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Abstract

Symmetries of the Universe have always provided theoreticians with a powerful tool in their

efforts to understand and unify physics laws. Three of them have shaped physics over the

last 50 years: parity (P ), charge conjugation (C), and time-reversal (T ). Today, T -violation

remains the most mysterious symmetry violation as it is not understood properly and as

much stronger T -violating mechanisms are required to explain the matter-antimatter in the

Universe. T -violation could be potentially observed in some recently proposed and on-going

experiments with atoms and molecules. In particular, T-violation could manifest itself in

electric dipole moment (EDM) elemetary particles and atoms.

Here I present results of three calculations in support of emerging searches for T violation:

1) A recently proposed experiment with liquid Xe at Princeton may significantly improve

present limits on atomic EDM. We find that the liquid phase reduces the T -violating signal

by only 40% still offering an improvement of several orders of magnitude to present limits

for several sources of T -violation.

2) To guide emerging searches for electron EDMs with molecular ions, we estimate the

EDM-induced energy corrections for hydrogen halide ions HBr+ and HI+. We find that

the EDM-signal for the two ions differ by an unexpectedly large factor of fifteen due to a

dissimilarity in the nature of the chemical bond. We conclude HI+ ion may be a potentially

competitive candidate for the EDM search. These observations provide guidelines for finding

a even better molecular ion candidate.

3) T -violation in an atom leads to the T -odd polarizability βCP: a magnetic moment µCP

is induced by an electric field E0 applied to an atom, µCP = βCPE0. We estimate the T -

violating polarizability for rare-gas atoms He through Rn. Finally, we evaluate a feasibility

of setting a limit on electron EDM by measuring µCP of liquid Xe. We find that such an
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experiment could provide competitive bounds on electron EDM only if the present level

of experimental sensitivity to ultra-weak magnetic fields is improved by several orders of

magnitude.
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I. INTRODUCTION

A. Symmetries conservation and violation

1. General discussion

Since the beginning of physics, studying symmetries has provided theoreticians with an

extremely powerful and useful tool in their effort to understand Nature. Little by little

symmetries have become the backbone of our theoretical formulation of physical laws. In

this section I give a short review of these symmetries.

If a symmetry is exact, i.e. not violated or broken by Nature, the result of any experiment

is invariant under the corresponding symmetry operation. There are four main groups of

symmetries that are of fundamental importance in physics:

• Permutation symmetry: wave functions are symmetric under the permutation of two

bosons, but antisymmetric under the permutation of two fermions.

• Continuous space-time symmetries: translations, rotations, etc.

• Discrete symmetries: space inversion P , time-reversal T , charge conjugation C, etc.

• Unitary symmetries: U1-symmetries such as those related to conservation of charge,

baryon number and lepton number for example. SU2-symmetry (nucleon isospin).

SU3-symmetry (quark color) and other SUn-symmetries.

Among these, the first two groups, together with some of the U1-symmetries and SU3-

symmetry in the last group, are believed to be exact. All the remaining symmetries are

broken.

The root of all symmetry principles lies in the assumption that it is impossible to ob-

serve certain basic quantities. Lee [1] calls these quantities non-observable quantities. For

example, the absolute time can not be measured, as one always has to specify the origin

t = 0 at a chosen time. According to Lee, time is an non-observable quantity. The physical

laws must then be invariant under a time translation, which is equivalent to changing the
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origin of time,

t→ t+ τ. (1)

Invariance of physical laws under time translation results in the conservation of energy. In

classical mechanics this direct relation between conserved quantities and symmetries has

been elucidated by Noether [2]. Another example is spatial direction: by assuming the

absolute spatial direction to be non-observable, one can derive rotational invariance and

obtain the conservation law of angular momentum. Table I summarizes these fundamental

aspects for some symmetry principles used in physics.

Non-observable quantities                       Symmetry transformations                Conservation laws

Difference between                                        Permutation                                       Bosons and fermions 

identical particles                                                                                                            statistics 

Absolute spacial position                              Space translation                             Momentum

Absolute time                                                    Time translation                               Energy

Absolute spatial direction                              Rotation                                             Angular momentum

Absolute velocity                                              Lorentz  transformation                 Special relativity

Absolute right (or left)                                      P: Parity transformation                 Parity invariance

Absolute time direction                                    T:  t ->-t                                               Time-reversal 

                                                                                                                                                 invariance

Absolute sign of electric charge                     C:  e -> -e                                           Charge conjugation    

                                                                                                                                                invariance      

Relative phase between states                        Φ −>Φ  exp[iQθ]                        Charge

 of charge Q

Relative phase between states 

of baryon number N                                           Φ −>Φ  exp[iNθ]                          Baryon number 

Relative phase between syates 

of lepton number L                                             Φ −>Φ  exp[iLθ]                           Lepton number 

Difference between different 

coherent mixture of proton p 

and neutron n                                                       (p,n) -> U(p,n)                                       Isospin

TABLE I: Non-observables, symmetry transformations and conservation laws [1].
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2. Symmetry violation

Since the validity of all symmetry principles rests on the theoretical hypothesis of non-

observation, the violation of a symmetry arises whenever what was thought not to be an

observable turns out to be actually observable. In this sense the discovery of symmetry

violations is not surprising. Some non-observable quantities may indeed be due to deeper

exact symmetries, but some may simply be due to the limitations of our present ability to

measure some symmetry-violating signals. As we improve our experimental techniques, our

domain of observation also enlarges.

3. C,P and T violations

The notable examples of discrete symmetry violations are:

• The asymmetry of physical laws under space inversion r → −r, also called right-left

mirror transformation and denoted P for Parity.

• Particle-antiparticle conjugation C.

• Time-reversal symmetry T : the laws of physics are slightly different when the time is

running backwards.

The same symmetry principle applies to any of the bilinear products CP ,PT ,TC, etc. How-

ever, according to the so-called CPT theorem, the triple product CPT (or its permutations

PTC, TCP ...) does represent an exact symmetry. The CPT theorem (1955) is based on

the Lorentz invariance and the assumption of locality. Considering CPT an exact symme-

try, T violation is equivalent to CP violation and can be called either T or CP violation.

P -violation was suggested in 1956 by Lee and Yang [3] and it was observed the next year

in the β decay of 60Co nuclei [4]. CP (=T )-violation was suggested in 1957 [5] and it was

observed for the first time in 1964 in the decay of kaon particle [6]. In 2001, T -violation

was again detected in neutral B-meson decays in the BaBar experiment at SLAC [7]. In

my dissertation I studied T -violation in atomic systems. For each system (chapters 2,3 and

4), the T violating signals would also violate P . But since P violation is well understood,
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it is the T violation that is presently of interest. Note that the P -violation without the

T -violation has already been measured in atoms in 1978 [8]. Although the T -violation has

already been observed in high energy experiments, it is still remains a mystery. The most

important motivation for studying T violation is that its origin is not understood. Another

important reason, as discussed in Section I C, is that by probing T -violation one can detect

new physics beyond the Standard Model of elementary particles. Also, the present mecha-

nism of T -violation does not account for the matter-antimatter asymmetry in our Universe.

Sakharov [9] proposed that this asymmetry could have arisen from T violating interactions

at an early stage of the Big Bang. It would have caused a slight predominance of matter over

antimatter and allowed matter to survive the subsequent mutual annihilation of particles

with antiparticles and thus formed the Universe as we know it.

4. Elementary-particle models

The present state of knowledge about particles and their interactions is called the Stan-

dard Model (SM) of elementary particles. But the SM is incomplete and does not address

many fundamental questions, like the origin of T -violation. In the SM the only source of

T -violation is introduced artificially in the Cabibbo-Kobayashi-Maskawa matrix by adding

the so-called δ phase factor. Theoreticians try to solve the inconsistencies of the SM by

extending the SM or inventing new models, such as the left-right symmetric models in

which right-handed W and Z bosons are added to the usual particles of the SM, multi-Higgs

models, in which Higgs bosonic fields are added to the SM, supersymmetry (SUSY), string

theory, M-theories, etc. Below, I will focus on electric dipole moments (EDM) and argue

that EDMs could place important constraints on these models.

B. Permanent electric-dipole moment (EDM)

As I mentioned above, a symmetry is linked to non-observable quantities. One of such

quantities for T and P symmetries is EDM of particles. In other words, measuring the

EDM of a particle is equivalent to observation of T -violation and P -violation. Purcell and
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Ramsey first suggested to look for EDM of particles in 1950, although at that time T and

P were not known as broken symmetries yet. Then it was proven that EDMs could not

exist because they would violate parity. The search for particles EDM stopped; till P -

violation was discovered. But then Landau [10] showed that EDMs were forbidden due

to T conservation. In 1964, when the T -violation was discovered the searches for EDMs

reappeared. Yet, we have never been able to observe an EDM. In this Section I introduce

the concept of EDM of a particle and explain why an EDM violates time-reversal and parity

symmetries.

1. Definition of an electric dipole moment

The electric dipole moment d of a localized charge density distribution ρ(x) is

d =
∫
xρ(x)dx. (2)

It is a vector. A particle does not need to be charged to have an EDM. For example, a charge

q displaced from a charge −q by a distance r creates an EDM d = qr. More generally, a

particle does not need to have a size. In the case of a point-like particle, one talks about an

intrinsic EDM. For example, the electron, which is believed to be a point-like particle, can

still have an EDM.

We will use the definition (2) to compute atomic EDMs. But definition (2) does not work

for an intrinsic EDM. In this case we need a more general definition:

di = −∂E
∂Ei , (3)

where E is the energy of the particle and Ei is the electric field exerted upon the particle.

Definition (3) is also compelling experimentally: quantum-mechanically, one can measure

the energy E, but can not directly probe the charge distribution ρ(x).

2. Why does an EDM violate both T and P symmetries?

The proof that a non-vanishing EDM violates T and P is based upon realization that

the EDM of a particle with a definite total angular momentum J lies along its total angular
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momentum [10]:

d = dJ . (4)

Here are two different arguments in favor of Eq. (4) presented in the literature:

• A particle’s EDM necessarily lies along its total angular momentum because all the

components perpendicular to that axis would average to zero [11].

• In quantum mechanics, a system is characterized by the internal angular momentum

J , the only vector in the system. If we could specify a direction in addition to

and independent of the angular momentum, additional quantum numbers would be

required [12].

I prefer the following explanation: if a particle has a total angular momentum J , then

any rotation of the particle about J just multiplies its wave function by a phase factor (a

scalar). It does not change the properties of the particle and in particular the direction of

the EDM. As a consequence, the EDM direction has to be along the angular momentum.

Now let us prove that if the laws of physics are invariant under T or P then EDM

necessarily vanishes. Considering a particle under the time reversal operation (see Figure

1), we observe that the angular momentum J is reversed while d is not affected. And under

the P transformation, the angular momentum stays the same, while the EDM is reversed.

As a result, one obtains d = −dJ . If the laws of physics are invariant under P and T ,

then, by comparing with Eq.(4), we arrive at a contradictory requirement d = −d, i.e., the

particle can not possess EDM.

Remark : degenerate atomic states can lead to an atomic EDM without T violation.

Degenerate states are eigenstates of the Hamiltonian with the same energy. Consider two

degenerate states (n = 2, l = 0) and (n = 2, l = 1,m = 0) of non-relativistic hydrogen artom.

A linear combination of these two states would produce an atomic EDM. However, there is

no paradox here, because the resulting state does not have a definite angular momentum.

What about polar molecules? They can have a measurable EDM. Does it mean we can

measure T violation? Polar molecules can have an EDM when at ”rest”,i.e., when they
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Parity:

T-reversal:

  J d d J      

  J d d J      

FIG. 1: Why does an EDM violate P and T?

don’t have a definite angular momentum. Of course, a polar molecule can have a definite

angular momentum, but then, such a rotating molecule does not have any EDM.

