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Abstract

A Bose Einstein condensate (BEC) is a gaseous superfluid form of
matter created by cooling a collection of atoms to a temperature a
few billionths of a degree above absolute zero. BEC have interesting
properties in that they have the potential to bring the properties of
quantum mechanics in to the macroscopic world.
My research focuses on deriving the numerical solution of the Gross-
Pitaevskii equation, which governs BEC behavior. This project will
model BEC properties such as the ground state and associated energy,
as well as the dynamics of wave equations. The model will be pro-
grammed in FORTRAN coding and computed by the UNR Physics
Departments NEON processor. This work can be used as a foundation
for future research in atomic physics as a means to predict behavior
of BECs in various environments without the cost, time, or labor of
physical experimentation.
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1 Introduction

1A Bose-Einstein Condensate is a gaseous superfluid formed by atoms cooled
to temperatures very close to zero degrees kelvin. In other words, it is a
collapse of several atoms (bosons) into a single quantum state. The result-
ing condensate is not a compact amalgamation of bosons but rather a group
of atoms indistinguishable from each other. In this manner, Bose-Einstein
Condensates can be thought of as a single macroscopic atom.

BEC states are allowed due to the special properties of bosons (parti-
cles with integral spin). Because indistinguishable bosons (bosons in close
proximity) must be symmetric, this tends to push indistinguishable bosons
together. This exchange force is not a force but a movement towards sym-
metry that causes Bosons to clump together. Symmetry also allows wave
packets (particles) to attain the same quantum state without violating a
normalization condition. Therefore, as theorized by Satyendra Nath Bose
and Albert Einstein, if particles are slowed to a near stop inside of a vacuum
they are statistically likely to achieve the same quantum state (and thus be-
coming a Bose-Einstein Condensate).

The first gaseous BEC was created by Eric Cornell and Carl Wieman
in 1995 at the University of Colorado, Boulder. By cooling a dilute gas of
Rubidium atoms to a mere 170 nanokelvins they were able to collapse the
gas in to a gaseous superfluid. Since then Bose-Einstein Condensation has
become an important field of research in quantum mechanics, optics, and
frontier computing.

The thesis work presented in this paper is the result of FORTRAN pro-
gramming that models the behavior of Bose-Einstein Condensates in the

1I would like to thank NSF-EPSCoR for funding this research. I would also like to
thank my mentor, Dr. Andrei Derevianko, for his help and motivation in this work.
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presence of a magnetic trap. This work can be used as a foundation for fu-
ture research in atomic physics as a method to predict behavior of BECs in
various environments without the cost or labor of physical experimentation.

2 Literature Review

The first attempt at creating a Bose-Einstein Condensate was out of hydro-
gen. Hydrogen atoms were cooled in a dilution refrigerator, confined by a
magnetic trap, and then further cooled by evaporation. But this process was
flawed in that the hydrogen atoms bonded to each other to form molecules,
and thus avoiding the same quantum state.

Alkali metals are ideal for making BECs because they have a favorable
internal energy-level structure for cooling to very low temperatures. By com-
bining techniques of evaporative cooling and laser cooling, researchers were
finally able to create a BEC out of Rubidium. [DGPS99]

The starting point in the theory of Bose-Einstein Condensation takes
the form of Gross-Pitaevskii theory. Using a mean-field approach, Gross-
Pitaevskii theory is able to model most two-body interactions in a BEC
using relatively simple equations.

This reference [DGPS99] gives insight in to the workings of Bose Einstein
Condensates and Gross-Pitaevskii theory . Using the information in this
reference I can derive numerical formulas to evaluate the Hamiltonian and
ground state energy of each wave function my program produces. Know-
ing the energy of a wave function is useful because it provides a means to
check the validity of my answer and the convergence of wave functions. This
reference, however, does not give any information regarding the means of nu-
merically finding the solution to the Gross-Pitaevskii equation. It is a paper
dealing with the basic concepts and experimentation fundamentals.
A study on inter-atomic interactions in Bose-Einstein Condensates [HJCC97]
gives a brief summary of how to solve the Gross-Pitaevskii Equation in cylin-
drical coordinates. This study provides a method for solving some of the
equations I shall be working with.

