂)

�
(7)

P (or G) -large , Q(or F ) - small components. Notice that the notation G=F is
reversed compared to traditional textbooks. Further, the spherical spinors 
�m
are coupled spherical harmonics Ylm(r̂) and spinors �� of spin 1/2.


�m =
X
�

C(l; 1=2; j;m� �; �;m)Yl;m����:

The radial Dirac equation

�
V (r) + c2

�
Pn� (r) + c

�
d

dr
� �

r

�
Qn� (r) = "n�Pn� (r)

�c
�
d

dr
+
�

r

�
Pn� (r) +

�
V (r)� c2

�
Qn� (r) = "n�Qn� (r)

with the normalization Z 1

0

�
P 2n� (r) +Q

2
n� (r)

�
dr = 1:

In the non-relativistic limit (Pauli approximation)

Qn� � �
1

2c

�
d

dr
+
�

r

�
Pn� :

Hydrogenic ion energy levels:

Enk =
c2p

1 + (�Z)2=(
 + n� k)2
� c2 � Z2

2n2
� �2Z4

2n2
(1=k � 3=(4n)) (8)

with 
 =
p
k2 � (�Z)2.

�, relativistic angular quantum number: j�j = j + 1=2; � < 0 if j = l +
1=2; � > 0 if j = l � 1=2. Another form � =

�
j + 1

2

�
(�1)j+l+1=2 or � =

(l � j) (2j + 1). Notice � (�+ 1) = l (l + 1).

l j � l j �
s 1/2 -1

p 1/2 1 f 5/2 3
p 3/2 -2 f 7/2 -4

d 3/2 2 g 7/2 4
d 5/2 -3 g 9/2 -5

15



5.3 Atomic wave-functions in the limit r ! 0

(After [Dra96] Ch.22, notice di¤erent convention for P/Q de�nitions. Here we
use the de�nition (7)). Here the energy E excludes the rest mass energy mec

2.
Finite nucleus. For � < 0

P� � p0r
l+1

Q� = q1r
l+2

q1
p0
= � (E + Z1) = (c (2l + 3))

and for � > 0

P� � p1r
l+1

Q� = q0r
l

p1
q0
= (E + Z1) = (c (2l + 1))

Here Z1 is the expansion coe¢ cient in

V (r) = �Z (r)
r

Z (r) =
1X
n=0

Znr
n

For a uniform distribution Z1 = 0:

5.4 Scalings

Non-relativistic energies in the nuclear Coulomb potential Z2

e-e Coulomb interaction Z
Relativistic energy corrections (�Z)2Z2

Relativistic corrections to e-e interaction (�Z)2Z
Breit interaction caused by transverse photons (�Z)2Z
QED e¤ects (Lamb shift) (�Z)3Z
Virtual pairs (�Z)3Z or sometimes (�Z)3

5.5 Matrix elements

see Bethe and Salpeter

hn; l � 1;mjzjn; l;mi = �3
2
na0
p
n2 � l2 �

s
l2 �m2

(2l + 1) (2l � 1) ;

16



6 Hartree-Fock equations

One typically distinguishes between �restricted� and �unrestricted� Hartree-
Fock method. The unrestricted HF is the method when the many-body wave-
function is approximated by a Slater determinant composed of single-particle
orbitals. When the energy functional of the system is minimized with respect to
the shape of these orbitals, one obtains a set of coupled equations (Ref. [Mer98])

VHF jmi =
1X
p=1

jpi
X
a2occ

(hpajV jmai � hpajV jami)

(T + VHF) jmi = "m jmi

The restricted HF (traditional in atomic physics) in addition assumes the central-
�eld character of the resulting potential, so that the orbitals are the eigen-
functions of the total momentum operator J and Jz (nonrelativistic and rela-
tivistic) and only the radial components are varied.
Non-relativistic equations, closed-shell system:

�1
2

d2Pa
dr2

+

�
VHF �

Z

r
+
la(la + 1)

2r2

�
Pa(r) = "aPa(r)

Here

V̂HFP (r) = V̂dirP (r) + V̂excP (r)

V̂dirP (r) =

 
2
X
b

[lb]v0(b; r)

!
P (r)

V̂excPnala(r) = �2
X
b

[lb]
X
L

�lbLla vl0(b; a; r)Pnblb (r)

�laLlb =
1

2

�
la L lb
0 0 0

�2
vl (a; b; r) =

Z 1

0

dr0
�
rl<
rl+1>

�
Pa (r

0)Pb (r
0)

v0 (a; r) =

Z 1

0

dr0
1

r>
jPa (r0)j2

Relativistically

��aL�b =

�
ja jb L
�1=2 1=2 0

�2
�(la + L+ lb)

��a0�b =
��a�b
[ja]

For a valence system the potential is taken as the frozen core potential VHF
Frozen-core Hartree-Fock

(VHF)ij =
X
a2core

~giaja :

17



Angular reduction (relativistic case):

(VHF)ij =
��i�jp
[i]

X
a2core

p
[a]Z0(iaja) :

6.1 Multi-con�gurational Hartree-Fock (MCHF)

Multi-con�gurational Hartree-Fock. A number of con�gurations is mixed with
coe¢ cients. Minimize the energy, both radial functions and mixing coe¢ cients
are subject to variations.(CI varies only mixing coe¢ cients - the basis set must
be complete )

7 Coupling to EM �eld

Gaussian
V = �q

�
� �AG

�
SI

V = �cq
�
� �ASI

�
An interaction of an electron with EM �eld (here e > 0). We use SI/MKSA

units
VL = ce (� �A (r; t))� e� (r; t)

For EM wave in the transverse gauge, the scalar potential � = 0, and

VL = ec (� �A)
with

A =
1

2
"̂LA0e

ikre�i!t + c:c:

and the corresponding amplitude of the electric �eld E0 = A0!=c :Or

VL = ecA0
1

2
t (!; r) e�i!t + c:c:;

where we introduced
t (!; r) = (� � "̂L) eikr:

This quantity may be expanded into multipole series (notice that WRJ omits
the complex conjugation of the vector spherical harmonics)

t (!; r) = 4�
X
JM�

iJ��
��
Y
(�)
JM (k)

��
� "̂L
�
�
(J�)
M

Here � = 0 for magnetic and � = 1 for electric multipoles and irreducible tensor
operators � (J�)M of rank J are related to the multipole operators as

�
(J�)
M = i

�
(2J + 1) (J + 1)

4�J

�1=2
kJ

(2J + 1)!!
q
(J�)
M

18



Notice that the operators q(J�)M do not include charge! For example for E1 in
atomic units and for the electron,

�
(1;1)
M = i

kp
6�
rM = �i kp

6�
DM

Specialized expression for our geometry: z-axis along wavevector k. Then
for � = 0; 1, the non-vanishing components are�

Y
(�)
JM (êz)

��
= (êM )

�
r
[J ]

8�
�
�

1; M = �1
(�1)�+1 ; M = +1

Further for linear polarization along the x-axis,�
Y
(�)
JM (êz)

��
� êx =

r
[J ]

16�
�
�
(�1)� �M;1 + �M;�1

�
(9)

Length-form for electric multipoles

hijjq(J;�=1)jjji = h�ijjCJ jj�ji �
Z 1

0

rJdrfGiGj + FiFjg

Magnetic multipoles, long-wavelength approximation

hijjq(J;�=0)jjji = �i + �j
J + 1

h��ijjCJ jj�ji �
Z 1

0

rJdrfGiFj + FiGjg

7.1 Matrix elements

The theory of multipole moments can be found in the WRJ book. Limit z ! 0
for spherical Bessel functions

jn(z) �
zn

(2n+ 1)!!

Electric-multipole transitions, long-wavelength approximation.
Length-form

hijjqJ jjji = h�ijjCJ jj�ji �
Z 1

0

rJdrfGiGj + FiFjg:

Velocity-form ( absorption process, ! > 0 )

hijjqJ jjji =
c

!
h�ijjCJ jj�ji�

Z 1

0

rJ�1drf(�j��i+J)GiFj+(�j��i�J)FiGjg:

Magnetic multipoles, long-wavelength approximation (2c is alredy taken into
account)

hijjMJ jjji = 2c
�i + �j
J + 1

h��ijjCJ jj�ji �
Z 1

0

rJdrfGiFj + FiGjg;

in the non-relativistic limit

hijjM1jjji � �
1

2
(�i + �j) (�i + �j � 1) h��ijjC1jj�ji

Z 1

0

dr Pi (r)Pj (r)
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8 Rate formulas

Transition from state jai to state jbi

AE1a!b =
4

3
�
!3

c2
SE1ab
[Ja]

= 2:1410� 1010 f! (a:u:)g3 S
E1
ab

[Ja]
1=s =

2:02613� 1018

(�(�A))3
SE1ab
[Ja]

1=s

SE1ab = jhajjrjjbij2

Here AE1a!b is Einstein A coe¢ cient for spontaneous emission, S - line strength
expressed in atomic units.