3. How do EDM’s predictions depend on the elementary-particle model?

All models of elementary-particle predict EDMs for electrons, muons, neutrons, protons,

nuclei and atoms. But these predictions depend greatly on the model. To illustrate that

let us look at how one would compute an electron EDM. EDM can be observed when

it interacts with an electric field (made of photons). So how does the T violation occur

when a photon interacts with the electron? This interaction seems to respect T symmetry

because the electromagnetic force conserves T and also because the Dirac equation is T

invariant. The electron EDM arises indirectly since photons interact with other particles

(quarks, W -bosons,...) and these particles in turn affect the electron. This process can

involve T -violating weak interactions. At the end of the computation, one gets an energy E

that depends on the direction of the electric field and thus the EDM, Eq.(3). Because other

particles are involved in the computation of the electron EDM, the result depends on the

model we use to describe various interactions. In the Standard Model (SM), the electron
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EDM prediction is very smal, it can only originate from higher than three-loop diagrams.

SM prediction for de is,

10−40e cm ≤ |de(SM)| ≤ 10−36e cm. (5)

This prediction has to be compared with the present experimental limit obtained with

thallium (Tl) atoms [13],

|de(Tl)| < 1.6× 10−27e cm. (6)

As the reader can see, even with the best present experimental techniques, we are far from

being able to measure an electron EDM in the range of predictions of the SM. An important

point is that extensions to the SM generate EDMs that are comparable to the present limit.

For example, if one complements the SM with the Higgs particles, then new possibilities are

added for the T violation in the “Higgs sector”. Dominant contributions for the electron

EDM are given by diagrams such the one shown in Figure 2. The resulting limit on the

electron EDM is increased to

10−29e cm ≤ |de(SM + Higgs)| ≤ 10−25e cm, (7)

and it is comparable to the present limit (6). More generally, predictions for the electron

EDM from several competing models of elementary-particle physics are displayed in Figure

3 (taken from [13]). We observe that the upper limit on the electron EDM obtained in

atomic experiments already put constraints on the parameters of supersymmetry (SUSY),

Left-Right symmetric models in which right-handed W and Z bosons are added to the usual

particles of the SM, and Multu-Higgs models in which the SM is complemented with Higgs

particles. According to Khriplovich and Lamoreaux [12], searches for EDMs have ruled

out most models suggested to explain T violation since its discovery. Electron EDM is not

the only T -odd mechanism that depends greatly on different models of particle physics.

Atomic physics experiments now, at our present level of accuracy, are extremely sensitive

to possible new physics beyond the SM. Table II shows the constraints derived from atomic

and molecular experiments on neutron, proton and electron EDMs.
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Photon

H

electron
electron

Photon

FIG. 2: Two-loop contribution to an electron EDM. A heavy particle (t-quark, W -boson or Higgs)

is propagating in the upper loop [14].

Species examined Species EDM Derived EDM

Neutron < 6× 10−26e cm d(neutron) < 6× 10−26e cm

199Hg atom < 9× 10−28e cm d(nucleus) < 1× 10−24e cm

TIF molecule < 6× 10−23e cm d(proton) < 6× 10−23e cm

Thallium atom < 2× 10−24e cm d(electron) < 4× 10−27e cm

YbF molecule < 4× 10−19e cm d(electron) < 4× 10−25e cm

TABLE II: Upper limits on the measured species EDMs and the derived limits on particle

EDMs (after [15]).

C. My work

Atoms amplify T -violating signals that occur at the fundamental level between elemen-

tary particles. Experimentalists exploit this amplification process by measuring a macro-

scopic T violating atomic signal. If we denote this signal as M , then M is related to the

sources of T -violation by some structure factors. There are four main sources of T -violation
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|          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                    

    10               10                 10               10                10                10                 10                10                10 
-40                 -38                   -36                -34                   -32                  -30                   -28                  -26                  -24  

     e.cm

Standard Model

                 Multi-Higgs

               Left-Right

             SUSY

FIG. 3: Electron EDM (de) predictions from different models of particle physics. The vertical line

corresponds to the present value of the best experimental limit on de [13].

in atoms and molecules:

• the EDM of the electron, de,

• the Schiff moment of the nucleus S [16],

• a semileptonic coupling constant, CTN,

• a weak neutral current constant, K.

The signal M can be parameterized as:

M = deFe + SFS + CTNFC +KFK , (8)

where Fe, FS, FC and FK are the structure factors. See Appendix D for more details about

the atomic sources of T -violation. As discussed in Section I B 3, each model of elementary

particles predicts different values of electron EDM, Schiff moment, semileptonic coupling

constant, and weak neutral current constant. As a consequence, measuring T -violating
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effects places important constraints on these models. Although these effects have not yet

been found in atomic physics experiments, the limits set by measuring zero with a given

precision have had decisive influences on elementary particle theories.

Atomic experiments probe particle physics in the “low-energy” domain, while particle

accelerators directly test physics at high energy. These experiments are complementary. T -

violating atomic experiments have been the subject of a program of ever increasing precision

over the last 50 years and still further improvements are envisaged. They also present major

interests in comparison to experiments carried out in particle accelerators: they are cheaper

and can be built faster. They are called “table-top” experiments or “small-scale” experiment

because they are done on an optical table.

The structure factors Fe, FS, FC , and FK , multiplying T -violating parameters in Eq.(8)

depend on the atomic or molecular properties. They can also be called enhancement factors

because they amplify the small effects of T violation. My work was to compute these

structure factors for three proposed experiments. So when experimental data are available,

one can place constraints on the quantities de, S, CTN and K, which can be interpreted in

various models of particle physics (see Fig. 4).

T-violating signal                   Sources of T-violation in atoms                               Model    Experiment

Energy -correction

     Atomic EDM

T-odd polarizability

                de

                

               S

                CTN

Standard Model (SM)

Extensions of SM

            SUSY

       Other...

    Experimentalists               OUR WORK                  Nuclear and particle physicists         

  

     Data

     from

experiment

FIG. 4: Once experimentalists measure T -violating signals, we can constrain sources of T -violation

and then nuclear and particle physicists can put limits on parameters of the different models of

particle physics.
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I worked on three different calculations of the structure factors. The following general

scheme was applied:

(i) As every experiment is uniquely sensitive to the sources of T violation in atoms we

had to decide which one would contribute the most to the experimental signal.

(ii) The second step consisted of deriving atomic-structure equations that link the sources

to the T -odd experimental signal. It was important to use a relativistic description of

the electron, i.e.,the four-component Dirac bi-spinor wave functions. We usually started

with the Dirac-Hartree-Fock (DHF) solutions and then used more sophisticated many-body

techniques. We simplified the equations by carrying out an angular momentum reduction.

(iii) The last step was to code those equations and compute the signal as a function of

the T -odd sources.

D. The proposed experiments

Each chapter of the dissertation is devoted to a separate calculation.

1) The first calculation (Chapter 2) was in support of an experiment proposed by Romalis

and Ledbetter [17] at Princeton University. They proposed to measure the EDM of xenon

atoms in a liquid Xe sample. This experiment is expected to have several-order of magnitude

improvement in sensitivity to many sources of T violation. The sources we took into account

were: the nuclear Schiff moment, S, and the semileptonic T -odd interactions, CTN ??. To

the best of my knowledge, the effect of the liquid environment on the atomic EDM has not

been addressed previously.

2) The second experiment was proposed by R. Stutz and E. Cornell [18] at the University

of Colorado, Boulder. They proposed to measure energy corrections due to the electron EDM

in molecular ions. We were the first to calculate T -violation effects in such systems ??.

Here it was important to provide qualitative guidelines for emerging electron EDM search

with molecular ions.

3) T -violation leads to magnetization of a sample placed in an electric field ??. This

could be interpreted as a T -odd polarization of an individual atom or molecule. We inves-

tigated this novel polarizability and related it to the electron EDM. Also we evaluated a
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feasibility of using liquid Xe as the medium for measuring the T -violating polarizability ??.

As Baryshevsky recently pointed out ?? T -violating magnetization would also exists for a

diamagnetic atom.

The common goal of all these experiments is to set constraints of T -violating EDMs

probing new physics beyond the Standard Model of elementary particles.
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II. EFFECTS OF CONFINEMENT ON PERMANENT ELECTRIC-DIPOLE

MOMENT OF XE ATOMS IN LIQUID XE

Romalis and Ledbetter [17] recently proposed to search for an EDM of 129Xe atom in a

sample of liquid Xe. A substantial, several orders of magnitude improvement in sensitivity

to sources of T -violation is anticipated. The purpose of this chapter is to compute the

atomic EDM of Xe and investigate the effect of the liquid on the EDM value. The chapter

is organized as follows. In the introduction, I explain the motivation for this experiment

and briefly describe our main findings. In section B, I describe the computations of an

atomic EDM using the atomic wave function. Section C presents the so-called cell model

employed in our simulation of xenon liquid environment. In section D, I explain how we

solve the atomic-structure problem within the cell model. Results for an isolated atom are

presented in section E. Then, the influence of the liquid confinement on those results is

analyzed (section F) , and limitations of the employed model are discussed (section G).

Finally, the conclusions are drawn in section H. Atomic units |e| = h̄ = me = 4πε0 ≡ 1 are

used throughout (see Appendix C for more details on atomic units).

A. Introduction

The most accurate to date determination of atomic EDM was carried on with 199Hg atoms

[19] in a gas cell. It set limits on a number of important parameters: CP -violating QCD

vacuum angle, quark chromo-EDMs, semileptonic T -violating parameters, and restricts pa-

rameter space for certain extensions to the standard model. Liquid 129Xe experiment will

probe similar parameters but with a much improved sensitivity. Compared to gas phase

experiments [20], a drastically improved sensitivity with liquid experiments is mainly due

to the higher number densities of the liquid phase (1022 atoms/cm3 in our case).

The very use of the liquid phase raises questions about density-dependent factors which

can influence the outcome and interpretation of the experiment. For example, an EDM ex-

periment with a molecular liquid was proposed in Ref.[21]. The authors found an additional

suppression of the EDM signal by a factor of a hundred due to a reduced population of
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molecular rotational levels in liquid. Although the experiment with liquid Xe will be free

from such an effect, it is clear that the effects of the liquid phase on atomic EDMs have to

be investigated.

An EDM of an atom is related to a strength of a T -violating source via electronic-structure

(enhancement or shielding) factors. For an isolated Xe atom such factors were computed

previously: P, T -odd semileptonic interactions were considered by Mårtensson-Pendrill [22]

and nuclear Schiff moment by Dzuba et al. [23]. Here we employ a simple cell model

to study density dependence of the electronic-structure factors. Technically, we extend the

previous atomic relativistic many-body calculations by confining a Xe atom to a spherically-

symmetric cavity. In a non-polar liquid such as liquid Xe, this cavity roughly approximates

an averaged interaction with the neighboring atoms. Imposing proper boundary conditions

at the cavity radius, first we solve the Dirac-Hartree-Fock (DHF) equations and then employ

the relativistic random-phase approximation (RRPA) to account for correlations. To the

best of our knowledge, here we report the first ab initio relativistic calculations of properties

of a liquid. We find that compared to the EDM of an isolated atom, the resulting EDM of

an atom of liquid Xe is suppressed by about 40%. Thus if the experiment with liquid Xe

is carried out with the anticipated sensitivity, we expect that the inferred constraints on

possible sources of T -violation would be indeed several orders of magnitude better than the

present limits.

B. Sources of atomic EDM

The main sources of T -violation in atoms and molecules are listed in Appendix D. In

the present section we are only interested in the T -violating sources that can produce an

atomic EDM to Xe atoms. As introduced in the previous chapter, an atomic EDM is the

electric dipole moment of the electronic wave function |Ψ0〉, including all electrons. If D is

the electric dipole moment operator then the atomic EDM is:

d = 〈Ψ0|D|Ψ0〉. (9)
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In atomic units (Appendix C) D is expressed as:

D = −∑
i

ri, (10)

where the sum is over each electron. The conventional atomic Hamiltonian H0 among

other symmetries is invariant with respect to space-reflection (P) and time reversal (T).

Mathematically, this property is written with the anticommutation equalities:[H0, P ] = 0

and [H0, T ] = 0. As discussed in the introductory chapter, if P and T symmetries are

conserved there is no EDM. Therefore, on very general grounds, an expectation value of

the electric dipole operator D = −∑i ri in a non-degenerate atomic state |Ψ0〉 vanishes.