The reference [HJCC97] discusses some unit considerations such as nor-
malization conditions, mean field as a function of a scattering length, scaled
coordinates, and dynamic differencing. The mean field in the BEC is mod-
eled by the nonlinear term, NU |ψ(r, t)|2ψ(r, t) where U = 4π~2a/m is a
function of scattering length a, a quantity that can be determined in the lab.
The coordinates that are used in the computational process are scaled by a
factor L =

√
~/(2mω). This reference also suggests using a helper function

φ =
√

Lρψ(ρ, ξ, t). Using this helper function, φ, the Hamiltonian becomes
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more manageable to work with in cylindrical coordinates.
The main problem with working in cylindrical coordinates is the singu-

larity at ρ = 0. Systems are generally unstable around ρ = 0 because the
differential equations governing the behavior of the wave function blow up to
large numbers. The authors of [HJCC97] proposed a dynamic differencing
such that forward differencing is used near ρ = 0, shifting towards central
differencing as ρ increases. By working out a series expansion in the hamil-
tonian, the rate which the shift occurs can be obtained. With this shifting
factor, the numerical methods used to propagate the wave function will be
more stable and allow for larger grid spacing (which in turn should allows
for quicker computation).
Appendix C of the Ph.D. thesis [Wil99] focuses on the numerical solution
of the Gross-Pitaevskii equation. The fundamentals of my numerical work
followed this dissertation.

The discretization of the GP equation is necessary to do numerical work.
It would be impractical to do this work analytically (working with functions),
so the problem must be broken down in to matrices and arrays (of numbers).
While the discretization is given in this paper, the details on the scaling of
variables is vague. The author simply sets ~ = ω = m = 1 which is sufficient
enough to discretize the GP equation, but not sufficient to give proper units
to the wave function once it has been derived. This was acceptable for the
type of work the author was doing, but not for this thesis work.

This reference [Wil99] was helpful in understanding the basics of my re-
search. Through it I understood the mechanics which I later applied to differ-
ent problems (such as the GP equation in cylindrical coordinates). However
it was written in such a way that made it difficult to transfer the under-
standing of the material to different problems (different coordinate systems,
potentials, etc). This thesis will focus on the problem in such a way as to
give it more applicability.

3 Methodology

3.1 The One Dimensional Schrodinger Equation

In order to create complex programs, it is wise to start with an initial con-
struct. I will begin by programming the one-dimensional Schrodinger equa-
tion in a harmonic potential. Not only does this provide insight in to the
numerical method and programming, it provides a structure on which I can
build on to create more complex programs. The Schrodinger equation governs
wave equations with no inter-atomic interactions. It is a linear second-order
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parabolic partial differential equation that can be written as [Gri05],

i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) . (1)

3.2 Scaled Coordinates

As the equation is written, it would be difficult to process numerically. The
constants in the equation are several powers of ten below zero, as the repre-
sent objects which are extremely small. It is not wise to process something
with so many negative orders of magnitude because it requires a great deal
of memory and precision to calculate such numbers. So instead of processing
the equation as it stands we introduce a unitless scaled function, φ(ξ, λ) to

replace ψ(x, t), where λ = tω, ξ =
x√
~

mω

, and ω is the harmonic oscillator

frequency . With this replacement the new form of the Schrodinger equation
that can be processed using numerical computation is:

i
∂ψ(ξ, λ)

∂λ
= −1

2

∂2φ(ξ, λ)

∂ξ2
+ V (ξ)φ(ξ, λ). (2)

Now the differential equation can be processed in an order of magnitude that
the processor is capable of handling.

3.3 Finite Differencing- Discrete Representation

In order to process more information in a shorter period of time, I did my
programming work in a basic computing language (FORTRAN). While it
is possible for me to do programming in a higher language like MathCad
(which will solve differential equations for me), it will process information
slower. While FORTRAN can not solve any sort of equation analytically, it
can perform simple algebraic operations. So it is necessary to put the scaled
form of the Schrodinger equation in to an algebraic form. We do this by
giving an index to φ(ξ, λ) such that φn

i = φ(ih, nτ) where i,n are indexes on
ξ, λ with grid spacing h, τ respectively. Using Euler’s differencing method,
the discretized form of the Schrodinger equation is

i
φn+1

i − φn
i

τ
=

[
−φn

i+1 − 2φn
i + φn

i−1

2h2
+ V (ih)φn

i

]
. (3)
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3.4 The Crank-Nicholson Method