8.1 Black-body radiation

The average electric �eld radiated by a black body at temperature T

hE2i = (831:9 V=m)2
�
T (K)

300

�4

9 Complex multi-electron atoms

9.1 Correlation E¤ects

1. Correlation e¤ects decrease with Z.

2. Correlation e¤ects decrease with n.

9.2 Coupling Schemes

9.2.1 L� S-coupling

For states formed from identical orbitals (e.g. (1s)2) L+ S must be even.

9.2.2 j � j-coupling

For states formed from identical orbitals (e.g. (1s)2) J must be even.

9.2.3 Connection between j � j and L� S coupling

The transformation matrix from LS states coupled to J to j1�j2 states coupled
to J :

TLS;j1;j2 = h[(l1; l2)L; (s1; s2)S]J j[(l1; s1)j1; (l2; s2)j2]Ji =p
[L; S; j1; j2]

8<: l1 l2 L
s1 s2 S
j1 j2 J

9=;
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9.3 Hund�s rules

Allowed terms for equivalent electrons (Landau-Lifshitz v.2)

con�guration term
s2 1S
p; p5 2P
p2; p4 1SD 3P
p3 2PD 4S
d; d9 2D
d2; d8 1SDG 3PF
d3; d7 2PDFGH 4PF
d4; d6 1SDFGI 3PDFGH 5D
d5 2SPDFGHI 4PDFG 6S

10 Radiative corrections

Vacuum polarization. Uehling potential for a point-like charge

Up:c:VP (r) =
2

3�

�Z

r

Z 1

1

dt
p
t2 � 1

�
1

t2
+

1

2t4

�
exp

�
�2r
�
t

�
: (10)

This potential has to be folded with the nuclear charge distribution,

UVP (r) =

Z
dr0�nuc(jr� r0j)Up:c:VP (r

0) :

We approximated �nuc(r) with the Fermi distribution. Routine from Ref. [Hni94]
is useful in numerical evaluation.
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11 Perturbative Approaches. General Formalisms

11.1 Textbook results (non-degenerate case, time-independent
PT)

Corrections to wave-function

j (1)n i =
X
k 6=n

j (0)k i h 
(0)
k jV j (0)n i

E
(0)
n � E(0)k

j (2)n i =
X
k 6=n

X
l 6=n

j (0)k i Vkl Vl n�
E
(0)
n � E(0)k

��
E
(0)
n � E(0)l

� �X
k 6=n

j (0)k i Vnn Vkn�
E
(0)
n � E(0)k

�2
Corrections to the energy

E(1)n = Vnn

E(2)n =
X
k 6=n

VnkVkn

E
(0)
n � E(0)k

E(3)n =
X
k;m6=n

VnmVmkVkn�
E
(0)
m � E(0)n

��
E
(0)
k � E(0)n

� � Vnn X
m6=n

VnmVmn�
E
(0)
m � E(0)n

�2
11.2 Dalgarno-Lewis method

Consider second-order correction to the energy

�E(2) = �
X
k

h	0jV j	kih	kjV j	0i
Ek � E0

Introduce
j�	i =

X
k

1

Ek � E0
j	kih	kjV j	0i

Then
�E(2) = �h	0jV j�	i

Multiply by
�
Ĥ0 � E0

�
�
Ĥ0 � E0

�
j�	i =

X
k

1

Ek � E0

�
Ĥ0 � E0

�
j	kih	kjV j	0i

=
X
k

j	kih	kjV j	0i = V j	0i

i.e. one may solve an inhomogeneous equation for the correction�
Ĥ0 � E0

�
j�	i = V j	0i

and �nd the correction to the energy as

�E(2) = �h	0jV j�	i
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11.3 Time-dependent PT

11.3.1 Interaction picture

The Hamiltonian is split into two parts H = H0 + V (t). The traditional
Schrodinger state j (t)i is transformed as

j e (t)i = U (t) j (t)i

with

U (t) = exp

�
i

~
H0t

�
The modi�ed S.E.

i~
d

dt
j e (t)i = eV (t) j e (t)i
eV (t) = U (t)V (t)Uy (t) = exp

�
i

~
H0t

�
V (t) exp

�
� i
~
H0t

�
The �rst-order probability

Ps!k (t) =

����� i~
Z t

t0

Vks (t
0) ei!kst

0
dt0
����2

11.4 Brillouin-Wigner (BW) vs. Rayleigh-Schrödinger (RS)

Advantages of BW vs RS:

1. Since the energy denominator contains E � E� (E is an exact energy)
instead of E� � E� of RS there is no blowing up terms in the case of
(accidental) degeneracy.

2. The obtained matrix elements satisfy hermicity condition hajOpjbi = (hbjOpjai)�
, the RS, in general, does not have this important property.

3. � Unlinked terms should disappear since they do not have correct linear
dependence on the number of particles in the system.

Advantages of RS vs BW:

1. Each order of energy has the right linear dependence on the number of
particles in the system, unlike BW.

2. For 8 terms of RS there is a unique correspondence to diagrams.

3. No need to know the exact energy E a priory as in BW.
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11.5 Rayleigh-Schrödinger

Non-standard 0-order approximation: model space (P-space) to build a per-
turbed w.f from degenerate(or nearly degenerate ) basis. Possible criteria for
inclusion in P is a ratio of the matrix element of V to the energy di¤erence.
If the ratio is large (i1), then the PT would diverge, so try to treat more ex-
actly by including in P -space. Remaining functional space is labeled as Q-space
(orthogonal space). Corresponding projection op.:

P =
X
�2P

j�ih�j ; Q =
X
� 62P

j�ih�j

Let d be the number of w.f. in the model space. Exact to model function
mapping �a = P a; fa = 1; dg, model to exact  a = 
�a. 
 is a wave
operator. Correlation op. � : 
 = 1 + �.
Below f�; �0; : : :g span P -space, f�; �0; : : :g - Q-space.
Useful identities:

h�j
j�0i = ��;�0 ; h�j�j�0i = 0:

 i = �i +
X
�

h�j�j�ii � j�i

11.5.1 Generalized Bloch Equation

[
;H0]P = QV 
P � �PV 
P
if the P-space is completely degenerate ( original Bloch eq.:

(E0 �H0)
P = QV 
P � �PV 
P

Two approaches (power of V expansion or iterations ) to perturbative solution:
1.Order-by-order : Find an 
 expansion in powers of V


 = 1 + 
(1) +
(2) + : : :

Gives

[
(n);H0]P = QV 
(n�1)P �
n�1X
m=1


(n�m)PV 
(m�1)

2. Iterative. Start with 
 = 1

[
(n+1);H0]P = QV 
(n)P � �(n)PV 
(n)P

Explicitly orders-by-orders for V -powers solution:

h�j
(1)j�i = h�jV j�i
E�0 � E

�
0

h�j
(2)j�i =
X
�0

h�jV j�0ih�0jV j�i
(E�0 � E

�
0 )(E

�
0 � E

�0

0 )
�
X
�0

h�jV j�0ih�0jV j�i
(E�0 � E

�
0 )(E

�0
0 � E�0 )
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11.5.2 E¤ective Hamiltonian

The eigenvectors of the e¤ective Hamiltonian represent the model functions, the
eigenvalues are the exact energies of the exact w.f.

He� � PH
P ; Heff�i = Ei�i

The practical approach is to �nd the �(1), build the second-order e¤ective Hamil-
tonian:

H
(2)
e� = P (H0 + V + V �

(1))P

and solve the eigenvalue problem in P -space to �nd the second order energies.

(H
(2)
e� � E

(2))j�i = 0

The Heff is, generally, non-hermitian. The �rst order corrections disappear if
V = 1=r12 � UHF .

11.6 Brillouin-Wigner

One has to know an exact energy E in advance, this leads to a necessity to carry
out the energy expansion self-consistently.

(H0 + V ) = E 

We know the spectrum of H0 - a set of { �j ; E
j
0 } .

Projection operator P with respect to the reference function �0 - zero order
approximation:

P = j�0ih�0j
the rest of the space is spanned by Q-operator: Q = 1� P .

11.6.1 Wave Function

Intermediate normalization: h�0j i = 1. Recursion relation for the exact w.f.
 

 = �0 + TEV  

TE = Q
E�H0

is a resolvent. The expansion is obtained by iterating the above
relation.

 = (1 +
Q

E �H0
V +

Q

E �H0
V

Q

E �H0
V + :::)�0

or by orders

 (0) = �0;

 (1) =
X
j 6=0

j�jih�j jV j�0i
E � Ej0

;

 (2) =
X
j;k 6=0

j�jih�j jV j�kih�kjV j�0i
(E � Ej0)(E � Ek0 )

Also  = 
E�0, where wave operator 
E satis�es 
E = 1 + TEV 
E
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11.6.2 Energy Expansion

E = E0 + h�0jV 
E j�0i

Def: "E¤ective interaction" WE = V 
E . It has the same result acting on �0
as V acting on  : WE�0 = V  .
n-th order of energy expansion:

E(n) = h�0jV
�

Q

E �H0
V

�n�1
j�0i

or explicitly

E(1) = h�0jV j�0i;

E(2) =
X
i 6=0

h�0jV j�iih�ijV j�0i
E � Ei0

12 Second Quantization for Complex Atoms

12.1 Anti-commutators:

ayja
y
k = �a

y
ka
y
j ;

ajak = �akaj ;
aja

y
k = �jk � aykaj

ajaj � 0
ayja

y
j � 0

12.2 Physical operators

One-particle operator
F =

X
kl

hkjf jliaykal

Two-particle operator

G =
1

2

X
ijkl

gijkla
y
ia
y
jalak;

here

gijkl � hijjgjkli �
Z
d3r1d

3r2 
y
i (r1) 

y
j (r2)g(r12) k(r1) l(r2)
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Any two-particle operator B can be represented as a sum of zero-body B(0),
one-body B(1) and two-body B(2) terms.