The tiny T -violating interactions, here generically denoted as HCP =
∑
i hCP(ri), break the

symmetry of the atom and induce a correction to the electronic state |Ψ̃〉 = |Ψ0〉 + |δΨ〉 .
To the lowest order of perturbation theory

|δΨ〉 =
∑

k

|Ψk〉 〈Ψk|HCP|Ψ0〉
E0 − Ek , (11)

where Ek and |Ψk〉 are eigenvalues and eigenfunctions of H0. Due to selection rules, the

|δΨ〉 admixture has a parity opposite to the one of the reference state |Ψ0〉. Because of this

opposite-parity admixture, the atom acquires a permanent EDM

d = 〈Ψ̃|D|Ψ̃〉 = 2〈Ψ0|D|δΨ〉 . (12)

Now we specify particular forms of HCP. What sources are we going to choose? An

analysis [12] shows that for diamagnetic atoms, such as Xe, the EDM predominantly arises

due to P, T -odd semi-leptonic interaction HTN between electrons and nucleons and also due

to interaction HSM of electrons with the so-called nuclear Schiff moment [16]. Smaller atomic

EDM is generated by intrinsic EDM of electrons and we will not consider this mechanism

here.

Explicitly, the effective P, T -odd semileptonic interaction Hamiltonian may be repre-

sented as [22]

hTN(re) =
√

2GFCTN σN · (iγ0γ5 σ)e ρN (re) . (13)

Here subscripts e and N distinguish between operators acting in the space of electronic

and nuclear coordinates respectively. CTN is the semi-leptonic coupling constant already
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mentioned in the introductory chapter . Due to averaging over nuclear degrees of freedom,

this interaction depends on nuclear density distribution ρN(r). In the following, we approx-

imate ρN(r) as a Fermi distribution ρN(r) = ρ0/(1 + exp[(r− c)/a]) with c = 5.6315 fm and

a = 0.52 fm. Finally, GF ≈ 2.22254× 10−14 a.u. is the Fermi constant.

The interaction of an electron with the nuclear Schiff moment S has the form [24]

hSM(re) =
3

B4

ρN (re) (re · S) , (14)

where B4 =
∫∞
0 r4ρN (r) dr is the fourth-order moment of the nuclear distribution. The

Schiff moment characterizes a difference between charge and EDM distributions inside the

nucleus (see Appendix D).

Finally, let us emphasize that both hTN and hSM are contact interactions. They occur

when an electron penetrates the nucleus. The electron speed at the nucleus is approximately

αZc ' 1
2
c (Z = 54), i.e., a fully relativistic description of electronic motion is important in

this problem.

C. Cell model of liquid xenon

Here we employ a simple cell model (see [25] and references therein) to estimate the effects

of the environment on permanent EDM of a given atom. According to the cell model, we

confine an atom to a spherical cavity of radius

Rcav =
(

3

4π

1

n

)1/3

, (15)

n being the number density of the sample. This comes from a simple model where atoms

are like hard spheres as show in Figure 5.

For a density of liquid Xe of 500 amagat (amagat density unit is equal to 44.615 moles

per cubic meter (mol/m3)), Rcav ' 4.9 bohr. In non-relativistic calculations periodicity

requires that the normal component of the gradient of electronic wave-function vanishes at

the surface of the cell (see, e.g., [26])

∂Ψ

∂r
(Rcav) = 0 . (16)
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FIG. 5: Hard sphere model: Xe atoms in the liquid state are moving like hard spheres of radius

Rcav.

Before proceeding with a technical question of implementing these boundary conditions

in relativistic calculations, we notice that the cell model implicitly incorporates an average

polarization interaction with the media. Indeed, the Hamiltonian of an atom placed in the

liquid in addition to the conventional atomic Hamiltonian H0 includes interaction of elec-

trons with the rest of the atoms in the media. This interaction is dominated by polarization

potential. An important point is that the averaged polarization interaction can be expressed

as Vp = −1/2(1 − ε−1)R−1
cav, where ε is the dielectric constant of the media [26]. This in-

teraction does not depend on electronic coordinate — it is just an additive constant which

does not affect calculations of EDM. Thus we may approximate the total Hamiltonian with

the traditional atomic Hamiltonian H0.

Further, the spherical symmetry of the cell allows us to employ traditional methods of

atomic structure. The only modification is due to boundary conditions (16). However, in

relativistic calculations, a special care should be taken when implementing this boundary
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condition. Indeed, the Dirac bi-spinor may be represented as (Appendix A)

ϕnκm(r) =
1

r




Pnκ(r) Ωκm(r̂)

iQnκ(r) Ω−κm(r̂)


 , (17)

where P and Q are the large and small radial components respectively and Ω is the spherical

spinor. The angular quantum number κ = (l − j) (2j + 1). The nonrelativistic boundary

condition (16) applied directly to the above ansatz would lead to two separate constraints

on P and Q. This over-specifies boundary conditions and leads to the Klein paradox.

A possible relativistic generalization of the boundary condition (16) is

d

dr

Pnκ
r

(Rcav) =
d

dr

Qnκ

r
(Rcav) . (18)

Since in the non-relativistic limit the small component Q vanishes, this generalization sub-

sumes Eq. (16). Due to a semi-qualitative nature of our calculations, here we have chosen

to use simpler (MIT bag model) boundary condition

Pnκ(Rcav) = Qnκ(Rcav) . (19)

Non-relativistically it corresponds to impenetrable cavity surface. Compared to this con-

dition, the periodic boundary conditions (18) are “softer”, i.e., they modify the free-atom

wavefunctions less significantly; we expect that our use of Eq. (19) would somewhat overes-

timate the effects of confinement in the liquid.

D. Atom in a cavity: DHF and RRPA solutions

To reiterate the discussion so far, within the cell model, the complex liquid-structure

problem is reduced to solving atomic many-body Dirac equation with boundary condi-

tions (19). The atomic-structure analysis is simplified by the fact that Xe is a closed-shell

atom. Below I self-consistently solve the DHF equations inside the cavity. Then we employ

more sophisticated RRPA. See Appendix B for a more detailed description of these two

methods.

At the DHF level, the atomic wavefunction,Ψ0, is represented by the Slater determinant

of all occupied orbitals ϕa,
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Ψ0(ξ1, ξ2, ..., ξN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(ξ1) ϕ2(ξ1) ... ϕN(ξ1)

ϕ1(ξ2) ϕ2(ξ2) ... ϕN(ξ2)

...
...

...

ϕ1(ξN) ϕ2(ξN) ... ϕN(ξN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (20)

where a denotes a set of quantum numbers nκm, N is the total number of electrons, and

ξi encapsulates coordinate and spin degrees of freedom for the ith electron. The Slater

determinant is just the antisymmetric form of the many-electron wave function as required

by the Pauli exclusion principle.

These orbitals are determined from a set of DHF equations

(
c(α · p) + βc2 + Vnuc + VDHF

)
ϕa = εaϕa , (21)

where Vnuc is a potential of the Coulomb interaction with a finite-size nucleus of charge

density ρN(r) and VDHF is non-local self-consistent DHF potential. The DHF potential

depends on all the core orbitals. Similar equations may be written for virtual orbitals ϕm.

We solved the DHF equations in the cavity using a B-spline basis set technique by [27].

This technique is based on the Galerkin method: the DHF equations are expressed in terms

of an extremum of an action integral SA. The boundary conditions are incorporated in the

SA as well. Further, the action integral is expanded in terms of a finite set of basis functions

(B-splines). Minimization of such SA with respect to expansion coefficients reduces solving

integro-differential DHF equations to solving symmetric generalized eigenvalue problem of

linear algebra. The resulting set of basis functions is finite and can be considered as numer-

ically complete. In a typical calculation we used a set of basis functions expanded over 100

B-splines.

Technically, we formed the initial DHF potential VDHF using the DHF core orbitals for a

free atom (Rcav =∞). Then we solved the eigenvalue problem iteratively, at the beginning

of each iteration assembling a new VDHF from the core orbitals obtained at the previous

iteration. The convergence was monitored by comparing relative changes in the energies

of core orbitals at each iteration. As a result we obtained solutions of the DHF equations

adjusted to the finite value of the cavity radius.
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Given a numerically complete set of DHF eigenfunctions {ϕi}, the permanent atomic

EDM, Eq.(12), may be expressed as

dDHF = 2
∑
m,a

〈ϕa|r|ϕm〉〈ϕm|hCP|ϕa〉
εm − εa , (22)

where a runs over occupied and m over virtual orbitals. Here hCP is either a semileptonic

interaction, Eq. (D4), or an interaction with the nuclear Schiff moment, Eq. (D3). An

additional peculiarity related to the Dirac equation is an appearance of negative energy

states (εm < −mec
2) in the summation over intermediate states in Eq. (22). We have verified

that these states introduce a completely negligible correction to the computed EDMs.

To improve upon the DHF approximation, we have also computed EDMs using RRPA

method (Appendix B). This approximation describes a dynamic linear response of an atom

to a perturbing one-body interaction (e.g., HCP). The perturbation modifies core orbitals

thus changing the DHF potential. This modification of VDHF in turn requires the orbitals

to adjust self-consistently. Such a readjustment process defines an infinite series of many-

body diagrams, shown, e.g., in Ref.[22]. The RRPA series can be summed to all orders

using iterative techniques or solving DHF-like equations. We used an alternative method

of solutions based on the use of basis functions [27]. As an input, we used the DHF basis

functions generated in the cavity (see discussion above), i.e. the boundary conditions were

satisfied automatically. As a result of solving the RRPA equations, we have determined a

quasi-complete set of particle-hole excited states and their energies. Then the EDMs are

determined using expressions similar to Eq. (11) and (12).

E. Results for an isolated Xe atom

In this short section, I present the results of our calculations for an isolated atom (Rcav =

∞) and compare them to previous results obtained by other groups. For the Schiff-moment-

induced EDM, our results,

dDHF
SM = 2.88

(
S

e fm3

)
× 10−18 e cm,

dRRPA
SM = 3.78

(
S

e fm3

)
× 10−18 e cm ,
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are in agreement with the recent calculations by Dzuba et al. [23] (3.8
(

S
e fm3

)
×10−18 e cm).

For the EDM induced by T, P–odd semileptonic interactions we obtain

dDHF
TN = 8.44× 10−13 CTN σN a.u. ,

dRRPA
TN = 10.7× 10−13 CTN σN a.u..

These values are to be compared with the results by Mårtensson-Pendrill [22], dDHF
TN = 7.764

and dRRPA
TN = 9.808 in the same units. The reason for the 10% difference between our results

and those from Ref. [22] is not clear.

F. Influence of the cavity radius on the EDM

Before presenting results for finite cavity radii, let us consider individual contributions

to EDM from various shells of Xe atom. These contributions for the Schiff-moment-induced

EDM of an isolated atom are listed in Table III. A similar table, but for the EDM arising

from semileptonic interactions is given in Ref. [22]. From these tables we observe that the

dominant contribution to EDMs comes from the outer n = 5 shell. Thus we anticipate that

a noticeable density dependence should occur when Rcav becomes comparable to the size of

external n = 5 shell. We also notice that the contribution from the outer shell is relatively

more important in RRPA calculations than at the DHF level, i.e., the RRPA results should

exhibit stronger density dependence.

These qualitative conclusions for a confined atom are supported by our numerical results,

presented in Fig. 6. Here we plot the ratios of atomic EDMs for the confined and isolated

atoms as a function of Rcav. The EDMs become smaller as the density increases, n ∝ R−3
cav.

At the density of liquid Xe, Rcav ≈ 4.9 bohr , the more accurate RRPA results show a 25%

suppression of the atomic EDM due to confinement. Overall there is a noticeable density-

dependence of atomic EDM. We expect the EDM signal (if found) to be broadened. The

relevant characteristic width of the signal can be simply estimated from our Fig. 6 from the

mean density fluctuations.
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DHF RRPA

n = 1 0.039 0.039

n = 2 0.091 0.092

n = 3 0.20 0.21

n = 4 0.52 0.64

n = 5 2.0 2.8

Total 2.88 3.78

TABLE III: Individual contributions from various shells to the EDM of a free 129Xe atom in the

DHF and RRPA methods. The EDM is induced by the nuclear Schiff moment and it is given in

units of S/(e fm3)× 10−18 e cm.