The Crank-Nicholson method is a technique used to solve parabolic partial
differential equations by averaging implicit and explicit forms of the discrete
representation of the differential equation [Ise96]. The first step is to solve
the discrete representation of the Schrodinger equation for φn+1

i . In this form
it is clear how φn+1

i relates to φn
i . The coefficient in front of φn

i is called the
propagator and in this form can be written as the matrix equation

−−→
φn+1 = (I − iτH)

−→
φn, (4)

H =

(
−(δr+1,s − 2δr,s + δr−1,s)

2h2
+ V (rh)δr,s

)
. (5)

This is called the explicit form of the discrete representation. For parabolic
equations it is acceptable to approximate the propagator as the first two
terms of the Taylor series representing e−iτH . By bringing the propagator to
the opposite side of Eq. (4) and converting it back in to the first two terms of
the Taylor series, we arrive at the implicit form of the discrete representation.

(I + iτH)
−−→
φn+1 =

−→
φn . (6)

There are problems with both the implicit and explicit forms in that they
do not preserve the norm (scaling) of φ and are sensitive to the grid spacing
τ . But these problems can be overcome by “averaging” the two forms. By
finding the Padé approximate polynomial to e−iH , we arrive at a solution
that takes the properties of both implicity and explicit forms. This entire
process is called the Crank-Nicholson method. Using the Crank-Nicholson
method, the new form of the propagator becomes

−−→
φn+1 =

(
I +

iτH

2

)−1 (
I − iτH

2

)−→
φn . (7)

It should be noted that as long as the Hamiltonian is hermitian, the propa-
gator is unitary. That means that the norm of the wave function is preserved
after each iteration in real time.

The Crank-Nicholson method as described in [Wil99] is in terms of ma-
trices, which is appropriate for describing functions and not just values of a
function for a given coordinate. My methodology differed slightly from this
reference in that I actually programmed the inverse of a tridiagonal matrix
instead of solving an equivalent matrix equation. The technique I used may
be slightly less computationally efficient, but it is much simpler to work with.
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3.5 Numerical Considerations to Matrix Algebra

The matrix algebra used to simplify the equations used in the Crank-Nicholson
method can be very helpful. But it is important to consider the numerical
consequences of using matrix algebra. The first aspect to note when applying
formulas to matrix algebra is the indexing.

The matrix representing the propagator in Eq. (4) is a square matrix
with rank equal to the number of points in the φ array. The Kronecker
delta in H is a function of the left and right index in the matrix repre-
senting the diagonal. For example, δr,s would describe the identity matrix.
One dimensional functions should follow the indexing on the column, so that
f(i) = f(r) 6= f(s). So then (for example) a discretized harmonic oscilla-
tor potential when put in the Crank-Nicholson propagator would become,

V (ξ) = V (ih) =
1

2
(ih)2 =

1

2
(rh)2, where the matrix representing the propa-

gator has indexes r, s.
The inverse of the implicit part of the propagator in Eq. (7) is also im-

portant to consider. H is only a tridiagonal matrix, meaning a band matrix
with a width of three. Therefore when taking the inverse of the matrix, it
is unnecessary to take as many steps required for a full matrix inverse. The
number of operations per inverse can be reduced by a power of N (being
the number of points in φ). This reduction can be achieved by solving N
equations using a substitution algorithm or doing a Gauss-Jordan inversion
algorithm without doing algebra on the entire row [ea92]. My program uti-
lizes that latter of these two methods.

The grid spacing is another aspect to be aware of. h can be considered
to be the fineness of the spacing on ξ and τ the fineness on λ (time). The
total space spanned is equal to the number of points in φ multiplied by the
grid-spacing h. It is important to choose a grid fine enough to accurately
represent φ, but not so fine as to strain the computer when N must increased
to accommodate the same region. For the one-dimensional Schrodinger equa-
tion, it is sufficient to cover up to four harmonic oscillator wavelengths with
a step size of h = .04 (i.e. N=100).