B(0) =
1

2

X
ab

~babab ;

B(1) =
X
ij

 X
a

~biaja

!
: ayiaj : ;

B(2) =
1

2

X
ijkl

bijkl : a
y
ia
y
jalak : :

12.3 Notation for subscripts

� a,b,c,d . . . - core orbitals;

� m,n . . . ,r,s - excited (virtual) orbitals, including valence;

� v,w . . . - valence orbitals;

� i,j. . . ,k,l . . . - any orbitals;

aycorej0ci = 0 ; avirtj0ci = 0

12.4 Normal form of Operators :A:

The operators are rearranged so

acore and a
y
virt appear to the left of a

y
core and avirt

The operators in normal form give 0 when acted on core.

12.4.1 Wick�s Expansion into Normal Products

A =: A : + : A :

: A : is the sum of normal ordered terms obtained by making all possible single,
double, triple ... contractions within A. Contractions are de�ned as xy � xy� :
xy :.
The sign of : A : is (�1)p (p is a number of permutations to bring A in normal
form). Same rule holds for terms in : A : - we count permutations necessary
to bring the contracted operators together + the permutations to bring the
obtained term in normal form. Notice that moving a string of two operators
simultaneously does not change the sign of the total string.
The only nonvanishing contractions are

ama
y
n = �mn; a

y
aab = �ab:

All contractors between core and excited states vanish.
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12.4.2 Wick�s Theorem for Operator Products

: A : � : B :=: AB : + : AB :
Here : AB : represents the sum of the normal-ordered terms with all possible
contractions between the operators in A and those in B.

12.5 Evaluation of Matrix elements in Second Quantiza-
tion

12.5.1 Real Vacuum

Operators in normal form : A : with respect to real vacuum:

All ayi are on left side; all ak are on the right side:

Then : A : j0i = 0, provided there is at least one ai in A. Also h0j : A :=

0, provided there is at least one ayi in A. Using Wick�s expansion in normal
products ( 12.4.1) we see that

h0jAj0i = termsw=o normal products
The terms w/o normal products are those where the maximum number of con-
tractions is achieved.

12.5.2 Quasi-vacuum j0ci

Rules for evaluating products : A :: B : j0ci
1. Several rules for evaluating h0cjAj0ci.
h0cjAj0ci = 0 if
1. the number of operators is odd.

2. the number of virtual orbitals is odd.

3. the number of core orbitals is odd.

4. the number of ayvirt 6= the number of avirt.

5. the number of aycore 6= the number of acore
After such selection one uses the Wick�s theorem. In the Wick�s expansion

only the terms w/o operators in normal form remain. They correspond to the
maximum number of contractions in A.
Suppose we deal with a matrix element containing two normal products: M =
h0cj : A :: B : j0ci. Then M = 0 unless the number of operators in : A : equals
that of in : B :. This fact immediately follows from the Wick�s theorem of
expansion of operator products.
When dealing with matrix elements of several operators in normal form the
following observation is valuable:
M = h0cj : A :: B :: C : j0ci can be obtained by calculating only contractions
between : A : and : B : ( or : B : and : C : ) having a number of operators equal
to that of in : C : (: A :).
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13 Many-Body Perturbation Theory

Arrange the expansion terms according to the number of particles excited, in-
stead of powers of V . It allows for all-order treatment of the expansion.

13.1 Atomic Hamiltonian in Normal Form

The indexing scheme is def. in ??.

H = H0 + V;

H0 = E0core +
X
k

"k : a
y
kak :;

V = Vcore +
X
ij

(VHF � U)ij : ayiaj : +
1

2

X
ijkl

gijkl : a
y
ia
y
jalak :

Here
E0core =

X
a

"a ; Vcore =
X
a

[
1

2
V HFaa � Uaa]

and
(VHF)ij �

X
b

(gibjb � gibbj)

13.2 Wave Operator Expansion

General expression


 = 1 +
X
ij

: ayiaj : �
i
j +

1

2

X
ijkl

: ayia
y
jalak : �

ij
kl +

1

3!

X
� � �

For closed shell systems (explicit indexing)


 = 1 +
X
ar

ayraa�
r
a +

1

2

X
abrs

ayra
y
sabaa�

rs
ab + � � �

From PT one gets ( (k) superscript is the order of V ) :

�r(1)a =
hrjvjai
"a � "r

�
rs(1)
ab =

grsab
"a + "b � "r � "s

13.3 Random Phase Approximation

RPA (Random Phase Approximation) corresponds to shielding of the ex-
ternal applied �eld.
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ZRPAan = zan +
X
bm

ZRPAbm ~gamnb
"b � "m � !

+
X
bm

~gabnmZ
RPA
mb

"b � "m + !

ZRPAna = zna +
X
bm

ZRPAbm ~gnmab
"b � "m � !

+
X
bm

~gnbamZ
RPA
mb

"b � "m + !

! = "w � "v

13.4 Brueckner orbitals

Brueckner orbital corrections correspond to valence electron polarizing the
core. Then the valence electron gets attracted to the polarized core, reducing
size of its orbit. Self-energy operator corresponds to core polarizability term in
the model-potential Hamiltonian

�(r0; r)! �c
2r4

�(r0 � r)

14 Angular momentum

14.1 Spherical basis vectors

êx =
1p
2
(ê�1 � ê+1)

êy =
ip
2
(ê�1 + ê+1)

êz = ê0

and vice versa

ê+1 = �
1p
2
(êx + iêy)

ê0 = êz

ê�1 =
1p
2
(êx � iêy)

From these de�nitions
(e�)

�
= (�1)� e��

Notice that the scalar product (with complex conjugation)

(ê�M � êM 0) = �MM 0

However, the conventional scalar product does not include the complex conju-
gation.
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14.2 Properties of angular momentum

J+ = Jx + iJy

J� = Jx � iJy
Jx = (J+ + J�) =2

Jy = (J+ � J�) = (2i)
[Jz; J+] = +~J+
[Jz; J�] = �~J�

ei
JzJ+e
�i
Jz = J+e

i


ei
JzJ�e
�i
Jz = J�e

�i


J2 =
1

2
(J+J� + J�J+) + J

2
z

Eigenvectors

JzjJMi =M jJMi

J+jJMi = fJ (J + 1)�M (M + 1)g1=2 jJ;M + 1i

J�jJMi = fJ (J + 1)�M (M � 1)g1=2 jJ;M � 1i

hJM 0jJ+jJMi = fJ (J + 1)�M (M + 1)g1=2 �M 0;M+1

hJM 0jJ�jJMi = fJ (J + 1)�M (M � 1)g1=2 �M 0;M�1

14.3 nJ-symbols and Clebsh-Gordan coe¢ cients

Properties of 3j-symbol�
j1 j2 j3
m1 m2 m3

�
/ �(j1j2j3) � (m1 +m2 +m3 = 0)

Even number of permutations of the columns does not change the value of a
3j-symbol, while odd permutation introduces a phase factor of (�1)j1+j2+j3 .�

j1 j2 j3
�m1 �m2 �m3

�
= (�1)j1+j2+j3

�
j1 j2 j3
m1 m2 m3

�
Relation between CG and 3j�

j1 j2 j3
m1 m2 m3

�
= (�1)j3+m3+2j1 1p

[j3]
Cj3m3

j1�m1 j2�m2
(11)

Cj3m3

j1m1 j2m2
= (�1)j1�j2+m3

p
[j3]

�
j1 j2 j3
m1 m2 �m3

�
(12)
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Special cases �
j 0 j
�m 0 m

�
=
(�1)j�mp

[j]
(13)

(�1)j�m
�

j 1 j
�m 0 m

�
=

1

fj (j + 1) (2j + 1)g1=2
m (14)�

j k j
�j 0 j

�
=

(2j)!

f(2j � k)! (2j + k + 1)!g1=2
(15)

C00j1m1 j2m2
= (�1)j1�m1 �j1j2�m1;�m2

1p
2j1 + 1

CJMj1m1 00 = �Jj1�m1;M

Properties of 6j-symbol The triangular conditions between the following
momenta must be satis�ed

�

 
 


�
;

�




 


�
;

�




 


�
;

�




 


�
Columns may be interchanged freely, and also any two numbers in the bottom
row of a 6j-symbol may be interchanged with the corresponding two numbers
in the top row.
One of the angular momenta is zero�

j1 j2 j3
l1 l2 0

�
=
(�1)j1+j2+j3p

[j1; j2]
� (j1; l2) � (j2; l1)

Sum rules

Properties of 9j-symbol 8<: j1 j2 j3
j4 j5 j6
j7 j8 j9

9=;
swap of any two columns or rows leads to to a phase factor (�1)

P9
k=1 jk . It is

invariant under re�ection through one of the diagonals. The following selection
rules have to be satis�ed: i.e. we have triangles for each row and column of the
9j-symbol.