From Fig. 6 we notice that both semileptonic– and Schiff–moment–induced EDMs scale

with Rcav in a similar fashion. This similarity can be explained from the following arguments.

The values of CP -violating matrix elements, Eq.(D4) and Eq.(D3), are accumulated inside

the nucleus. Non-relativistically, as r → 0 the wavefunctions scale as ϕnlm(r) ≈ Nnl(Rcav)×
rlYlm(r̂), where Nnl are normalization factors. Therefore the dominant contribution to the

EDM, Eq.(22) arises from mixing of s and p states. By factorizing the matrix element of hCP

as 〈ϕns|hCP|ϕn′p〉 ≈ Nns(Rcav)Nn′p(Rcav)×〈s|hCP|p〉 we see that the Rcav–independent factor

〈s|hCP|p〉 can be pulled out of the summation over atomic orbitals in Eq.(22). Thus, both

semileptonic– and Schiff–moment–induced EDMs exhibit approximately the same scaling

with the cavity radius. A correction to this “similarity scaling law” may arise, for example,

due to different selection rules involved for the two EDM operators.

G. Different models for Rcav

From Fig.6 we see that for small cavity radii (smaller than 6 bohr) the EDM depends

greatly on Rcav. It seems worthwhile to try to improve upon our estimate for the cavity

radius of the cell model, Eq.(15). According to Eq.(15), N atoms would occupy a volume

equal N times the volume of one atom, N 4π
3

(Rcav)3. This would hold only if empty spaces
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FIG. 6: The ratios of atomic EDMs for the confined and isolated atoms (suppression factor) as

a function of cavity radius. The upper and lower sets of two curves are obtained with the DHF

and RRPA methods respectively. EDMs induced by P, T–odd semileptonic interactions are shown

as solid and dashed lines, while EDMs due to the Schiff moment — as dotted and dashed-dotted

lines. Heavy dot marks our final results for liquid Xe.

between the hard spheres were discarded. A better estimate for Rcav can be obtained by

noticing that a dense liquid may be considered as a solid with vacancies. It means that

the cavity radius Rcav has to be computed with the solid number density nS using Xe solid

structure. Xe condenses into face-centered cubic structure. The first nearest-neighbor shell

contains twelve atoms (partially justifying the spherical symmetry of the elementary cell).

The formula that links Rcav to nS is:

Rcav =

(
5

16
√

2nS

) 1
3

. (23)

The density of the solid Xe is ρS = 3.54 g/cm3, implying the half-radius of this shell of 4.2

bohr, somewhat smaller than Rcav ≈ 4.9 bohr of the liquid cell model, Eq.(15). As follows

from Fig. 6, this difference leads to more pronounced suppression of the atomic EDM by

40%.
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H. Conclusion

To reiterate, our work was motivated by anticipated significant improvements in sensitiv-

ity to atomic EDMs in experiments with liquid 129Xe [17]. We investigated confining effects

of the environment on the EDM of Xe atom. We carried out the analysis in the framework

of the cell model coupled with relativistic atomic-structure calculations. We found that

compared to an isolated atom, the EDM of an atom of liquid Xe is reduced by about 40%.

Thus if the experiment with liquid Xe is carried out with the anticipated sensitivity, we

expect that the inferred constraints on possible sources of CP -violation would be indeed

several orders of magnitude better than the present limits.
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III. MARKED INFLUENCE OF THE NATURE OF CHEMICAL BOND ON

CP -VIOLATING SIGNATURE IN MOLECULAR IONS HBr+ AND HI+

Stutz and Cornell from the University of Colorado, Boulder, proposed to use molecular

ions to measure the electron EDM [18]. In this new chapter, the source of T -violation

involved is the electron EDM. A source that the previous experiment (Chapter II) was not

sensitive to. Contrary to the liquid xenon experiment, where the atomic EDM could be

measured almost directly via spin precession, electron EDM can not be measured in the

same way. Experimentalists search for tiny EDM induced splitting of molecular magnetic

sublevels in electric field. The goal of our work is to compute these tiny energy corrections

for two candidate ions HBr+ and HI+. An additional goal is also to gain insights for other

molecules T -odd energy corrections. The third goal of our work is to elucidate the influence

of the nature of chemical bond on EDM splitting and ultimately, find how to make use of

this it in order to choose more EDM-sensitive molecular ions.

I start this chapter by reviewing previous searches for the electron EDM with molecules

and the newly proposed experiment with molecular ions. In section B, I present the model

of molecular structure for the two ions of interest (HBr+ and HI+). In the same section

I also describe computations of the electron EDM energy correction within this model.

Section C introduces the notion of chemical bond in polar molecules. Section D and E treat

respectively the ionic bond case (HBr+)and the covalent bond case (HI+). We found that

the energy corrections due to EDM for the two ions differ by an unexpectedly large factor

of fifteen because of the difference in the nature of the bond. Thus,we conclude, in section

F, that because of this difference, one ion (HI+) may be a potentially competitive candidate

for the EDM search while the other ion (HBr+) is not. Here again, atomic units are used

throughout the chapter (see Appendix C for details on atomic units).

A. Introduction

The most stringent limits on electron EDM come from a table-top experiment with

atomic Tl [13]. As with atoms, the internal energy states of heavy polar molecules can show
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evidence of EDMs of the constituents. Compared to atomic experiments, where application

of strong external E-field is required to enhance sensitivity, the experiments with polar

molecules rather rely on the inner electric molecular field Eint exerted upon the heavier atom.

This field can be several orders of magnitude larger than the attainable laboratory fields.

This notion, first elucidated by P.G.H.Sandars [28], has been exploited in experiments with

YbF [29] and TlF [30–32] molecules. I also mention ongoing experiment with metastable

PbO molecule[33].

A relatively small laboratory field is still required in the EDM experiments to polarize

the molecule. Since the E-field would accelerate a charged particle out of an apparatus,

EDM experiments are typically carried out using neutrals. It has been recently realized by

Stutz and Cornell [18] that this limitation may be overcome with ion traps: electrostatic

force exerted upon the ion by the polarizing E-field can average to zero if the polarizing

field rotates rapidly in space, with the requisite spectroscopy then being performed in a

rotating frame of reference. Moreover, the long coherence times in the trap would improve

statistics compared to traditional beam and gas cell approaches. Because of this improved

statistics, molecular ions with a relatively weak sensitivity to electron EDM could provide

competitive constrains. In particular, the hydrogen halide ions HBr+ and HI+ in their lowest

rovibrational state of the ground X 2Π3/2 term are considered as attractive candidates for

the proposed experiment [18].

As I mentioned above the goal of this work was two-fold. Firstly, we provided a guidance

to emerging EDM searches with molecular ions [18] by computing EDM-induced energy

corrections. Secondly, we elucidated the important role of the chemical bond in enhancement

of electron EDM in molecular systems. While both HBr+ and HI+ ions have a similar

electronic structure, the chemical bond in HBr+ is of ionic nature, while for heavier HI+

it is predominantly covalent[34, 35]. We found that this evolution in the character of the

chemical bond has a marked effect on the EDM-induced energy corrections. From the

experimental point of view, our computed EDM-induced energy correction for HBr+ is too

small to produce competitive bonds on the electron EDM in experiment [18]. By contrast,

the pronounced covalent bond enhancement for the HI+ ion, illuminated here, makes it a
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potentially competitive candidate for the electron EDM search.

B. Molecular structure and EDM-induced corrections

The molecular structure of low-lying rotational states of hydrogen halide ions HBr+ and

HI+ can be well classified by the Hund’s case (a). Relativistic effects split the ground X 2Π

electronic term into two components: 2Π3/2 and 2Π1/2, distinguished by Ω, projection of the

total electronic angular momentum along the molecular axis. 2Π3/2 is the ground electronic

term and it is considered as a possible candidate for the EDM experiment. In the estimates

below we will employ the following values of the equilibrium internuclear separations [34, 35]:

Re ≈ 1.448 Å for HBr+ and Re ≈ 1.632 Å for HI+. Unless noted otherwise, atomic units

(Appendix C) are used throughout the paper.

In Hund’s case (a) the molecular eigenfunctions including the nuclear rotation can be de-

scribed as |ΛΣΩ; JMJ〉 = |JMJΩ〉 |Λ Σ Ω〉 , where Λ and Σ are projections of the electronic

orbital momentum and spin onto the internuclear axis, J is the total molecular momentum

(including nuclear rotation) and MJ is the laboratory frame projection of J . The rotational

part |JMJΩ〉 may be expressed in terms of the Wigner D functions. While in the lowest-

order |ΛΣΩ; JMJ〉 and |−Λ− Σ− Ω; JMJ〉 states have the same energies, at the finer level

each rotational state of the 2ΠΩ terms splits into so-called Λ–doublet [36] due to rotational

and spin-orbit perturbations. The eigenstates of the field-free molecular Hamiltonian (dis-

regarding EDM) are e/f parity states, composed of linear combinations of the two above

states.

An externally applied electric field E0 couples the e/f parity states. For a sufficiently

strong E-field the eigenstates can be classified by a definite value of Ω, rather than by the

e/f parity label. In this case the correction to the energy due to electron EDM can be

parameterized as [37] δW (J,M,Ω) = WdΩ. It is defined as an expectation value

WdΩ = 〈ΛΣΩ; JMJ |He |ΛΣΩ; JMJ〉 = 〈Λ Σ Ω|He|Λ Σ Ω〉 . (24)
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Here,

He = 2de




0 0

0 σ · E


 , (25)

is the pseudo-scalar coupling [12] of an electron EDM de to an electric field E (Appendix

D). This internal molecular field is to be distinguished from the externally applied field.

The expectation value (24) is accumulated in the region of strong fields, i.e., mainly in the

vicinity of the nucleus of the heavier halogen atom. A common approximation is that the

electric field is produced by a spherically symmetric charge distribution E(r) ≈ Z/r2 r̂ ,

where Z is the nuclear charge of the heavier atom, and r = 0 coincides with its center.

C. Chemical bond

In the following we make an order-of-magnitude estimate of the EDM factor Wd using a

qualitative model of an isolated atomic particle perturbed by its molecular counterpart. In

this regard it is important to discuss the nature of the chemical bond in the hydrogen halide

HX+ ions. It can be be described by two limiting cases [35]: ionic (H+:X) and covalent (H ··
X+) bonds. In the case of the ionic bond the halogen atom is electrostatically perturbed by

a proton. When the bond is covalent, the halogen atom is singly ionized (3P state), while

the hydrogen atom is in its ground state.

Although both HBr+ and HI+ ions dissociate to the covalent limit, the chemical bond at

intermediate separations can be better characterized from molecular spectra. In particular,

the hyperfine structure is of significance to our consideration, because both the EDM cou-

pling and the hyperfine interaction are sensitive to behavior of the molecular orbitals near

the nuclei. An analysis of the hyperfine structure in Ref. [34] indicates that the bond for the

HBr+ ion can be adequately described as being of the ionic nature. As to the HI+ ion, the

hyperfine-structure analysis by the same authors [35] shows that the bond is predominantly

of the covalent character.

Below we consider both ionic and covalent bonds. Our semi-qualitative calculations

follow a general scheme similar to those described in Ref. [12, 38]. Firstly, we determine

the effective molecular electric field Eint exerted upon the heavier halogen atom/ion. Then
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we use the first-order perturbation theory in the interaction with Eint to determine mixing

of the atomic states of opposite parity. Finally we compute the expectation value of the

EDM-coupling operator using ab initio relativistic atomic structure codes.

D. Ionic bond approximation for the HBr+ ion

In the case of the ionic bond the halogen atom is electrostatically perturbed by a proton.