3.6 The One Dimensional Gross-Pitaevskii Equation

Once the programming for the one dimensional Schrodinger equation has
been checked for accuracy (using simple quantum mechanics equations),
we can simply modify the equation in order to arrive at the solution for
the Gross-Pitaevskii equation [DGPS99]. The Gross-Pitaevskii Equation in



3 METHODOLOGY 10

scaled coordinates (with harmonic oscillator potential) can be written as

i
∂ψ(ξ, λ)

∂λ
= −1

2

∂2φ(ξ, λ)

∂ξ2
φ(ξ, λ) +

1

2
ξ2φ(ξ, λ) + U |φ(ξ, λ)|2φ(ξ, λ) , (8)

where U that depends on the diagonal scattering length. This new inter-
atomic interaction term describes the interaction between the atoms inside
the BEC. When discretizing and solving for φn+1, the new form of Eq. (7) is

−−→
φn+1 =

(
I +

iτHn

2

)−1 (
I − iτHn

2

)−→
φn, (9)

Hn
r,s =

(
−(δr+1,s − 2δr,s + δr−1,s)

2h2
+

1

2
(rh)2δr,s + U |φn

r |2δr,s

)
. (10)

Now that the nonlinear term has been introduced, the Hamiltonian now
takes on an index in time. That means that while the Schrodinger equation
needs the Hamiltonian computed only once, the GP equation requires that
the Hamiltonian be evaluated after every propagation and that the new wave
function is normalized every iteration.

3.7 The Radial Gross-Pitaevskii Equation

It is useful to solve the radial GP equation at the same time as solving the
cartesian GP equation. Many of the useful potentials used in experimentation
can be more easily written in cylindrical coordinates rather than cartesian
coordinates. Also, by comparing the results for the cartesian and radial GP
equations it serves as an extra error check on programming. By using the

scaling L =

√
~

2mω
and the Laplacian in cylindrical coordinates, the radial

GP equation can be written as [HJCC97]

i
∂ψ(ρ, λ)

∂λ
= −

(
∂2

∂ρ2
+

1

ρ2
− ∂

ρ∂ρ

)
φ(ρ, λ)+

1

4
ρ2φ(ρ, λ)+

1

ρ2
U |φ(ρ, λ)|2φ(ρ, λ) .

(11)
The same numerics used on the cartesian GP equation can also be used on
the radial GP equation. When discretizing and solving for φn+1, the new
form of Eq. (7) is

−−→
φn+1 =

(
I +

iτHn

2

)−1 (
I − iτHn

2

)−→
φn, (12)

Hn =

(
−(

(δr+1,s − 2δr,s + δr−1,s)

h2
+

1

(rh)2
δr,s − δr+1,s − δr−1,s

(rh)h
)

)
+

(
1

4
(rh)2δr,s +

1

(rh)2
U |φn|2δr,s

)
. (13)
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Now that the nonlinear term has been introduced, the Hamiltonian now
takes on an index in time. That means that while the Schrodinger equation
needs the Hamiltonian computed only once, the GP equation requires that
the Hamiltonian be evaluated after every propagation and that the new wave
function is normalized every iteration.

It should be noted that this scheme has been revealed, using von Neumann
analysis, to be unstable. This can be resolved however, by choosing an
appropriate time step. Since the highest order of the grid spacing h in the

Hamiltonian is h−2, if τ is chosen such that
τ

h2
¿ 1 then propagation should

still be accurate.

3.8 Propagation in Imaginary Time and the Heat Equa-
tion

Wave functions can be described by a linear combination of stationary states.
That means that every wave function will look similar to

c1ψ1e

−iE1t

~ + c2ψ2e

−iE2t

~ + c3ψ3e

−iE3t

~ . . . , (14)

with Ek corresponding to the energy of the ψk eigenstate. Now suppose the
time variable t is replaced with −it. Then the new decomposition of the
wave function is

c1ψ1e

−E1t

~ + c2ψ2e

−E2t

~ + c3ψ3e

−E3t

~ . . . . (15)

Now all of the eigenstates decay as exponentials. If left alone, the wave
function would decay to zero with the higher energy eigenfunctions decaying
the fastest. If the wave function is frequently normalized however, only one
solution remains... the eigenfunction with the lowest energy, the ground
state! This is referred to as the method of steepest decent [Wil99].

This method can be accomplished numerically by setting τ equal to −iτ .
Note that the method of steepest decents requires frequent renormalization
of the wave function, otherwise the ground state is lost in round off error.