�(j1; j2; j3)� (j4; j5; j6)� (j7; j8; j9)

� (j1; j4; j7)� (j2; j5; j8)� (j3; j6; j9)
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14.4 Angular momentum diagrams

Wigner-Eckart theorem: or

hj1;m1jT kq jj2;m2i = (�1)j1�m1

�
j1 k j2
�m1 q m2

�
hj1jjT kjjj2i (16)

14.5 Transformation rules

"�" to "�" and reverse vertex rules:
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15 Spherical Tensors

Relation between extended (stretched) matrix element and reduced matrix ele-
ment

hjjT k0 jjiext � hj m = jjT k0 jj m = ji =
�

j k j
�j 0 j

�
hjjjT kjjji

Coupling of spherical tensors: Similar to coupling of angular-momentum
eigen-states n

A(j1) 
 B(j2)
o
JM

=
X
m1m2

CJMj1m1j2m2
A(j1)m1

B(j2)m2

Recoupling formula (M = m1 +m2)

A(j1)m1
B(j2)m2

=

j1+j2X
J=jj1�j2j

CJMj1m1j2m2

n
A(j1) 
 B(j2)

o
JM

:

For spherical harmonics the above formula may be simpli�ed

Yl1m1 (�; �)Yl2m2 (�; �) =
1p
4�

X
LM

�
[l1; l2]

[L]

�1=2
CL0l10l20C

LM
l1m1l2m2

YLM (�; �)

(17)
Scalar product and rank 0 tensor�

A(J) �B(J)
�
=
X
�

(�1)�A(J)� B
(J)
��

n
A(J) 
 B(J)

o
00
=
(�1)Jp
[J ]

�
A(J) �B(J)

�
For vectors in particular: scalar productn

A(1) 
 B(1)
o
00
= � 1p

3

�
A(1) � B(1)

�
vector product n

A(1) 
 B(1)
o
1�
=

ip
2

h
A(1) � B(1)

i
�

tensor of the second rankn
A(1) 
B(1)

o
2;+2

= A+1B+1n
A(1) 
B(1)

o
2;+1

=
1p
2
(A+1B0 +A0B+1)n

A(1) 
B(1)
o
2;0
=

1p
6
(A+1B�1 + 2A0B0 +A�1B+1)n

A(1) 
B(1)
o
2;�1

=
1p
2
(A�1B0 +A0B�1)n

A(1) 
B(1)
o
2;�2

= A�1B�1
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15.1 Reduction Theorems

Following Edmonds [Edm85].

15.1.1 Tensor product of two tensor operators

hn0J 0jj(Tk1 
 Tk2)K jjnJi =
p
[K](�1)K+J+J

0 X
n00J00

�
k1 k2 K
J J 0 J 00

�
hn0J 0jjTk1 jjn00J 00ihn00J 00jjTk2 jjnJi

15.1.2 Tensor product of two tensor operators acting on di¤erent
subsystems

T (k1) acts on part 1 of system, U(k2) on part 2. System angular momentum
JM is composed from j1m1 of part 1 and j2m2 of part 2.

hn01j01n02j02J 0jj(Tk1 
 Uk2)K jjn1j1n2j2Ji =
p
[J; J 0;K]

8<: j01 j1 k1
j02 j2 k2
J 0 J K

9=;
hn01j01jjTk1 jjn1j1ihn02j02jjUk2 jjn2j2i

For scalar product

h(
1j1
2j2) JM jjTk � Ukjj (
01j01
02j02) J 0M 0i = (�1)j
0
1+j2+J �JJ 0�MM 0

�
j1 j01 k
j02 j2 J

�
h
1j1jjTkjj
01j01ih
2j2jjUkjj
02j02i

15.1.3 Tensor operators acting on subsystem 1

hn01j01n02j02J 0jjTkjjn1j1n2j2Ji = (�1)j
0
1+j2+J+k

p
[J; J 0]

�
j01 J 0 j2
J j1 k

�
hn0j01jjTkjjnj1i�n2n02�j2j02

hnaja1ja2JajjTkjjnbjb1jb2Jbi = (�1)ja1+jb2+Jb+k
p
[Ja; Jb]

�
ja1 Ja jb2
Jb jb1 k

�
hnaja1jjTkjjnbjb1i

In particular, for the electric-dipole operator

��hn0s1=2jjDjjnp1=2i�� =r2
3
jhn0sjjDjjnpij

��hn0s1=2jjDjjnp1=2i�� =r4
3
jhn0sjjDjjnpij
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15.2 Various Reduced Matrix Elements

An excellent collection of matrix elements is compiled by Varshalovich et al. [VMK88].
Angular momentum operator:

hj1jjJ jjj2i = �j1j2
p
j1(j1 + 1)(2j1 + 1)

Normalized spherical harmonic Ckq is de�ned as

Ckq =

r
4�

2k + 1
Ykq(r̂);

C00 � 1;
C1� (r̂) = r̂�;

and

hl1jjCkjjl2i = (�1)l1
p
[l1][l2]

�
l1 k l2
0 0 0

�
:

Symmetry property:

hlajjCkjjlbi = (�1)la�lbhlbjjCkjjlai:

For states coupled to a given j :

h�ajjCkjj�bi = (�1)ja+1=2
p
[ja][jb]

�
ja jb k
�1=2 1=2 0

�
�(la + k + lb);

where �(l) = 1 for even l, and �(l) = 0 for odd l.
Symmetry property

h�ajjCkjj�bi = (�1)ja�jbh�bjjCkjj�ai:
Special cases:

hj0jjC0jjji = �jj0
p
[j]

hl0jjC0jjli = �ll0
p
[l]

hjajjCkjjs1=2i = �k;la (�1)ja+la�1=2
p
[ja]=[la]

Matrix element of a unit vector n̂ (rank 1) :

hl0jjn̂jjli =
p
[l](�1)(l�1)

�
l l0 0
1 0 0

�
r
 (rank 1):

hl0jjr
jjli = �fl
p
l + 1 �l0l+1 + (l + 1)

p
l �l0l�1g

� (rank 1):

h1=2jj�jj1=2i =
p
6

h jajj�jjjbi = �lalb(�1)la+ja�1=2
p
[ja; jb]

�
1 ja jb
la 1=2 1=2

� p
6
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15.3 LS-coupling

hn(LS)J jjSjjn0 (L0S0)J0i = (�1)
S+L0+J0+1

p
[J; J 0]

p
S(S + 1)(2S + 1)

�
S J L0

J 0 S 1

�
�SS0

15.4 Spherical harmonics

Y �lm (�; �) = Ylm (�;��) = (�1)m Yl;�m (�; �)
Normalized spherical harmonics Ckq (r̂) are de�ned as

Ckq (r̂) =

r
4�

2k + 1
Ykq(r̂);

C00 � 1
C1� (r̂) = r̂�

� (n� n0) = � (�� �0) � (cos � � cos �0) =
X
lm

Y �lm (n)Ylm (n
0)

Yl1m1 (�; �)Yl2m2 (�; �) =
1p
4�

X
LM

�
[l1; l2]

[L]

�1=2
CL0l10l20C

LM
l1m1l2m2

YLM (�; �)

(18)

15.5 Vector spherical harmonics

Y
(�1)
JM (�; �) = r̂YJM (�; �)

Y
(0)
JM (�; �) =

1p
J (J + 1)

LYJM (�; �)

Y
(+1)
JM (�; �) =

rp
J (J + 1)

rYJM (�; �) = �i
h
r̂;Y

(0)
JM (�; �)

i
Normalized harmonics

C
(�)
kq =

r
4�

2k + 1
Y
(�)
kq (r̂)

Apparently
r̂ =(4�)

1=2
Y
(�1)
00 (r̂) = C

(�1)
00

Matrix elements of normalized vector spherical harmonics times � :

h�bmbj� �C(�1)kq j�amai = �h��bmbj Ckq j �amai

h�bmbj � �C(0)kq j �amai =
�a � �bp
k(k + 1)

h�bmbj Ckq j �amai

h�bmbj � �C(1)kq j �amai =
�a + �bp
k(k + 1)

h��bmbj Ckq j �amai
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16 Rotations

16.1 Wigner D-functions

The wave-function in the initial (�; �) and the rotated (�0; �0) frames are related
as

	JM 0 (�0; �0; �0) =
JX

M=�J
	JM (�; �; �) D

J
MM 0 (�; �; 
)

	JM (�; �; �) =
JX

M=�J

�
DJ
MM 0 (�; �; 
)

��
	JM 0 (�0; �0; �0)

where �; �; 
 are the Eurler angles of the rotation. Spherical tensors transform
in the same way

T
(J)
M 0 (�

0; �0; �0) =
JX

M=�J
T
(J)
M (�; �; �) DJ

MM 0 (�; �; 
)

�
DJ
M
 (�; �; 
)

��
= DJ

M
 (�
; �;��) = (�1)
M�


DJ
�M�
 (�; �; 
)

Clm (�; �) = Dl
0;�m (0; �; �)

� (n� n0) = � (�� �0) � (cos � � cos �0) =
X
lm

Y �lm (n)Ylm (n
0)

Yl1m1
(�; �)Yl2m2

(�; �) =
1p
4�

X
LM

�
[l1; l2]

[L]

�1=2
CL0l10l20C

LM
l1m1l2m2

YLM (�; �)

(19)

17 Goldstone Diagrams

Rules:

1. Interaction - dotted horizontal line with vertex.

2. Particle ( excited orbital) - arrow up (positive time)
Hole ( core state) arrow down (negative time)

3. Initial state - incoming arrow, �nal state - outgoing arrow , matrix element
hf jV jii.

= j�rai
hrjV jai
"a � "r
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= j�rai
X
b

hrbj1=r12jabi
"a � "r

= �j�rai
X
b

hbrj1=r12jabi
"a � "r

=
1

2
j�rsabi

hrsj1=r12jabi
"a + "b � "r � "s

18 Numerics

18.1 B-Splines

Advantage is that a set is �nite, reasonably complete, and the continuum spec-
trum is mocked up to be discreet.
Properties: B-spline Bi;k (r) number i of order k is a piecewise polynomial

of degree k � 1 inside ti � r < ti+k. It vanishes outside this interval.