In the spirit of the LCAO1 method we expand the electronic wavefunction in terms of atomic

states Φi of the halogen atom

|Λ Σ Ω〉 =
∑

i

ci|Φi〉 , (26)

where the total angular momentum Je,i of the atomic state Φi and its projection on the

molecular axis Me,i are constrained to Je,i ≥ |Ω| and Me,i = Ω. We determine the ex-

pansion coefficients ci using the first order perturbation theory in the interaction V due to

electrostatic field exerted upon the halogen atom by the proton

|Λ Σ Ω〉 ≈ |Φ0〉+
∑

i6=0

|Φi〉〈Φi|V |Φ0〉
E0 − Ei , (27)

where Φ0 is the ground atomic state of the proper symmetry and Ei are the energies of

atomic states.

Keeping only the leading dipole term in the multipole expansion of the interaction of

atomic electrons of the halogen atom with the proton, the perturbation V ≈ −D · E int, Eint

being the electric field of the proton at the position of the atom and D the atomic electric

dipole operator. It is this strong electric field that produces enhancement of the electron

EDM in molecular ions.

Finally, the EDM-induced energy correction is

WdΩ =
2

R2
e

∑

i 6=0

〈Φ0|He|Φi〉〈Φi|Dz|Φ0〉
E0 − Ei . (28)

In the following we will use a shorthand notation

T = He (E0 −Ha)
−1Dz , (29)

1 Linear Combination of Atomic Orbitals



31

with Ha being the atomic Hamiltonian so that

WdΩ =
2

R2
e

〈Φ0|T |Φ0〉 . (30)

It is worth noting that all the quantities (except for empirical Re) in the Eq. (28)

are atomic ones and we employ atomic-structure methods to evaluate this sum. First we

employ Dirac-Hartree-Fock (DHF) approximation and then more elaborate configuration-

interaction (CI) method. All calculations carried out here are ab initio relativistic.

The halogen atoms Br and I are open-shell systems with one hole in the outer np3/2-shell,

n = 4 for bromine and n = 5 for iodine. In the DHF approximation the atomic orbitals |i〉
satisfy the eigenvalue equation hDHF|i〉 = εi|i〉, where the Dirac Hamiltonian hDHF includes

an interaction with the field of the nucleus and the self-consistent field of the electrons. In

the DHF approximation we obtain (see Appendix G for the derivation)

WdΩ =
2

R2
e

∑

i

〈g|he|i〉〈i|dz|g〉
εi − εg , (31)

where g denotes the np3/2 hole state and the summation over i extends over a complete set

of orbitals, including both core and virtual orbitals. Before doing the numerical evaluation

we can still reduce this expression (see Appendix H) to

Wd =
4de
R2
e

∑

i

(−1)ji−mi

εi − εg




jg 1 ji

−mg 0 mi


 〈jg||C1||ji〉RD REDM , (32)

where i denotes both core and virtual orbitals.

Numerically we carried out the summation using the B-spline pseudo-spectrum

technique[27]. The pseudo-spectrum was generated using the DHF potential of the ground

2P3/2 atomic state. In a typical calculation we used a set of basis functions expanded over

100 B-splines, which provided numerical accuracy sufficient for the goals of this paper.

Among other technical details it is worth mentioning that while integrating the radial Dirac

equation, we used the potential produced by a nucleus of the finite size.

To investigate a potentially large correlation effects beyond the DHF approximation, we

have also carried out configuration-interaction (CI) calculations for Br within the active

space of seven 4s2 4p5 valence electrons. In this method, the many-electron wave functions
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were obtained as linear combinations of determinants composed from as single and double

excitations of the valence electrons from the active space. Finally, following Dalgarno-Lewis-

Steinheimer method [39], we carried out the summation over intermediate states in Eq. (37)

by solving inhomogeneous many-body Dirac equation inherent to the method and computed

the sum (28). More details will be provided elsewhere.

The resulting DHF value of the EDM-induced energy correction (hole in the 4p3/2 shell )

WdΩ[HBr+, ionic,DHF,X 2Π3/2] = −1.5× 10−2de , (33)

A similar DHF calculation assuming a hole in the 4p1/2 shell leads to a 100-fold increase in

the value of the EDM correction

WdΩ[HBr+, ionic,DHF,X 2Π1/2] = 1.6de . (34)

A large difference in the values of the WdΩ parameter for the two cases can be explained

as follows. The EDM-coupling operator He is a pseudo-scalar: it does not change the total

angular momentum of a state, but flips its parity. For example, if the hole state g has p3/2

angular character, then the intermediate states in Eq.(31) are d3/2 orbitals. Similarly, the

p1/2 hole state requires s1/2 intermediate states. It is well known [12], that since the states

of lower orbital momentum have a larger probability to be found close to the nucleus, this

selection rule has a profound effect on the order of magnitude of the EDM factor Wd.

One may argue that an enhancement of the EDM factor for the X2Π3/2 state may arise

due to particle-hole excitations, when s1/2 (p1/2) electron is excited from the core to the

p1/2 (s1/2) orbital. It is easy to demonstrate in the DHF approximation, that while the

individual contributions from such excitations are certainly large, their sum vanishes. It is

the reason why the closed-shell systems are largely insensitive to the electron EDM [12], i.e

the EDM-induced energy correction arises only due to an unpaired electron. Correlations

(many-body effects beyond DHF) may potentially spoil the presented argument and we have

carried out the correlated CI calculations. The result,

WdΩ[HBr+, ionic,CI,X 2Π3/2] = −2.6× 10−2de , (35)

is of the same order as the DHF value.
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As a reference, here we also present the DHF value for the HI+ ion in the ionic bond

approximation

WdΩ[HI+, ionic,DHF,X 2Π3/2] = −7.0× 10−2de . (36)

E. Covalent bond approximation for HI+

From the preceding discussion it is clear that a participation of the unpaired p1/2 or s1/2

orbital in the ground-state configuration of the heavier molecular constituent is important

for gaining large Wd parameter. Qualitatively we can hope that such an enhancement

for the X2Π3/2 component may arise when the chemical bond acquires covalent character

(case of HI+ ion). Indeed, in the covalent bond approximation, the halogen atom becomes

singly ionized its ground state being 3P . The ground state has two p holes in the outer

shell, so that the corresponding relativistic many-body states are composed from linear

combination of p−1
1/2 p

−1
1/2, p−1

3/2 p
−1
1/2 and p−1

3/2 p
−1
3/2 single- electron configurations (the superscript

−1 designates a hole state). Therefore the unpaired j = 1/2 orbital becomes involved in the

calculations, and indeed, as shown below, this leads to a significantly larger EDM-induced

energy correction for the X2Π3/2 term.

The HI+ ion may be pictured as the iodine ion I+ in the 3P state perturbed by the

neutral hydrogen atom in its ground state. First let us derive the internal electric field Eint

and the associated mixing of opposite parity states of the iodine ion. Qualitatively, the field

of I+ induces a dipole moment of the hydrogen atom |DH | = α0/R
2
e, where α0 = 9/2 is the

polarizability of the hydrogen ground state. In turn, the induced dipole moment exerts a

field at the position of the iodine ion Eint = 2α0/R
5
e ẑ. Thus the iodine ion is perturbed by

V ≈ −2α0Dz/R
5
e , where D is the atomic dipole moment operator for I+.

Again we limit our consideration to a qualitative estimate and use the first-order pertur-

bation theory in the molecular field, so that the EDM-induced energy correction is

WdΩ = −4α0

R5
e

〈Φ0|T |Φ0〉 , (37)

where the operator T is given by Eq. (29), except now all the participating operators in

that expression are to be understood as being for the iodine ion and Φ0 is its properly
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symmetrized ground state. The above expression differs from the analogous formula (30)

for the ionic bond by a prefactor characterizing the internal molecular field Eint acting upon

the halogen atom/ion. Compared to the ionic bond, this perturbing field becomes 70%

weaker.

In order to carry out the calculations with the relativistic operator He, we express the un-

perturbed non-relativistic molecular wavefunction in terms of the relativistic wave-functions

of the iodine ion, |3PJ ,MI+〉, and the hydrogen,
∣∣∣1s1/2,MH

〉
,

∣∣∣2Π3/2

〉(0)

covalent
=

√
2

3

∣∣∣3P2, 2
〉 ∣∣∣∣1s1/2,−1

2

〉
+ (38)

−
√

1

6

(∣∣∣3P2, 1
〉 ∣∣∣∣1s1/2,

1

2

〉
+
∣∣∣3P1, 1

〉 ∣∣∣∣1s1/2,
1

2

〉)
.

Since the expectation value of the EDM coupling operator He is accumulated close to the

nucleus of the heavy iodine ion, He is essentially a one-center operator and a generalization

of Eq.(37) for the two-center wavefunction (39) reads

(
−4α0

R5
e

)−1

〈2Π3/2|He|2Π3/2〉covalent = (39)

3

2

〈
3P2, 1

∣∣∣T
∣∣∣3P2, 1

〉
+

1

6

〈
3P1, 1

∣∣∣T
∣∣∣3P1, 1

〉
+

1

6

〈
3P2, 1

∣∣∣T
∣∣∣3P1, 1

〉
+

1

6

〈
3P1, 1

∣∣∣T
∣∣∣3P2, 1

〉
,

We calculated the values of matrix elements for iodine ion within the CI approach similar

to the one described above for Br. The computed values are 〈3P2, 1|T |3P2, 1〉 = 6.4 de,

〈3P1, 1|T |3P1, 1〉 = −13.4 de, 〈3P1, 1|T |3P2, 1〉 = −11.2 de, and 〈3P2, 1|T |3P1, 1〉 = 2.5 de.

Finally,

WdΩ[HI+, covalent,CI,X 2Π3/2] = −0.4de . (40)

We notice a sizable enhancement compared to the value of −7×10−2de obtained in the ionic

bond approximation.

F. Conclusions

First of all the EDM-induced energy correction for the X2Π3/2 state of HI+ is about 15

times larger than for HBr+. A lesser part of this enhancement comes from the well-known



35

Z3 scaling of CP -violating matrix elements [12], when bromine (Z = 35) is replaced by the

heavier iodine (Z = 53). A more substantial factor, illuminated in this work, is the evolution

in the nature of the chemical bond. To reiterate, the CP -violating matrix elements are much

larger for the p1/2 states than for p3/2, due to the fact that the values of the relevant matrix

elements are accumulated close to the nucleus. In the ionic bond case of HBr+, the EDM

correction arises from an unpaired p3/2 hole state in the outer shell and CP -violating effects

are suppressed. By contrast, the covalent bond of HI+ in addition opens the p1/2 shell,

leading to a marked enhancement.

Typical values [37, 40] of the EDM-induced energy corrections for heavy neutral polar

molecules PbO and YbF are on the order of 10de atomic units. Our computed value for HI+

is an order of magnitude smaller. Yet, when compared with the conventional beam and gas-

cell experiments, the proposed trapping experiment [18] has a better statistical sensitivity

so that molecular ions with smaller enhancement parameters, such as HI+, may suffice. By

contrast, the EDM correction for HBr+ is too small to be of experimental interest. As shown

here, it is the covalent bond of HI+ that makes this ion a potentially competitive candidate

for the emerging searches for EDMs with molecular ions.
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IV. T -ODD POLARIZABILITY OF Xe ATOM IN LIQUID Xe

T -violating effects lead to a tiny magnetization of a sample placed in an electric field.

They also lead to a tiny electrical polarization of a sample placed in a magnetic field. Current

techniques allow experimentalists to measure very small magnetic fields. In this chapter, I

look at the possibility, with available techniques, of measuring a tiny T -violating magnetic

field coming from a material placed in a huge electric field. As we have discussed in Chapter

II, liquid Xe could be a good material to use for this experiment due to its properties. While

the T -violation considered in chapter II was due to nuclear sources, here it would mainly

come from the electron EDM as in Chapter III. As a consequence, measuring a T -violating

magnetic field could set a limit on the electron EDM.

In this chapter, the T -odd polarizability is estimated for the rare-gas atoms He through

Rn. The results show that the T -odd polarizability of rare-gas atoms scales as Z5R(Z),

where Z is the nuclear charge and R(Z) is a slowly varying relativistic enhancement factor.