Results of the propagation in imaginary time of the cartesian GP equation
is shown in Fig. 2, results of the propagation in imaginary time of the radial
GP equation is shown in Fig. 3. Note that the value U = 0 corresponds to
results for the Schrodinger equation

Another physical comparison of propagation in imaginary time is the
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heat equation in real time. By taking Eq. 8 and making the imaginary time
substitution from λ to −iλ, the new equation becomes the Sturm-Liouville
problem that describes the temperature in a metal bar under different heating
conditions,

∂ψ(ξ, λ)

∂λ
=

1

2

∂2φ(ξ, λ)

∂ξ2
− V (ξ)φ(ξ, λ). (16)

The heat equation when propagated in real time will converge to a final
steady state solution. This fact further illustrates the point that when prop-
agating in imaginary time, the wave equation will reach a steady state func-
tion, and as discussed, that steady state value is the ground state.

3.9 Initial Condition and the Thomas-Fermi Approxi-
mation

While any wave function when propagated in imaginary time will converge
to the ground state solution, some initial wave functions converge faster than
others. Starting with an initial wave function that approximates the ground
state will propagate to the ground state faster and not be as computationally
expensive as other initial wave functions.

One method for modeling the ground state of the Gross-Pitaevskii equa-
tion is the Thomas-Fermi approximation [PS02]. For sufficiently large clouds
the ratio of the kinetic energy to the interaction (potential) energy is very
small. Thus an appropriate approximation to the ground state (in terms of
energy) is the differential equation describing the GP equation without the
kinetic energy term. Then considering that the ground state is stationary,

i~
∂Ψ(r, t)

∂t
= Hψ = Eψ = V (r)ψ + U |ψ(r)|2ψ, (17)

|ψ(r)|2 =
[E − V (r)]

U
. (18)

In the case of the one dimensional harmonic oscillator V =
1

2
mω2r2 and

E =
1

2
~ω, which in scaled coordinates means V =

1

2
x2 and E =

1

2
. This

wave function is only valid for E > V , otherwise the wave function is set
to zero. The physical representation of the wave function is a parabolic
“bubble” with boundary at the points where the potential is equal to the
total energy, V (r) = E.
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3.10 Normalization

There can be an infinite number of solutions to a particular differential equa-
tion. What normally selects a specific function for a given differential equa-
tion is an initial value. Due to the statistical interpretation of quantum
mechanical problems however, there is a normalization condition required of
the wave function that solves our differential equation. The area under the
wave function squared must equal a certain value. We use this selection rule
because the normalization can be related to the number of particles in the
BEC, making the normalization value much easier to define than the wave
function at a specific spatial coordinate.

For the one dimensional Schrodinger and Gross-Pitaevskii equations, the
normalization condition put on the wave function and the non-dimentionalized
version φ(ξ) = ψ(ξL) is :

∫ ∞

−∞
|ψ(r, t)|2dr = 〈ψ|ψ〉 = N, (19)

L

∫ ∞

−∞
φ∗φdξ = N . (20)

where N is the total number of particles in the system. When working in
cylindrical coordinates, the helper function φ =

√
Lρψ requires a different

normalization condition, which can be derived by substituting
φ

ρ
for ψ in the

normalization for ψ in cylindrical coordinates

∫ 2π

0

∫ ∞

0

|ψ(r)|2rdrdθ = N, (21)

2π

∫ ∞

0

| φ(ρ)

ρ
√

L
|2ρLd(ρL) = N, (22)

2πL

∫ ∞

0

|φ(ρ)|2
ρ

dρ = 〈φ|φ〉cyn = N . (23)

3.11 Expected Wave-functions

Numerical solutions must be validated against the physics of the problem.
By using the scaled coordinate systems used for the programming, it is also
possible to derive analytical results. In the case of cartesian coordinates with

the scaling

√
~

mω
, the ground state of the harmonic oscillator potential

[Gri05] and numerical equivalent is subsequently (with the final calculation
making sure that 〈ψ|ψ〉 = N)
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ψ0(x) =
√

N
(mω

π~

)1

4 e
−
mω

2~
x2

, (24)

φ0(ξ) = ψ0(ξL) =
√

N

(
1

πL2

)1

4
e
−
1

2
ξ2

, (25)

φ∗0φ0 =
N

L
√

π
e−ξ2

, 〈ψ0|ψ0〉 =

∫ ∞

−∞
φ∗0φ0d(ξL) =

∫ ∞

−∞

N√
π

e−ξ2

dξ = N .(26)

That means for the case of a single particle (N=1) the normalization for our
scaled wave function is one, and that the expected ground state squared is

φ∗0φ0 =
1√
π

e−ξ2
with coordinates in units of L.