Bi;k (r) 6= 0; ti � r < ti+k

Supporting grid ftjg is de�ned as

t1 = t2 = � � � = tk = 0

tn = tn+1 = � � � = tn+k = R

19 Molecules

19.1 Classi�cation of molecular levels for diatomics

19.1.1 Zoology of various angular momenta

n̂ is the unit vector along the internuclear axis

1. Electronic orbital momentum L, projection � = L � n̂.

2. Spin S, projection � = S � n̂.

3. Total electronic momentum Je = L+ S, projection 
 = (L+ S) � n̂.

4. Mechanical rotation of the molecule as a whole, R. Notice that by de�ni-
tion R � n̂ = 0

5. Total nuclear spin T = I1 + I2
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6. Total molecular momentum J, notice projection on the nuclear axis

J = ((L+ S) � n̂) n̂+R = 
n̂+R

Due to the angular momenta addition rules, J � 


7. �Spinless�total ang. momentum K = L+R = J� S.

8. �Super�-total momentum F = J+T

Hund�s case (a). Relativistic e¤ects are small, � is a projection of L onto
the molecular axis, � is the projection of spin S, 
 = j� + �j. Term symbol
(notice multiplicity based on S;not �)

2S+1�


Electronic energy of the multiplet

Te = T0 +A��

19.1.2 Eigenstates:

Hund�s case (a).

jJMJ
"i =
1p
2
(jJMJ ; 
i j�;�i+ " jJMJ ;�
i j��;��i)

where the rotational part [LBF86, Miz75]

jJMJ ; 
i =
�
(2J + 1)

8�2

�1=2
DJ

MJ

(�; �; �)

and " = �1 denote parity of the states (Wang transformations). The Wigner
functions (same as in Edmonds)

DJ

MJ

(�; �; �)

are simultaneous eigenstates of J2 , lab-frame Jz (eigenvalue MJ) and Jz in
the rotating body-frame (eigenvalue 
): Useful formula for computing matrix
elements

1

8�2

Z
d!D

(j1)
m0
1m1

(!)D
(j2)
m0
2m2

(!)D
(j3)
m0
3m3

(!) =

�
j1 j2 j3
m1 m2 m3

��
j1 j2 j3
m0
1 m0

2 m0
3

�
Z
d! =

Z 2�

0

d�

Z �

0

sin� d�

Z 2�

0

d


Using this formula and the transformation of the spherical tensor into the
body frame,

T
(J)
M 0 (�

0; �0; �0) =

JX
M=�J

T
(J)
M (�; �; �) DJ

MM 0 (�; �; 
)
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and �
DJ
M
 (�; �; 
)

��
= (�1)M�


DJ
�M�
 (�; �; 
)

we relate the matrix element in the lab frame with the mel in the body frame

hJ 0M 0
J ; 


0jT (k)q0 jJMJ ; 
i(lab) = (�1)

0�M 0

J
p
[J ] [J 0]

X
q

h
0jT (k)q j
i(body) ��
J 0 k J
�
0 q 


��
J 0 k J
�M 0

J q0 MJ

�
19.1.3 Symmetries:

gerade/ungerade etc ...
Symmetric Top
The moments of intertia perpendicular to the internuclear axis IB = �R2e

are much larger than IA about the axis. The exact energy levels

F (J) = BJ (J + 1) + (A�B) �2

A =
h

8�2cIA
; B =

h

8�2cIB

19.2 Transformation from the laboratory to body-�xed
frame

F is the super-total angular momentum

�F;MF

lab =
X
KF

(�
(2F + 1)

8�2

�1=2
D�F
MFKF

(�; �; �)

)
�F;KF

body

T labp =
X
q

D�L
pq (�; �; �)T

body
q

The spherical angles � and � correspond to the Eurleur angles � are � of the
body frame with respect to the lab frame.

19.3 Zeeman e¤ect

First-order energy correction

E
(1)
B = ���B

Here �� is the expectaion value of the molecular magnetic moment in the direc-
tion of the �eld. Unless the molecule is in 1� state, the magnetic moment is
dominated by that due to electron (i.e. nuclear magnetic moment and rotation
of the molecule as the whole may be disregarded (�B=�n � 1=2000)):
Case (a), M is the projection of the total angular momentum J on the

B-�eld

�� =
(� + 2�) (� + �)

J (J + 1)
M �B

Footnote: for 2�1=2, � + 2� = 0, and �� = 0.

41



19.4 Stark e¤ect

Linear Stark e¤ect arises if the molecular state has the electric dipole moment
D, then disregarding �-doubling,

E
(1)
E = � �D E

where
�D =




J (J + 1)
M D

19.5 Long-range interactions of molecules

According to Ref. [Arr81], if two space-�xed parallel coordinate frames are in-
troduced in the molecules A and B, their centers being at a and b, and R points
from a to b

V (R) =
X
La=0

X
Lb=0

VLaLb
RLa+Lb+1

where

VLaLb =
(4�)

1=2
(�1)Lbp
[L]

�
2L
2La

�1=2 LX
M=�L

(�1)M Y �ML

�
R̂
�
[TLa (ra)
 TLb (rb)]

L
M

with L = La + Lb and
T ML (r) = rLCML (r̂)

and

[TLa (ra)
 TLb (rb)]
L
M =

X
MaMb

hLaMa;LbMbjLMiT Ma

La
(ra) T Mb

Lb
(rb)

For two parallel reference frames with z-axis �xed along R

VLaLb =

L<X
M=�L<

WM
LaLb

T MLa (ra) T
�M
Lb

(rb)

WM
LaLb

=
(�1)Lb (La + Lb)!

f(La �M)! (La +M)! (Lb �M)! (Lb +M)!g1=2

with L< = min (La; Lb). In particular

Vdd = �
1

R3

X
�

w(1)� D(1)
� (I)D

(1)
��(II)

with w� = 1 + ��;0 and the dipole operator

D(1)
� = � jej

X
i

ri C
(1)
� (r̂i)
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VQQ =

�X
�=�2

4!

(2� �)!(2 + �)!Q
(2)
� (I)Q

(2)
��(II) ; (20)

with quadrupole moment tensor Q(2)� de�ned as

Q(2)� = �jej
X
i

r2iC
(2)
� (r̂i)

The double-atom basis. For homonuclear molecules the symmetry-adapted
basis formed from atomic states centered at the nuclei I and II����p��E = � 1p

2
(j�iI j�iII + (�1)

p j�iI j�iII) � 6= �

j�iI j�iII � = �; p = g

The completeness relation

1 =
X

(�>�);p

����p��ED�p�����+X
�

j�g��i h�g��j :

Useful Casimir-Polder identity

1

a+ b
=
2

�

Z 1

0

d!
a

a2 + !2
b

b2 + !2
; a > 0; b > 0

Higher multipole dispersion coe¢ cients for two spherically-symmetric atoms
From [SC85]

C6 = CAB (1; 1)

C8 = CAB (1; 2) + CAB(2; 1)

C10 = CAB (2; 2) + CAB (1; 3) + CAB(3; 1)

with

CAB (l1; l2) =
(2l1 + 2l2)!

4 (2l1)! (2l2)!

�
2

�

�Z 1

0

�Al1 (i!)�
B
l2 (i!) d!

e.g.

CAB (1; 1) =
3

�

Z 1

0

�A1 (i!)�
B
1 (i!) d!

CAB (1; 2) =
15

2�

Z 1

0

�A1 (i!)�
B
2 (i!) d!

CAB (2; 2) =
35

�

Z 1

0

�A2 (i!)�
B
2 (i!) d!