It is found that liquid Xe experiment could provide competitive bounds on the electron

EDM only if the present level of experimental sensitivity to ultraweak magnetic fields [41]

is improved by several orders of magnitude.

The chapter is organized as follows: In section B, I derive the third-order expression

for the T -violating polarizability βCP and use the independent-particle approximation to

simplify the atomic many-body expressions. In section C, I present results of Dirac-Hartree-

Fock (DHF) calculations of βCP for rare-gas atoms and derive the Z scaling of βCP. In section

D, I evaluate a feasibility of setting a limit on electron EDM by measuring T -violating

magnetization of liquid Xe. Finally, in section E the conclusions are drawn.

A. Introduction

Interaction of an atom with external DC electric field E0 in the presence of the elec-

tron EDM causes spin polarization in the direction of the field [42]. As a consequence, a

magnetic moment µCP is induced by an electric field, µCP = βCPE0. The first attempt to

measure corresponding magnetization of the ferromagnetic crystal was made by Vasiliev and
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Kolycheva in 1978 [43]. According to Lamoreaux [44], modern techniques allow to improve

that old measurement by many orders of magnitude and reach the sensitivity, which allows

to improve the present limit on the electron EDM (de(Tl) < 1.6 × 10−27e cm). Results

of the new generation of experiments with ferromagnetic solids were recently reported by

Hunter [45]. A characteristic feature of the experiments with macroscopic magnetization is

the dependence of the signal on the density of atoms. That gives a huge enhancement in

sensitivity for a condensed phase sample.

It is generally assumed that diamagnetic atoms are not useful for the search of the electron

EDM. However, Baryshevsky has recently pointed out [46] that T -violating magnetization

would also exist for a diamagnetic atom. For a spherically symmetric atom, the E-field-

induced magnetic moment µCP can be expressed in terms of T -violating polarizability βCP

as

µCP = βCPE0, (41)

where E0 is the strength of the electric field. This observation opens interesting experimental

possibilities. For example, one can measure magnetization of liquid xenon in a strong exter-

nal electric field. The advantage of the experiment with diamagnetic liquid in comparison

to ferromagnetic solids is a much lower magnetic noise. For a diamagnetic (closed-shell)

atom the magnetization (41) appears in the higher orders of the perturbation theory than

for the open-shell atoms.

We find that the T -violating polarizability exhibits an unusually strong dependence on

the nuclear charge Z. Previously, Sandars [47] has shown that an atomic enhancement factor

for the electron EDM is of the order of α2Z3, where α = 1/137 is the fine-structure constant.

As we demonstrate in section C, for a diamagnetic atom, the polarizability βCP vanishes

in the nonrelativistic approximation. Because of that it is suppressed by a factor of (αZ)2.

With the Sandars enhancement factor this leads to a steep, Z5, scaling of the effect.

Finally, we evaluate the feasibility of setting a limit on electron EDM by measuring T -

violating magnetization of liquid Xe. To consider the effect of the environment on βCP

in the liquid state, we use the exact same techniques described in Chapter II: we solve

the DHF equation in a spherically symmetric cavity with proper boundary conditions. We
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find that compared to the T -odd polarizability of an isolated Xe atom, the resulting T -odd

polarizability of an atom of liquid Xe is suppressed by about 65%.

B. Formalism

In this section we derive the expression for T -violating polarizability within the third-

order perturbation theory. Further, we simplify the derived expression using the Dirac-

Hartree-Fock approximation for atomic many-body states.

The problem to be solved can be formulated as follows: What is the induced magnetic

moment 〈µ〉 of an atom perturbed by an external electric field E0? As I explained in

section IB2, if the atomic wavefunctions are the eigenstates of the parity and time-reversal

operators, the induced magnetic moment vanishes. However, in the presence of the T -odd

interactions, V CP, there appears a tiny E-field-induced magnetic moment. To emphasize

the essential role of T or CP -violation in the generation of the magnetic-moment, we will

use CP superscript with the magnetic moment,
〈
µCP

〉
(T is equivalent to CP according to

the CPT theorem, see section IA3). The interaction V CP is due to the electron EDM. For

a spherically-symmetric system, the induced magnetic moment will be directed along the

applied E-field.

Remark : CP -odd weak neutral-current interactions between electrons and the nucleus

also contribute to an atomic magnetic moment. This contribution is indistinguishable from

the electron EDM. We will have to specify the particular forms of V CP for each contributions.

1. Third-order formula for the induced magnetic moment

We develop the perturbative expansion for the atomic wavefunction |Ψ0〉 in terms of the

combined interaction W = V CP+V ext. Here V ext is the interaction with the external electric

field applied along the z-axis, V ext = −Dz E0, Dz being the z-component of the electric

dipole moment operator. To estimate the dominant contribution to 〈µ〉, it is sufficient to

truncate the perturbative expansion for the atomic wavefunction at the second order in W ,
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|Ψ0〉 ≈ |Ψ(0)
0 〉+ |Ψ(1)

0 〉+ |Ψ(2)
0 〉. Then the expectation value of the magnetic moment reads

〈
µCP

〉
= 〈Ψ(1)

0 |µ|Ψ(1)
0 〉+ 〈Ψ(0)

0 |µ|Ψ(2)
0 〉+ 〈Ψ(2)

0 |µ|Ψ(0)
0 〉 . (42)

To arrive at the above expression we used a simplifying fact that the magnetic moment

is a P -even operator, while both |Ψ(0)
0 〉 and |Ψ(2)

0 〉 have parities opposite to the one of the

first-order correction |Ψ(1)
0 〉.

The textbook expressions for the first and second-order corrections to wavefunctions can

be found, for example, in Ref. [48]. With these expressions,

〈
µCP

〉
=
〈
µCP

〉
1

+
〈
µCP

〉
2

+
〈
µCP

〉
3
, (43)

〈
µCP

〉
1

= 2
∑

kl

V CP
0k

E0 − Ekµkl
V ext
l0

E0 − El , (44)

〈
µCP

〉
2

= 2
∑

kl

µ0k
V CP
kl V ext

l0

(E0 − Ek) (E0 − El) , (45)

〈
µCP

〉
3

= 2
∑

kl

µ0k
V ext
kl V CP

l0

(E0 − Ek) (E0 − El) . (46)

In these formulas, the summations are carried out over the eigenstates of the atomic Hamil-

tonian Ha, Ha|Ψ(0)
p 〉 = Ep|Ψ(0)

p 〉. The derived third-order expression can be presented in a

more compact and symmetrical form using the resolvent operator R = (E0 −Ha)
−1,

〈
µCP

〉
= 2〈0|V CPRµRV ext|0〉 (47)

+ 2〈0|µRV CPRV ext|0〉

+ 2〈0|µRV extRV CP|0〉 .

The three above contributions differ by permutations of the operators µ, V CP and V ext.

2. Dirac-Hartree-Fock approximation

Having derived a general third-order expression for the induced magnetic moment,

Eq. (48), here we proceed with the atomic-structure part of the evaluation. We employ

the conventional Dirac-Hartree-Fock (DHF) or independent-particle approximation for that

purpose. In this approach, the atomic many-body wavefunction is represented by the Slater

determinant composed of single-particle orbitals. These orbitals are determined from a set
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of the DHF equations. Using a complete set of Slater determinants, the contributions to

the induced magnetic moment, Eq.(44–46), may be expressed as

〈
µCP

〉
1,a

= 2
∑
amn

V CP
an µnmV

ext
ma

(εm − εa)(εn − εa) , (48)

〈
µCP

〉
1,b

= −2
∑

abm

V CP
bm µab V

ext
ma

(εm − εa) (εm − εb) , (49)

〈
µCP

〉
2,a

= 2
∑
amn

µanV
CP
nm V ext

ma

(εm − εa) (εn − εa) , (50)

〈
µCP

〉
2,b

= −2
∑

abm

µbmV
CP
ab V ext

ma

(εm − εa) (εm − εb) , (51)

〈
µCP

〉
3,a

= 2
∑
amn

µanV
ext
nm V CP

ma

(εm − εa) (εn − εa) , (52)

〈
µCP

〉
3,b

= −2
∑

abm

µbmV
ext
ab V CP

ma

(εm − εa) (εm − εb) . (53)

Here indexes a and b run over single-particle orbitals occupied in |Ψ0〉, indexes m and n run

over virtual orbitals, and εi are the energies of the HF orbitals.

It is well known that the relativistic effects are essential for the non-vanishing contribu-

tions to energy levels due to EDMs. Moreover, in section IV C 1, we will demonstrate that

relativity enters into the calculations of T -violating polarizability in the enhanced fashion:

one also needs to incorporate relativistic corrections to electric- and magnetic-dipole matrix

elements and energies entering Eq.(44–46). We include the relativistic effects by directly

solving Dirac-Hartree-Fock (DHF) equations

(
c(α · p) + βc2 + Vnuc + VDHF

)
ui(r) = εiui(r) , (54)

where Vnuc is a potential of the Coulomb interaction with a finite-size nucleus and VDHF is

non-local self-consistent DHF potential.

At this point we would like to specify particular forms for the T or CP -odd interaction

V CP. We will distinguish between the electron EDM coupling V CP,EDM and weak neutral-

current (NC) interactions V CP,NC. The formula for both contributions can be found in

Appendix D. The matrix elements between single-particle orbitales are shown in Appendix

E. We can now treat the numerical part which will give us the results in the next section.
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C. Results for rare-gas atoms

The derived DHF expressions hold for any atomic or molecular system with a state

composed from a single Slater determinant. Below we carry out calculations for the rare-

gas atoms He through Rn. These closed-shell atoms have a 1S0 ground state and, due to the

spherical symmetry, the CP -violating polarizability is a scalar quantity, i.e., the induced

magnetic moment is parallel to the applied electric field. The intermediate many-body

states in Eq. (44–46) are particle-hole excitations, with the total angular momenta of J = 0

or J = 1, depending on the multipolarity of the involved operator.

As in chapter II, we solve the DHF equations in the cavity using a B-spline basis set

technique by W.R.Johnson and J.Sapirstein [27]. The resulting set of basis functions is

finite and can be considered as numerically complete. In a typical calculation we used a set

of basis functions expanded over 100 B-splines. An additional peculiarity related to the Dirac

equation is an appearance of negative energy states (εm < −mec
2) in the summation over

intermediate states in Eq. (48)–(53). In our calculations we used the so-called length-form of

the electric-dipole operator, Eq. (E2) and we found the contribution of negative-energy-state

to be insignificant.

Atom Z βCP/de βCP/K

He 2 −3.8[−9] −2.4[−22]

Ne 10 −2.2[−6] −1.5[−19]

Ar 18 −7.4[−5] −5.2[−18]

Kr 36 −3.6[−3] −3.1[−16]

Xe 54 −4.5[−2] −5.3[−15]

Rn 86 −1.07 −2.2[−13]

TABLE IV: CP -violating polarizability, βCP, in Gaussian atomic units, for rare-gas atoms. CP -

violation is either due to the electron EDM, de, or due to the neutral currents (D5). Notation x[y]

stands for x× 10y.
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FIG. 7: Dependence of the T -violating polarizability βCP on the nuclear charge Z for rare-gas

atoms. T -violation is due to the electron EDM, de. The ratio βCP/de is given in atomic units.

Numerical results for rare-gas atoms are presented in Table IV and also plotted in Fig. 7.

In Table IV, the values in the column marked βCP/de were computed directly, while the

values βCP/K (the last column) were obtained from βCP/de as explained in section IV C 1.

From Fig. 7 we observe a pronounced dependence of the values on the nuclear charge

Z. Such a steep scaling of the T -odd polarizabilities is expected from the considerations

presented in section IV C 1.

To illustrate the (doubly) relativistic origin of the T -odd polarizability βCP, we compile

values of various contributions to βCP in Table V for an isolated Xe atom. Apparently,

the dominant contributions are from 〈µCP〉1,a, Eq. (48), and 〈µCP〉1,b, Eq. (49), but there is

strong cancelation between these two terms. As we will see below, this cancelation is not

accidental.