In the case of cylindrical coordinates the scaling is different with L =√
~

2mω
and . Also in this scheme, φ(ρ) =

√
Lρψ(ρL). This is for simplification

of the propagator and (an added bonus for simplicity) force the boundary
conditions of φ(ξ) to zero. Then the expected value of |φ(ξ)|2 becomes

ψ0(r) = r

(
Nmω

π~

)1

2
e
−
mω

2~
r2

, (27)

φ0(ρ) =
√

Lρψ0(ρL) = ρ

(
N

2πL

)1

2 e
−
1

4
ρ2

, (28)

φ∗0φ0 =

(
Nρ2

2πL

)
e
−
1

2
ρ2

, 〈ψ0|ψ0〉 = 2πL

∫ ∞

0

φ∗0φ0

(ρ)
dρ

= 2π

∫ ∞

0

(
Nρ

2π

)
e
−
1

2
ρ2

dρ = N . (29)

That means for the case of a single particle (N = 1) the normalization for
our scaled wave function is one, and that the expected ground state squared

is φ∗0φ0 =
ρ2

2π
e
−
1

2
ρ2

with coordinates in units of L.
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3.12 Expected Energies

In order to check the solution of the Gross-Pitaevskii equations in cartesian
and cylindrical coordinates, the scaled energies must also be known. By
applying techniques similar to those used in the previous section, the en-
ergies can be derived. By transforming the equation 〈ψ|H|ψ〉 = E to an
equation in φ we derive the unitless energy. For cartesian coordinates the

one-dimensional Hamiltonian, H, is equal to −1

2

d2

dx2
+

1

2
x2. It is also useful

to find the scaled energies for the kinetic and potential energies separately.

E = 〈ψ0|H|ψ0〉 =

∫ ∞

∞
φ∗Hφd(ξL) = N

∫ ∞

∞

1

2
√

π
e−ξ2

dξ =
N

2
, (30)

KE = 〈ψ0| − 1

2

d2

dx2
|ψ0〉 = N

∫ ∞

∞

1

2
√

π
(1− ξ2)e−ξ2

dξ =
N

4
, (31)

PE = 〈ψ0|1
2
x2|ψ0〉 = N

∫ ∞

∞

1

2
√

π
(ξ2)e−ξ2

dξ =
N

4
. (32)

This result matches with what is expected for the harmonic oscillator: the
kinetic energy is equal to the potential energy. While the energy of the scaled

harmonic oscillator ground state for N = 1 is
1

2
, the energy of the unscaled

harmonic oscillator is
1

2
~ω. From this it can be reasoned that to transform

a scaled energy to an unscaled energy, simply multiply by ~ω.
Similar calculations can be performed in cylindrical coordinates. How-

ever the equations again have a different scaling and substitution scheme all
together, making the calculations slightly more dense. For cylindrical coordi-

nates the transformed Hamiltonian, H, is equal to −(
∂2

∂ρ2
+

1

ρ2
− ∂

ρ∂ρ
)+

1

4
ρ2.

Then the equations for the energies in cylindrical coordinates becomes

E = 〈ψ0|H|ψ0〉 = 2π

∫ ∞

0

φ∗Hφ

ρ
d(ρL) = 2πN

∫ ∞

0

1

2π
ρe
−
1

2
ρ2

dρ = N, (33)

KE = 〈ψ0|H − 1

4
ρ2|ψ0〉 = 2πN

∫ ∞

0

1

8π
ρ(4− ρ2)e

−
1

2
ρ2

dρ =
N

2
, (34)

PE = 〈ψ0|1
4
ρ2|ψ0〉 = 2πN

∫ ∞

0

1

8π
ρ3e

−
1

2
ρ2

dρ =
N

2
. (35)

Again the result is that the kinetic energy is equal to the potential energy
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and that to derive the unscaled energy the scaled energy must be multiplied
by a factor of ~ω.

3.13 Inter-atomic Interaction Coefficient

So far the symbol U has been used to represent the coefficient in front of the
nonlinear term. But like everything else in this problem, there exists certain
physical properties behind this coefficient. For cartesian coordinates this

value is proportional to the scattering length α, given by U =
Nα~2

m
, while

for cylindrical coordinates the factor is
4πNα~2

m
. When scaled the inter-

atomic interaction coefficient in cartesian coordinates is simply the scattering
length Nα. The scaled coefficient in cylindrical coordinates becomes U =
4πNα, where N is the number of particles in the trap [HJCC97]. With these
coefficients in place the methodology behind this thesis work is complete.