CAB (1; 3) =
14

�

Z 1

0

�A1 (i!)�
B
3 (i!) d!
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20 Applications

20.1 EM moments

Dipole moment of the system

D =
X

qiri = �jej
X

ri

Interaction with the electric �eld

V = �D � E

The Hamiltonian of interaction of a magnetic dipole � with a static uniform
magnetic �eld B is given by

H = �� �B

Magnetic moment nonrelativistically may be expressed as

� = ��B (L+ geS) ;

where the Bohr magneton is

�B =
jej ~
2m

;

and gyromagnetic ratio for electron ge � 2:002.
In a magnetic �eld, the energy levels are given by

EMJ
= �BgJBMJ ; (21)

where muB is the Bohr magneton, gL is the Lande factor, and M is the projec-
tion of the angular momentum along the B-�eld. For an atom in a state 2S+1LJ ,
the Lange factor is given by

gJ =
hnJ j j(J + S)jjnJip
J
p
1 + J

p
1 + 2 J

= 1 +
J (J + 1)� L (L+ 1) + S (S + 1)

2 J (J + 1)

For ground state of alkali-metal atoms gJ
�
2S1=2

�
= 2.

For a hyper�ne state, the Zeeman e¤ect in a weak �eld (when the Zeeman
corrections are much smaller than the HFS splitting between the energy levels)
{See HAKEN, WOLF, Atomic and Quantum Physics, Springer, Berlin }

EMF
= �BgFBMF ; (22)

with the modi�ed Lande factor

gF = gJ
F (F + 1) + J (J + 1)� I (I + 1)

2F (F + 1)
+

� gI
�N
�B

F (F + 1) + I (I + 1)� J (J + 1)
2F (F + 1)
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The second contribution (nuclear moment) is about 2,000 times smaller since
�N=�B = me=mp.
Disregarding this term we obtain for J = 1=2

gF=I+1=2 = gJ
1

2I + 1

gF=I�1=2 = �gJ
1

2I + 1

i.e. for the lower HFS state the g-factor is negative.

20.2 Cooling and trapping

20.2.1 Optical lattices

In a lattice, the electric �eld is formed by two counter-propagating waves (orig-
inal laser and the re�ected wave, which is then absorbed? on the other, laser,
end, so there is only one re�ection)

E (z; t) = E0 cos (!t� kz) + E0 cos (!t+ kz) = 2E0 cos kz cos!t

we see that the e¤ective �eld strength is 2E0. It means that given a formula
for a single laser, we can upgrade to the lattice by multiplying E0 by 2. Or
intensity/power by a factor of 4.
1D-lattice potential for far-o¤ resonance trap

V (r; z) = 4Vmax exp
n
�2r2=w (z)2

o
cos2 (2�z=�)

Vmax =
� (!)

c"0�w (z)
2P =

4�

c
� (!) I;

where P is the laser power and w (z) is the radius of the laser beam.
Lamb-Dicke regime: the spacing of vibrational levels exceeds the photon

recoil energy

~!ho � ER =
(~k)2

2M

20.2.2 Static polarizabilities

Polarizability is de�ned as
hDzi = �Ez

(alternative de�nition through second order energy correction �En = �1=2 � E2z ).
For non-polar gasses (Clausius-Mossotti equation see Section 4.5 of Ref.[Jac99])

� =
3

n

�
"="0 � 1
"="0 + 2

�
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where " is dielectric constant and n is the number density. The zz component
of the polarizability tensor for the state  s is

�zz = 2
X
k

h sjDzj kih kjDzj si
Ek � Es

This tensor may be decomposed into the scalar and tensor (rank 2) parts

�zz = �(0)zz + �
(2)
zz

�(0)zz =
2

3

X
k

h sjDj ki � h kjDj si
Ek � Es

�(2)zz =
2

3

X
k

X
�=0;�1

(1 + ��;0)
h sjD�j kih kjD��j si

Ek � Es

�E1
a (!) = 2

X
b

Eb � Ea
(Eb � Ea)2 � !2

jh ajDzj bij2

For ground states of alkali-metals 2S1=2

�E1
g

�
2S1=2; !

�
=
1

3

X
e

Ee � Eg
(Ee � Eg)2 � !2

jh gjjDjj eij2

20.3 Nuclear distributions

20.3.1 Fermi-type distribution

c-nuclear radius cuto¤

�(r) =
�0

1 + exp [(r � c)=a] ;

where normalization constant �0 is found fromZ 1

0

4�r2�(r)dr = 1:

A typical value of a =fm.
Moments of Fermi distribution

Fn (c; a) =

Z 1

0

rn
1

1 + e((r�c)=a)
dr = an+1In

� c
a

�
with

In (�) =

Z 1

0

xn
1

ex�� + 1
dx =

�Z �

0

+

Z 1

�

�
xn

ex�� + 1
dx =

=

Z �

0

xn

ex�� + 1
dx+

Z 1

0

(y + �)
n

1 + ey
dy:
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The integrals may be expressed in terms of polylogarithms Lin (z)

Lin (z) =
1X
k=1

zk

kn
: (23)

and Rieman �-function. Particular values

I2 (�) =
�2

3
�+

1

3
�3 � 2Li3(�e��);

I3 (�) =
7�4

60
+
�2

2
�2 +

1

4
�4 + 6 Li4(�e��);

I4 (�) =
7�4

15
�+

2�2

3
�3 +

1

5
�5 � 24Li5(�e��):

In terms of these integrals, the normalization factor is given by

�0 =
1

4�
[F2 (c; a)]

�1 .

20.3.2 Uniform distribution

�(r) =
3

4�R3

�
1; r � R
0; r > R

Here the nuclear radius R is related to the r.m.s value as

R =

r
5

3
hr2i1=2

Fitting formula from [JS85], A > 9

hr2i1=2 = 0:836A1=3 + 0:570 (�0:05) fm.

20.3.3 Woods - Saxon potential for nucleons

VWS = V0f(r) + Vls (l � s) r20
1

r

df

dr

f(r) =

�
1 + expfr �R

a
g
��1

Here R = r0A
1=3 , r0 = 1:27 fm, a = 0:67 fm, V0 = (�51 � 33N�ZA ) MeV (

upper sign for neutrons, lower for protons ), and Vls = �0:44V0

For protons add Coulomb potential (uniformly charged ball)

VC(r) =

(
3=2(Z � 1) e2R (1�

r2

3R2 ); r � R

(Z � 1) e2R r > R
; (24)
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20.4 Fundamental symmetries

� Parity transformation: (After [Hol95])

r! �r (25)

� ! � (26)

l! l (27)

� Time reversal:

t! �t (28)

r! r (29)

p! �p (30)

L! �L; (31)

� ! �� (32)

Also in the scattering processes the initial and �nal states are swapped
[Hol95], p. 90. T-revesrsal for molecules: "in the abscense of the exter-
nal B-�eld the Hamiltonian would contain only even combinations of the
angular momentum operators, e.g. F�F� , F�L� , F�S� . Thus changing
the signs of all the angular momentua should result in the same wave
function." (Wigner group theory + p.396 of Drake)

� Charge conjugation:
There is a nice table (Table 6.1) in the Jackson (Jac99) IIIrd edition with
the transformation properties of various E&M-related quantities.

20.5 Parity violation in atoms (PNC/APV)

Leading e¤ect are neutral current interactions.
Fermi constant GF = 2:22� 10�14 a.u.
Notations


0 = �; 
i = �i; 
5 = i
0
1
2
3; �� = (�)+
4

Weak charge
QW = Z(1� 4 sin2 �W )�N;

where Z is the number of protons, N number of protons, and �W is Weinberg
angle, sin2 �W � 1=4 , so that QW � �N .
Interactions :
The dominant e¤ect is the exchange of virtual Z0 boson b/w quark in the
nucleus and atomic electron. Time-like part dominates

hW =
GF

2
p
2
QW �nuc(r)
5

Angular reduction

hmjhW jni = �i
GF

2
p
2
QW ��m;��n�mm;mn

Z 1

0

�nuc (r) f�Gm (r)Fn (r) +Gn (r)Fm (r)g dr
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20.6 Nuclear spin-dependent e¤ects

1. Interaction b/w the nuclear axial-vector current and the electron vector-
current from Z0 exchange :

h
(2)
W = � Gp

2
K2

�� 1=2
I(I + 1)

� � I �(r)

2. Anapole-electron interaction :

haW =
Gp
2
Ka

�

I(I + 1)
� � I �(r)

Electron-electron weak interaction : Z(0) exchange b/w e. Contact
interaction.

C1e � �
1

2
(1� 4 sin2 �W ); (33)

C2e �
1

2
: (34)

Only cross term C1eC2e contributes to PNC.

gwijkl =
p
2G

Z
��i(
�C1e + 
�
5C2e)�k ��j(


�C1e + 

�
5C2e)�ld

3x

20.7 Permanent electric-dipole moments

Permanent electric-dipole moments (EDM) may arise due to

1. nuclear Schi¤ moment,

2. intrinsic dipole moment of electron,

3. P,T-odd electron-nucleon interactions.P,T-odd semileptonic interactions

20.7.1 Schi¤ moment

Schi¤ moment S is aligned along the nuclear spin, S = S I
I . The corresponding

Hamiltonian of interaction of atomic electron with the nuclear Schi¤ moment is

HSM = 4�S � r� (r) =
X
�

(�1)� S�� (He
SM )� ;

He
SM = 4�r� (r)

where � (r) is the nuclear density. An alternative expression, more suitable for
relativistic calculations has been introduced in [FG02]

He0
SM = 3

1

B4
� (r) r,
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where B4 =
R1
0
r4� (r) dr is the fourth-order moment of the nuclear distribution.