1. Z5 scaling and relation between EDM and NC contributions

Let us consider non-relativistic limit of Eqs. (44 – 46). The magnetic moment operator

is reduced to the form:

µ = −α
2

(2s+ l). (55)
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k βCP
k,a/de βCP

k,b /de sum

1 0.108 −0.132 −2.44[−2]

2 −6.53[−3] 6.63[−5] −6.46[−3]

3 −8.19[−3] −5.13[−3] −1.33[−2]

total −4.42[−2]

TABLE V: Contributions to T -violating polarizability, βCP/de, in Gaussian atomic units, for an

isolated Xe atom. Each contribution is defined via Eq. (48)–(53) as βCP
k,α/de = 〈µCP〉k,α/(deE0).

CP -violation is due to the electron EDM, de. Notation x[y] stands for x× 10y.

This operator can not change electronic principal quantum numbers. Because of that the

contributions (45) and (46) vanish, as there µ should mix occupied and excited orbitals.

Thus, we are left with the single term (44), which can be further split in two parts (48) and

(49). We will show now that these two parts cancel each other.

Indeed, in the non-relativistic approximation the operator V CP is given by a scalar prod-

uct of the spin vector and the orbital vector. Therefore, in the LS-coupling scheme it can

couple the ground state 1S0 only to the excited states 3P0. Operator (55) is diagonal in

the quantum numbers L and S and can couple 3P0 only to 3P1. To return back to the

ground state, the dipole operator V ext has to couple 3P1 to 1S0. However, this matrix el-

ement vanishes in the non-relativistic approximation. The above states 3P0,1 are formed

from the excited electron and a whole in the core, which correspond to two expressions (48)

and (49). We conclude that these two contributions exactly cancel in the non-relativistic

approximation.

The matrix element 〈3P1|V ext|1S0〉 is proportional to the spin-orbit mixing, which is of

the order of (αZ)2. It follows from (E1) that relativistic correction to operator (55) is of the

same order. This correction accounts for the nondiagonal in the principle quantum numbers

matrix elements of µ and leads to the nonzero values of the terms (45) and (46). Thus, we

see that all three terms in (43) are suppressed by the relativistic factor (αZ)2, in agreement

with numerical results from Table V.

Matrix elements of the T -odd interaction V CP depend on the short distances and rapidly
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decrease with quantum number j. To a good approximation it is possible to neglect all

matrix elements for j ≥ 3/2. For the remaining matrix elements between orbitals s1/2 and

p1/2 an analytical expression can be found in [49]:

〈s1/2|V CP,EDM|p1/2〉 =
16

3

α2Z3REDM

(νsνp)3/2
de, (56)

〈s1/2|V CP,NC|p1/2〉 =
GF

2
√

2π

αZ3RNC

(νsνp)3/2
K, (57)

where we use effective quantum numbers ν = (−2ε)−1/2. REDM and RNC are relativistic

enhancement factors:

REDM =
3

γ(4γ2 − 1)
=





1, Z = 1,

1.4, Z = 54, (Xe),

2.7, Z = 86, (Rn),

(58)

RNC =
4γ(2ZrN)2γ−2

Γ2(2γ + 1)
=





1, Z = 1,

2.5, Z = 54,

8.7, Z = 86,

(59)

where Γ is the Gamma function, γ =
√

1− (αZ)2 and the radius of the nucleus is taken to

be rN = 1.2 (Z +N)1/3fm [49].

We see that both T -odd operators scale as Z3R with relativistic enhancement factors R

given by (58) and (59). This scaling adds up with relativistic suppression (αZ)2 discussed

above to give overall scaling Z5R. This scaling agrees with our numerical calculations and

Fig. 7.

Because of the similarity between matrix elements (56) and (57) of operators V CP,EDM

and V CP,NC, there is no need in calculating independently the NC contribution to βCP. It

is sufficient to substitute matrix elements (56) in all equations with matrix elements (57).

Comparing these expressions we find that to get the contribution to βCP induced by the

CP -odd weak neutral currents we need to make following substitution:

de
er0

⇐⇒ 0.64× 10−13 R
NC

REDM
K, (60)

where r0 is the Bohr radius and REDM and RNC are given by (58) and (59). The accuracy

of (60) is typically 15 – 20%, which is sufficient for our purposes. It was used to calculate

the last column of Table IV.
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D. Limits on electron EDM from measurement of T -odd polarizability

Here we envision the following experimental setup (see Fig. 8) to measure the T -violating

polarizability: A strong electric field E0 is applied to a sample of diamagnetic atoms of

number density n. A macroscopic magnetization arises due to the T -violating polarizability.

This magnetization generates a very weak magnetic field B. One could measure this induced

magnetic field and set the limits on the electron EDM or other T -violating mechanisms. In

particular, for a spherical cell the maximum value of the generated magnetic field at the

surface of the sphere can be related to the T -violating polarizability as

Bmax =
8π

3
nβCPE0 . (61)

Clearly, one should increase the number density to enhance the signal, and it is beneficial

to work with a dense liquid or solid sample.

Magnetometer
~B

Liquid sample~E0
~E0

FIG. 8: (Color online) A scheme for measuring T -violating polarizability.

Among the rare-gas atoms, considered here, xenon has the most suitable properties for

such an experiment: Xe is the heaviest non-radioactive atom, it has a large number density

(n ∼ 1022 1/cm3), and liquid Xe has a high electric field breakdown strength (E0 ∼ 4 ×
105V/cm). Our calculations in section IV C were carried out for isolated atoms. However, in

a liquid, there are certain environmental effects (such as confinement of electronic density)
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that affect the T -violating signal. To estimate the confinement effects in the liquid, we

employ the liquid-cell model. The calculations are similar to those of Chapter II. In brief,

we solve the DHF equations for a Xe atom in a spherical cavity of radius Rcav =
(

3
4π

1
n

)1/3
,

with certain boundary conditions imposed at the cavity surface. For a density of liquid Xe

of 500 amagat [50], Rcav ' 4.9 bohr. For a solid state, Rcav ' 4.2 bohr and we use the

latter in the calculations for the same reasons as in Chapter II. Technically, we applied the

variational Galerkin method on a set of 100 B-spline functions [27]. We find numerically

that compared to an isolated atom, the T -violating polarizability of a Xe atom in liquid Xe

is reduced by about 65%,

βCP(LXe) ≈ 1.5× 10−2de . (62)

From Eq. (61) it is clear that the more sensitive the measurement of the B-field, the tighter

the constraints on βCP (and de) are. Presently, the most sensitive measurement of weak

magnetic fields has been carried out by Princeton group [51]. Using atomic magnetometry,

this group has reached the sensitivity level of 5.4×10−12 G/
√

Hz. The projected theoretical

limit [51] of this method is 10−13 G/
√

Hz. Notice that this estimate has been carried out for

a sample of volume 0.3 cm3. According to Romalis [52], the sensitivity increases with volume

V as V 1/3, so a 100 cm3 cell would have an even better sensitivity of about 10−14 G/Hz1/2.

More optimistic estimate, based on nonlinear Faraday effect in atomic vapors [53], is given

in Ref.[44]; here the projected sensitivity is 3× 10−15 G/
√

Hz.

Assuming 10 days of averaging, the most optimistic published estimate of the sensitivity

to magnetic field [44] leads to the weakest measurable field of B ' 3× 10−18 G. Combining

this estimate with the breakdown strength of the E-field for liquid Xe, E0 ∼ 4× 105 V/cm,

and our computed value of T -odd polarizability, Eq. (62), we arrive at the constraint on the

electron EDM,

de(LXe) < 6× 10−26 e · cm. (63)

This projected limit is more than an order of magnitude worse than the present limit on

the electron EDM from the Tl experiment [13], de (Tl) < 1.6 × 10−27 e · cm. It is worth

emphasizing that the above limit has been obtained using B-field sensitivity estimate from

Ref. [44]; with the present sensitivity record [51], the constraints of electron EDM are
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several orders of magnitude weaker. In other words, we find that a substantial improvement

in the experimental sensitivity to weak magnetic fields is required before the CP -violating

polarizability of liquid Xe can be used for EDM searches.

E. Conclusion

To summarize, we have computed novel T -violating atomic polarizabilities [46], βCP,

for rare-gas atoms. We have derived third-order expressions for βCP and employed the

Dirac-Hartree-Fock method to evaluate the resulting expressions. We have elucidated the

doubly relativistic origin of the polarizability and demonstrated strong Z5 dependence on

the nuclear charge. Finally, we evaluated a feasibility of setting a limit on the electron EDM

by measuring T -violating magnetization of liquid Xe. We found that such an experiment

could provide competitive bounds on electron EDM only if the present level of experimental

sensitivity to ultra-weak magnetic fields [51] is improved by several orders of magnitude.
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V. CONCLUSION

The intricate phenomenon of microscopic T -violation is viewed as a key to a deeper under-

standing of both the behavior of elementary particles and the matter-antimatter asymmetry

of the Universe (see section I.A). T -violation has only been observed with certain kind of

particles in accelerators. Very soon, in Geneva, the Large Hadron Collider (LHC) will re-

place the Large Electron Positron (LEP) collider. Physicists have a great expectation to

finally reveal supersymmetry with the LHC. Experiments with atoms and molecules offer an

alternative and complementary way to probe T -violation. They have already put tight con-

straints on elementary-particle models and, particulary, supersymmetry (see section I.B.3).

At the same time, new atomic physics experiments might soon provide more answers to

understanding the origin of the Universe and the laws that govern elementary particles. My

dissertation provided a theoretical foundation for several emerging experimental searches

for T -violation in atomic and molecular physics.

Here, using numerical estimates of structure factors, I related microscopic T -violating

sources to macroscopic T -violating measurable signals. Three experiments were studied

(Chapters II, III and IV). Each of them aims at measuring a T -violating signal in a sample

of particular atoms or molecules. In some cases, the calculations were carried out for a

number of species to find the best experimental candidate. In other cases, our work provides

a guidance for searching better species and sets up techniques for future calculations of the

relevant structure factors.

Let us sum up the results for the three considered experiments:

1) The conclusion of our work for the liquid Xe experiment (chapter II) is that exper-

imentalists can expect an improvement of several orders of magnitude, compared to the

present limit, for several sources of T -violation. Xenon atoms seem to be the best species

for this experiment. This original work also develops computational techniques that can

be used for atoms embedded in non-polar liquid. The results of this work were published

in “Effects of confinement on the permanent electric-dipole moment of Xe atoms in liquid

Xe”, [54].

2) The purpose of the second experiment is to measure the electron EDM using trapped
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molecular ions (chapter III). This experiment is planned at JILA, Colorado. We found that

the considered molecular ions HBr+ and HI+ have structure factors lower than those for

typical neutral molecules. The search for a better molecular ion candidate is still open. Our

work provides a guideline for the search of a better molecular ion. This work was published

in“Marked influence of the nature of chemical bond on CP -violating signature in molecular

ions HBr+ and HI+”, [55].

3) The third experiment (chapter IV) aims at putting a limit on the electron EDM by

measuring the T -violating polarizability of liquid xenon. We found that such an experiment

could provide competitive bounds on electron EDM only if the present level of experimental

sensitivity to ultra-weak magnetic fields [51] is improved by several orders of magnitude.

The idea of measuring a magnetic field produced by applying an electric field to a sample has

not been abandoned though, and experimentalists and theoreticians are looking for other

materials that would be much more sensitive to the electron EDM. It seems that molecules

offer a better sensitivity again [56]. This work was published in “Atomic CP -violating

polarizability”, [57].
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APPENDIX A: RELATIVISTIC ATOMIC ORBITALS

Non-relativistically, the wave function of an atomic electron is described by four quan-

tum numbers: the principal quantum number (n), the angular momentum (l), the magnetic

quantum number(ml), and the projection of the spin (ms). They correspond to the three

degrees of freedom a point-like electron moving in a 3 dimensional space plus the one ”inter-

nal” degree of freedom due to the orientation of the spin. The wave function of one electron

is called an orbital. In a spherically symmetric potential it is usually denoted as ϕn,l,m(r)

or ϕa(r), where a stands for the four quantum numbers. Spherical symmetry allows for

factorization

ϕn,l,ml,ms(r) = Fn,l(r)Yl,ml(r̂)χ(ms), (A1)

where Yl,ml(r̂) are the spherical harmonics and Fn,l is the radial wave function.