For a closed-shell atom, at the HF level the induced dipole moment is

� = �S 2
3

X
am

(�1)ja�jm hajjrjjmihmjjH
e
SM jjai

"a � "m

Taking into account that

r� (r) = d�

dr
r̂;

r̂� = C1� (r̂) ;

the relevant reduced matrix element is given by

hna�ajjHe
SM jjnb�bi = 4�h�ajjC1jj�bi

Z 1

0

(Ga (r)Gb (r) + Fa (r)Fb (r))
d�

dr
dr:

The nuclear density is parametererized as the Fermi distribution

�(r) =
�0

1 + e((r�c)=a)

Numerically the integration will be unstable, because the derivative of �(r) will
behave like a �-function centered about cuto¤ radius c. More stable is the
reduced matrix element of the �nite nucleus SM

hna�ajjHe0

SM jjnb�bi = 3h�ajjC1jj�bi
1

B4

Z 1

0

r � (r) (Ga (r)Gb (r) + Fa (r)Fb (r)) dr

20.7.2 P,T-odd electron-nucleon tensor interaction

Parametrization [MP85]

hT =
p
2GF CTN �N � (i
0
5 �)e �N (re) : (35)

Here GF � 2:22254� 10�14 a.u. is the Fermi constant and CTN is the coupling
constant of interest. The induced atomic EDM is

� =
X
i

h	0jDj	iih	ijhT j	0i
E0 � Ei

+
X
i

h	0jhT j	iih	ijDj	0i
E0 � Ei

(36)

At the Hartree-Fock level

� =
X
am

hajDjmihmjhT jai
"a � "m

+ c:c: (37)

where a runs over occupied and m over excited single-particle orbitals and c:c:
term is obtained by swapping D and hT .
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The result of angular reduction for closed-shell atom

�� = (�N )�
p
2GF CTN

1

3

X
am

(�1)ja�jm hajjDjjmihmjj (i
0
5 �e) �N (re) jjai
"a � "m

+ c:c: =

(38)

� (�N )�
p
2GF CTN

2

3

X
am

(�1)ja�jm hajjrjjmihmjj (i
0
5 �e) �N (re) jjai
"a � "m

(39)

where we took into account that D = �jejr. Reduced matrix element of a
combination (i
0
5 �) �N (re) is given as

hna�ajj (i
0
5 �) �N (re) jjnb�bi =

�
Z 1

0

�N (r) dr fh�ajj�jj � �biGa (r)Fb (r) + h��ajj�jj�biFa (r)Gb (r)g (40)

Here G(r) and F (r) are the large and small components of the radial wavefunc-
tions. Since h�mjj�jj�ni / �lmln and l�� = 2j � l�, the selection rule for the
�rst term is la+ lb = 2jb and for the second term la+ lb = 2ja. Apparently, the
states a and b must have opposite parities. Another selection rule is �(ja; 1; jb).
Also

h�ajj�jj�bi = �lalb(�1)la+ja�1=2
p
[ja; jb]

p
6

�
1 ja jb
la 1=2 1=2

�
(41)

20.8 Intrinsic dipole moment of the electron

The SM limit
dSM

�
e�
�
= 10�38e cm

Best present (2004) limit

d
�
T l; e�

�
� 1:6� 10�27e cm

Matrix elements for the electron EDM operator.
The coupling of the electron EDM de with the E-�eld is

Hd = 2de

�
0 0
0 (� �E)

�
We assume that the �eld is produced by the spherically-symmetric charge dis-
tribution inside the atom. Then

E =�
�
d

dr
V

�
r̂

Using
(� � r̂) 
�m(r̂) = �
��m(r̂);
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and the orthogonality of the spherical spinors, we arrive at

hajHdjbi =
�
2de

Z 1

0

dr Qa (r)

�
dV

dr

�
Qb (r)

�
��a;��b�ma;mb

:

The angular selection rules in this integral are simply due to the fact that Hd

is a pseudoscalar.

21 Scattering theory

21.1 Asymptotic expansion

	
(+)
k

�= N

�
eik�r + fk (r̂)

eikr

r

�
fk (r̂) is the scattering amplitude. Di¤erential scattering cross-section

#of scattered particles into 2�r2d


total# of incident particles
=
d�

d

= jfk (r̂)j2

Total scattering cross-section

� =

Z
jfk (r̂)j2 d


The # of particles per unit time per unit area is found using current-density
formula

j =
~
2�

1

i
( �r �  r �) :

Optical theorem: the scattering amplitude in the forward direction and the total
x-section are related as

� =
4�

k
Im fk (0) :

21.2 Lippman-Schwinger integral equation and Green�s
functions

�
r2 + k2

�
	(r) = U (r)	 (r)

U (r) =
2m

~2
V (r)

	 = Neik�r � 1

4�

Z
G (r; r0)U (r0)	 (r0) dr0�

r2 + k2
�
G (r; r0) = �4�� (r� r0)

G(�) (r; r0) =
exp (�ik jr� r0j)

jr� r0j
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21.3 Born approximation

fk

�
k̂0
�
� � m

2�~2

Z
e�ik

0�rV (r0) eik�r
0
dr0

For spherically symmetric potentials V (r) � V (jrj) this expression simpli�es to

f (�) = �2m
~2

Z 1

0

V (r0)
sin qr

qr0
(r0)

2
dr0;

where � is the angle between k and k0, q = k0 � k

q = 2k sin
�

2

21.4 Partial wave expansion

21.4.1 Spherical waves

Free particles (relativistic expansion):

	pjl (r) =
1p
2"

� p
"+m Rpl (r) 
jlm (r̂)

�
p
"�m Rpl0 (r) 
jl0m (r̂)

�
; l0 = 2j � l

" = +
p
p2 +m2

Rpl (r) =

r
2�p

r
Jl+1=2(pr)

Plane wave

eik�r =
1X
l=0

(2l + 1) iljl (kr)Pl

�
k̂ � r̂

�

exp [ik � r] = 4�
X
lm

iljl (kr)Y
�
lm

�
k̂
�
Ylm (r̂)

exp [�ik � r] = 4�
X
lm

i�ljl (kr)Ylm

�
k̂
�
Y �lm (r̂)

Yl0 (�; �) =

r
2l + 1

4�
Pl (cos �)

We have to solve

H	(+) = 2�k2	(+)

	(+) is expanded into a complete set of sperical harmonics and radial wavefunc-
tions Rkl = ukl

r

	(+) =
X

clmRkl (r)Yl0 (�) (42)
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ukl are solutions of radial S.E. regular at the origin ( ukl (0)! 0)�
� 1

2�

d2

dr2
+ U (r)

�
ukl = 2�k

2 ukl

At large r

ukl � sin
�
kr � l �

2
+ �l

�
�l are the phase shifs due to (short-range) potential U , and �l�2 is a free-particle
phase-shift. By matching partial-wave expansion of Eq.?? with Eq. 42 at large
r, one obtains

f (�) =
X

[l] flPl (cos �)

with
fl =

1

2ik

�
e2i�l � 1

�
=
1

k
(2l + 1) ei�l sin �l

Total cross section

� =
4�

k2

1X
l=0

[l] sin2 �l (k)

The stationary scattering wavefunction is represented as ( plane wave + outgo-
ing spherical wave)

	(+) = N
X

[l]
ukl (r)

kr
exp

h
i
��
2
l + �lk

�i
Pl (cos �)

As a check if the potential is absent �lk = 0, ukl(r)kr = jl (kr), and we obtain
fl = 0, � = 0, and

	
(+)
free particle = N

X
[l] jl (kr) exp

h
i
��
2
l
�i
Pl (cos �)

i.e. the partial-wave expansion of the plane wave N eikz:
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22 Electrostatics

Uniform magnetic �eld (Both MKSA and Gaussian units)

A =
1

2
B� r

23 Electrodynamics & lasers

Maxwell�s equations (Gaussian units. See Section 3.2 for other system-of-units)

r �E = 4��

r�H =
1

c

@E

@t
+
4�

c
j

r �H = 0

r�E = �1
c

@H

@t

Energy density W and energy �ux (Poynting vector) S

@W

@t
+r � S = 0

W =
1

8�

�
E2 +H2

�
S =

c

4�
E�H

Vector A and scalar ' potentials

H = r�A

E = �1
c

@A

@t
�r'

Electromagnetic wave

A = A0"̂ cos (!t� kr)
k = !=c

jE0j = jH0j = kA0

I = hSi = c

8�
k2A20 =

c

8�
E20

Here I is the laser intensity (notice averaging of the �ux over time). Atomic
units of electric �eld and intensity

E0 = m2e5=~4 = 5:14220826� 1011 V=m
I0 = cE20 = ??? W=cm2
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Relation b/w intensity and the �eld strength of the laser

I0

�
mW

cm2

�
= 1:33 (E [V=cm])2

Relation b/w CGSE and SI units of electric �eld

1esu (E) � 300 V=cm

Polarization vector:

"̂ = ex cos � + iey sin � = �
1p
2
(cos � + sin �) e+1 +

1p
2
(cos � � sin �) e�1

"̂� = ex cos � � iey sin � = �
1p
2
(cos � � sin �) e+1 +

1p
2
(cos � + sin �) e�1

The parametric angle � may be related to ellipticity parameter �, employed in
Ref.[MOR86] as

cos � =
1p
1 + �2

sin � =
�p
1 + �2

These authors also introduced degree of linear

l =
1� �2
1 + �2

= cos 2�

and circular

A =
2�

1 + �2
= sin 2�

polarization. Notice (Scalar product is without complex conjugation!)