Relativistically, the spin of the electron is coupled to the motion of the electron. The

relativistic equation of motion of the electron is the Dirac equation. The spin degree of

freedom is entangled to the three spatial degrees of freedom, and the total angular momen-

tum j = l + s is introduced. For a spherically symmetric potential, the wave function of the

electron is now described by three quantum numbers: the principal quantum number (n),

the relativistic angular quantum number (κ = (l − j)(2j + 1)) and the magnetic quantum

number (m). Sometimes the quantum number j = |κ| − 1/2 is used. The relativistic wave

function of a single electron in a spherical potential is described by a bi-spinor (four complex

numbers):

ϕa(r) = ϕn,κ,m(r) =
1

r




Pn,κ(r)Ωκ,m(r̂)

iQn,κ(r)Ω−κ,m(r̂)


 , (A2)

where P and Q are the radial wave functions for the small and large components, and

Ωκ,m(r̂) are the spherical spinors.

In independent-particle approximation, the atomic wavefunction of all electrons is repre-
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sented by the Slater determinant of the occupied orbitals,

Ψ(ξ1, ξ2, ..., ξN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(ξ1) ϕ2(ξ1) ... ϕN(ξ1)

ϕ1(ξ2) ϕ2(ξ2) ... ϕN(ξ2)

...
...

...

ϕ1(ξN) ϕ2(ξN) ... ϕN(ξN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (A3)

where a denotes a set of quantum numbers nκm, N is the total number of electrons, and ξi

encapsulates coordinate and spin degrees of freedom for the ith electron. The determinant

is needed in order to make the wavefunction antisymmetric, i.e., the wavefunction changes

its sign when any two electrons are swaped (the Pauli principle for fermions).
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APPENDIX B: HARTREE-FOCK APPROXIMATION

In the previous appendix, I introduced atomic orbitals by assuming that electrons move

independently in a spherically-symmetric potential. This is an approximation, because

interaction between the electrons generates a potential that depends on the position of

all the electrons. This leads to an electronic wave function with correlations between the

electrons. In the Hartree-Fock (HF) method, the wavefunction is approximated by a Slater

determinant of electron orbitals, Eq.(A3). The radial wavefunctions P and Q, Eq.(A2), are

determined using the variational principle. The variational principle gives solution to the

wave equation,

(H − ε)Ψ = 0, (B1)

by looking for the stationary solutions,

〈δΨ|H − ε|Ψ〉 = 0. (B2)

This equation leads to the Dirac-Hartree-Fock (DHF) equations for each orbital:

(
c(α · p) + βc2 + Vnuc + VHF

)
ϕa = εaϕa , (B3)

where VHF is a non-local self-consistent HF spherically symmetric potential and α’s and β

are the 4 × 4 Dirac matrices. Atomic units (Appendix C) were used. The DHF equations

are solved self-consistently for the radial part of each orbital. The angular and spin part

of each orbital Ωκ,m(r̂) remains unchanged. At the end of the procedure the many-body

atomic wavefunction Ψ is still written as a single Slater determinant of the orbitals. In

more accurate theories (such as configuration interaction), a linear combination of Slater

determinants is needed.

In our work we always started by solving DHF equations for occupied orbitals and ex-

cited (virtual) orbitals. It would give a complete basis of electron orbitals that we would

use in all of our computations. To improve upon the DHF approximation, we also used rel-

ativistic random-phase approximation (RRPA) method [58]. This approximation describes

a dynamic linear response of an atom to a perturbing one-body interaction (e.g., HCP). The

perturbation modifies core orbitals thus changing the HF potential VHF. This modification
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of VHF in turn requires the orbitals to adjust self-consistently. Such a readjustment process

defines an infinite series of many-body diagrams. The RRPA series can be summed to all

orders using iterative techniques or solving DHF-like equations.
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APPENDIX C: ATOMIC UNITS

In atomic physics, we employ a system of units called atomic units (a.u.). It is defined

by taking the following basic quantities (in Gaussian units) equal to one a.u.:

- e is the absolute value of the electric charge of the electron,

- m is the rest mass of the electron,

- h̄ is the Planck’s constant divided by 2π.

All the other atomic units can be obtained by combining these quantities to give the

proper dimension.

The first Bohr radius

a0 =
h̄2

me2
= 1a.u. (C1)

is the atomic unit of length.

The fine-structure constant

α =
e2

ch̄
, (C2)

where c is the velocity of light in vacuum, is a pure number(≈ 1/137). It means that

c ≈ 137a.u. (C3)

The atomic energy unit is

1H =
me4

(4πε0)2h̄2 = 1a.u. ≈ 27.2eV. (C4)

The Bohr magneton

µB =
eh̄

2m
(C5)

has the value of 1/2 in atomic units.
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APPENDIX D: SOURCES OF T VIOLATION IN ATOMS

In this appendix, I compile sources of T -violation needed for my work. The Hamiltonians

are written in the bi-spinor space (Appendix A).

1. Electron EDM

An electron has an EDM directed along its spin. Its value is de. The interaction of an

electron EDM with an electric field E has the form [12]:

He = 2de




0 0

0 σ · E


 , (D1)

where σ’s are the Pauli 2× 2 matrices.

2. Nuclear Schiff moment

The Schiff moment S characterizes a difference between charge and EDM distributions

inside the nucleus [16]. The Schiff moment is aligned with the nuclear spin I:

S = S
I

‖I‖ . (D2)

The interaction between electrons and charges (and EDMs) conserves T . The Schiff moment

originates from the T -odd interactions within the nucleus. The interaction of an electron

with the nuclear Schiff moment has the form [24]

hSM(re) =
3

B4

ρN (re) (re · S) , (D3)

where ρN is the normalized nuclear density distribution and B4 =
∫∞
0 r4ρN (r) dr is its

fourth-order moment.
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3. T -odd semileptonic interaction

The semileptonic interaction between the nucleus and the electron violates T and P . Its

Hamiltonian may be represented as [22]

hTN(re) =
√

2GFCTN σN · (iγ0γ5 σ)e ρN (re) . (D4)

The subscripts e and N distinguish between operators acting in the space of electronic and

nuclear coordinates, respectively. CTN is the semi-leptonic coupling constant that charac-

terizes the strength of this interaction, GF = 2.2225× 10−14 a.u. is the Fermi constant, ρN

is the normalized nuclear density distribution, and γ0,5 are Dirac matrices.

4. T -odd weak neutral current

Recently there was a renewed interest to T -odd weak neutral current interactions of

electrons with nucleons [59]. It is known that in atomic experiments, EDM of the electron

is indistinguishable from the scalar T -odd weak neutral currents [49]. The interaction is

represented as

hNC(re) = i
GF√

2
(Zkp1 +Nkn1 )γ0γ5ρ(re) ≡ i

GFZ√
2
Kγ0γ5ρ(re), (D5)

where kp,n1 are dimensionless constants of the scalar P, T -odd weak neutral currents for

proton and neutron (K ≡ kp1 + N
Z
kn1 ). Further, Z and N are the numbers of protons and

neutrons in the nucleus, γ0,5 are the Dirac matrices, and ρ(re) is the normalized nuclear

density.
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APPENDIX E: REDUCED MATRIX ELEMENTS

We use the Dirac bi-spinor introduced in Appendix A. The reduced matrix elements of

the magnetic-dipole and electric-dipole moment operators between two bi-spinors are given

by

〈a||µ||b〉 =
1

2
(κa + κb) 〈−κa||C1||κb〉 × (E1)

∫ ∞
0

r dr{Pa (r)Qb (r) +Qa (r)Pb (r)} ,

〈a||D||b〉 = −〈κa||C1||κb〉 × (E2)
∫ ∞

0
r dr{Pa (r)Pb (r) +Qa (r)Qb (r)} ,

C1(r̂) being the normalized spherical harmonic. For example, the matrix element of the

electron EDM interaction Eq.(D1) reduces to

V CP,EDM
ab = de

{
2Z

∫ ∞
0

dr

r2
Qa (r)Qb (r)

}
δκa,−κbδma,mb . (E3)

We assumed that the dominant contribution is accumulated close to the nucleus (of charge

Z) so that E can be approximated by the nuclear field. The selection rules with respect to

angular quantum numbers m and κ arise because V CP is a pseudoscalar.
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APPENDIX F: DERIVATION OF EQ.(31)

Here I evaluate the sum (28) using the DHF approximation. The perturbation Dz, acting

on Φ0, induces two classes of intermediate states: (i) transfer of the hole g into some other

state a and (ii) particle-hole excitations:

Dz|Φ0〉 = Dzag|0c〉

= −∑
a

〈g|Dz|a〉aa|0c〉+
∑
r,a

〈r|Dz|a〉a+
r aaag|0c〉.

〈Φ0|He is obtained by taking the Hermitian conjugate of the last expression and replacing

Dz by He. Then we may express Wd as

Wd =
2

R2
e

∑

a 6=g
〈a|He|g〉 1

εa − εg 〈g|Dz|a〉+

2

R2
e

∑
r,a

〈a|He|r〉(〈0c|a+
g a

+
a aaag|0c〉)2 1

εa − εr 〈r|Dz|a〉.

In the second term of the last expression, one has to take special care of the case a = g

〈0c|a+
g a

+
a aaag|0c〉 = 1− δa,g,

leading to

Wd =
2

R2
e

∑

a 6=g
〈a|He|g〉 1

εa − εg 〈g|Dz|a〉

− 2

R2
e

∑
r

〈g|He|r〉 1

εg − εr 〈r|Dz|g〉

+
2

R2
e

∑
r,a

〈a|He|r〉 1

εa − εr 〈r|Dz|a〉.

The last term, containing summation over closed shell orbitals, vanishes as a result of the

angular reduction. The non-zero contributions are

Wd =
2

R2
e

∑

a 6=g

〈g|Dz|a〉〈a|He|g〉
εa − εg +

2

R2
e

∑
r

〈g|Dz|r〉〈r|He|g〉
εr − εg , (F1)

which is the Eq.(31) of the main text.
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APPENDIX G: DERIVATION OF EQ.(32)

Here I will reduce the expression for Wd (31) to the Eq.(32). First we rewrite Eq.(31)

Wd =
2

R2
e

∑

p6=g

〈g|Dz|p〉〈p|He|g〉
εp − εg , (G1)

where p = {np, κp,mp} denotes both core and virtual orbitals.

Let’s first simplify the matrix element of the Hamiltonian He. Using the Wigner-Eckart

theorem, one obtains

〈p|He|g〉 = 2deδκp,−κg(−1)jp−mp




jp 0 jg

−mp 0 mg



√

2jp + 1×REDM ,

with

REDM = −
∫ ∞

0
E(r)Qp(r)Qg(r)dr. (G2)

Selection rules on κ can also be written as

δκp,−κg = δjp,jgδlp,2jg−lg . (G3)

Noticing that:

(−1)jp−mp




jp 0 jg

−mp 0 mg


×

√
2jp + 1 = δmp,mg , (G4)

one can simplify the matrix element:

〈p|He|g〉 = 2deδκp,−κgδmp,mgREDM . (G5)

The summation over np, κp and mp in (B1) is now reduced to a summation over just one

quantum number, np. If the hole g is in a p3/2 orbital (Π3/2 molecule) then the summation

is over all d3/2 orbitals. If the hole g is in a p1/2 orbital (Π1/2 molecule) then the summation

is over all s1/2 orbitals.

Now let’s simplify the matrix element of the electric dipole operator

〈g|Dz|p〉 = (−1)jg−mg




jg 1 jp

−mg 0 mp


 〈jg||C1||jp〉 ×RD ,

with

RD =
∫ ∞

0
(fp(r)fg(r) + gp(r)gg(r)) rdr. (G6)
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EDM factor Wd can now be written

Wd =
4de
R2
e

∑
p

(−1)jg−mg

εp − εg




jg 1 jp

−mg 0 mp


 〈jg||C1||jp〉RD REDM .

This concludes the derivation of Eq.(32) of the main text.
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