("̂� � "̂) = 1
["̂� � "̂]� = ��;0 sin 2� (43)

f"̂� 
 "̂g2� = �
1p
6
��;0 +

1

2
cos 2� ��;�2

24 Laser-atom interaction

Two-level system.
Level 0 lives forever and k has radiative lifetime of �k due to radiative decay

to level 0. The x-section of absorption of the photon is given by

�a = 2�
c2

!2
gk
g0

�2

�2 + �2 (1 + �)
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where

� = ! � !k0

� =
1

2

1

�k

� = 2
��k
~

�2
jDk0 �Ej2

Steady-state population of the excited state

�kk =
�

2

�2

�2 + �2 (1 + �)

Level 0 and k have lifetimes �0 and �k. �k0 is the lifetime of k due to decay
to 0. The x-section of absorption of the photon is given by

�a = �
c2

!2
gk
g0

�k
�k0

�2

�2 + �2 (1 + �)

where detunnig from the resonance

� = ! � !k0

� =
1

2

�
1

�0
+
1

�k

�
� =

�0�k
~2

jDk0 �Ej2

� is called saturation parameter and D is the E1-mel, E is the laser �eld
strength. Degeneracies gl = 2Jl + 1.

24.1 Stark e¤ect in the laser �eld

Following Ref.[MOR86]. For a linearly polarized laser, the level shift is

�EnJM = �E
2

4

�
�SnJ (!) + �

T
nJ (!)

3M2 � J (J + 1)
2J (2J � 1)

�
where scalar and tensor dynamic polarizabilities

�SnJ (!) =
1

3 [J ]

X
J0

SJ
0

nJ (!)

�TnJ (!) =
1

3
p
[J ]

s
2J (2J � 1)

(J + 1) (2J + 3)

X
J0

(�1)J+J
0
�
1 1 2
J J J 0

�
SJ

0

nJ (!)

Here the reduced sums are de�ned as

SJ
0

nJ (!) = 2
X
n0

jhnJ jjDjjn0J 0ij2
(

En0 � En
(En0 � En)2 � !2

)
:

Notice that depending on the detuning of the laser from the position of the
atomic resonance, the reduced sums may accept both negative and positive
values.
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25 Hyper�ne interaction

The coupling with the nuclear �elds

Hhfs =
X
k

�
N (k) � T (k)

�
Here ITOs N (k) and T (k) act in the space of nuclear and electronic coordinates
respectively, k being their ranks. The nuclear magnetic moment is convention-
ally de�ned as

� = hI;MI = IjN (1)
0 jI;MI = Ii =

�
I 1 I
�I 0 I

�
hIjjN (1)jjIi =

s
2I

(2I + 1) (2I + 2)
hIjjN (1)jjIi;

and the nuclear electric quadrupole moment as (notice the factor of 2)

Q = 2hI;MI = IjN (2)
0 jI;MI = Ii = 2 (2I)!p

(2I � 2)! (2I + 3)!
hIjjN (2)jjIi

The (one-particle) electronic tensors are

T (1)� = � jej
4�"0

i
p
2
�
� �C(0)1� (r̂)

�
cr2

T (2)� = � jej
4�"0

C2� (r̂)

r3

25.1 Interaction with the static electric �eld

A typical strength of laboratory E-�eld

Elab = 1 kV=cm = 105V=m = 105=
�
0:51422082� 1012

�
a:u: = 2� 10�7a:u:

26 Commutator identities

Uncertainty relation. For two Hermitian operators with non-vanishing commu-

tator [A;B] = iC

�A�B � 1

2
jhCij ;

where �A =
q
h(A� hAi)2i.

A and B are operators, � is a c-number.

[A;Bn] = nBn�1 [A;B]

[An; B] = nAn�1 [A;B]

[AB;C] = A [B;C] + [A;C]B

[A;BC] = [A;B]C +B [A;C]
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[
X
i

Ai;
X
k

Bk] =
X
ik

[Ai; Bk]

(A� �B)�1 = A�1 + �A�1BA�1 + �2A�1BA�1BA�1 + � � �

exp(A)B exp(�A) = B + [AB] +
1

2!
[A[AB]] +

1

3!
[A[A[AB]]] + � � �

The identity below holds only if [A; [C;A]] = [A; [C;B]] = [B; [C;B]] = 0, with
C � [A;B] (Ref. [Hol95]).

exp(A+B) = exp(A) exp(B) exp(� [A;B]
2

) exp(
[A; [A;B]]

6
)

27 Abbreviations

CC - Coupled Cluster

MCHF - Multi-Con�gurational Hartree-Fock

MCSCF - Multi-Con�gurational Self-Consistent Field

CI - Con�guration - Interaction

28 Mathematics

28.1 Dirac � function and friendsZ 1

0

ei��d� = 2��(�)Z
f(x)dx

x� a� i0 = P
Z
f(x)dx

x� a + i�f(a)

�[�(x)] =
X
i

1

j�0(xi)j
�(x� xi)

�[a x] =
1

jaj� (x) ; � (�x) = � (x)Z
d3k exp[ik � r] = (2�)3 � (r)

1

("� E)n =
1

2

�
1

("� E + i0)n +
1

("� E � i0)n
�

=
1

(n� 1)!
dn�1

dEn�1
P

1

"� E
� (r) = :::r2� (r)
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Derivatives of the � function

� (x)

xn
= (�1)n �(n) (x)Z +1

�1
f (x) �(n) (x) = (�1)n f (n) (0)

28.2 Legendre polynomials

Any function of the angle may be expanded in terms of the Legendre polynomials
Pl (cos �)

f (�) =
X
l=0

blPl (cos �)

bl =
2l + 1

2

Z �

0

f (�)Pl (cos �) sin � d�

Notice the additional factor in front of the integral; it arises because the Pl are
not normalized.

Pl (cos �) = Cl0 (�; �) =

r
4�

2l + 1
Yl0(�; �)

Spherical Bessel jl, Neumann nl; and Hankel hl functions

jl (z) �
r

�

2z
Jl+1=2 (z)

Asymptotic formulae

jl (z) '
(

2l l!
(2l+1)!z

l +O
�
zl+2

�
; z � 1

1
z cos

�
z � (l + 1) �2

�
z � l

nl (z) '
�

� (2l�1)!!
zl+1

; z � 1
1
z sin

�
z � (l + 1) �2

�
z � l

h
(1;2)
l (z) = h�l (z) = jl (z)� i nl (z) '

�
z � 1

� 1
z exp [�i (z � (l + 1)�=2)] z � 1

Useful identity (2l � 1)!! = (2l)!=(2ll!):

28.3 Vector analysis

The following identities are useful for an arbitrary regular function of r = jrj.
(see, e.g., Jackson)

rf (r) = @f (r)

@r

r

r

r�
hr
r
f (r)

i
=
2

r
f (r) +

@f (r)

@r
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In particular

r1
r
= � r

r3

rr = r

r

Also from the Gauss�law
r2 1

r
= �4�� (r)

Taylor series
A (r+ a) = e(a�r) A (r)

Divergence theorem Z
V

r � j dV =
I
S

j � dS

Green�s �rst identityZ
V

�
�r2 +r� � r 

�
dV =

I
S

�
@ 

@n
dS;

where @ 
@n is the normal derivative (directed outwards from inside the volume

V ).
Green�s second identity (Green�s theorem)Z

V

�
�r2 �  r2�

�
dV =

I
S

�
�
@ 

@n
�  @�

@n

�
dS:

28.4 Vector identities

A � (B � C) = B (A� C)� C (A� B)

28.5 Cauchi�s residue theorem

If f (z) is analytical function, except for a �nite number of singularities a1; a2,
...an inside a region bounded by a curve C, thenI

	C
f (z) dz = 2�i

X
k

Re s f (z)

For a function

f (z) =
c�m

(z � a)m + � � � c�1
(z � a) +

1X
k=0

ck (z � a)k

the residue is the coe¢ cient c�1. It may be computed as

c�1 =
1

(m� 1)! limz!a

dm�1

dzm�1
((z � a)m f (z))
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28.6 Groups (following Edmonds[Edm85])

Designations for common continious groups

1. GL (n) all linear transformations in n-dimensional space (complex n � n
matrixes a);

2. U (n) all unitary transformations, a are unitary matrixes;

3. SU (n) special unitary group, det a = +1;

4. O (n) orthogonal group: real matrices a (rotations and re�ections, det a =
�1);

5. SO (n) real unitary matrices a , det a = +1

Representation of degree n of a group G : to every element a is assigned
n � n matrix T (a) so that

T (a) � T (b) = T (ab)

Equivalent representation is obtained via linear transformation S, then the
group element a may be represented by S�1 � T (a) � S
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