4 Results

4.1 Propagation in Imaginary Time to Analytically De-
rived Ground State

The next step in error checking the program was to propagate an initial
wave function in imaginary time down to the ground state of the harmonic
oscillator. The analytically derived wave function for the ground state of
the harmonic oscillator in one dimension(in our scaled coordinate system)
is φ(ξ) = e−ξ2

for cartesian coordinates and in two dimensions with ψ(ρ) =
1

2π
ρ2e−

1
2
ρ2

. Comparing analytical and numerical wave functions provides an

excellent means of testing the validity of the code and the numerical method.
Results of propagating the one dimensional Schrodinger equation in imag-

inary time are shown in Fig. 1. The wave functions are converging to the
analytical solution (shown in green) as predicted.

Propagation of the Gross-Pitaevskii equation in imaginary time are de-
pendent on the inter-atomic interaction coefficient (U). Ground state solu-
tions for the one dimensional GP equation are shown in Fig. 2 while the
ground state solutions for the two dimensional, axially symmetric GP equa-
tion are shown in Fig. 3. Note for increasing values of U , wave functions are
more spread out from the center. This agrees with the intuitive picture of a
BEC with repulsive inter-atomic interactions.
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4.2 First-order Approximation of the Energy in the
Ground State of the GP Equation

To check the results for the Gross-Pitaevskii equation, we must be more
careful. The eigenstates of the Gross-Pitaevskii equation are not be known
(it is a nonlinear equation), so it is impossible to check that a linear com-
bination of eigenstates is preserved. Instead the energy of the ground state
must be recovered and verified using perturbation theory. The first order
approximation of the energy of the ground state,

E(1) = 〈φ0|U |φ0|2|φ0〉, (36)

where φ0 is the ground state of the harmonic oscillator and U is the strength
of the interatomic interactions. That means for Figs. 2,3 the value U = 0
corresponds to the results for the Schrodinger equation. For small inter-
atomic interactions , 〈φ|H|φ〉 ≈ U〈φ0||φ0|2|φ0〉 − E0, the second part of the
equation, a linear function in U , being capable of analytically solved for. So
if 〈φ|H|φ〉 is plotted versus small values of U then we should get a linear
graph with slope

〈φ0||φ0|2|φ0〉 = 2π

∫ ∞

0

(φ∗0φ0)
2

ρ
dρ = .07958 . (37)

As shown in Fig. 4, the slope of the graph of energy versus inter-atomic
coefficient closely matches expected results.

For larger values of U , the 2nd-order correction becomes a non-negligible
part of the correction to the energy of the BEC. The formula for the second-
order correction to the energy of the ground state is

E
(2)
0 = U2

∑

m6=1

|〈φ(0)
m ||φ0|2|φ(0)

0 〉|2
E

(0)
0 − E

(0)
m

. (38)

Note that when U ¿ 1 then U > U2. But as U increases, the second order
terms contribute more to the energy of the BEC (assuming the approxima-
tions are well-behaved, i.e. the first order energy correction is greater than
the second-order energy correction and so on). Since the numerator is posi-
tive and the denominator is negative, ( E0 < Em) for all m, then the second
order correction is always negative. So for small values of U , the energy
plotted versus U should be linear with a slope of .07958 and as U increases
the plot should deviate negatively from the linear approximation. This is
confirmed by the results shown in Fig. 4.
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5 Conclusion

To reiterate, through a variety of numerical techniques I have derived the
ground state solutions to the Schrodinger and Gross-Pitaevskii equations.
The numerically derived wave functions are meant to model novel gaseous
BECs in a confining potential. The results obtained have matched favorably
to analytical results, confirming the validity of the numerical method. When
propagating in imaginary time, the wave equations relaxed to analytically de-
rived wave equations accurate to three significant figures. Energies derived
from the ground state of the Gross-Pitaevskii equation also match favorably
with expected results. For small inter-atomic interactions, energies appear to
be linear with slope approximately equal to analytical results. The energies
given by first order perturbation theory also closely approximate numerically
derived energies.

By all of these diagnostics I conclude that the numerical approximation
for the one dimensional GP equation in cartesian coordinates and the two
dimensional, axially symmetric equation in cylindrical coordinates is reliably
accurate. If the accuracy of the numerical approximation isn’t suitable for
a specific problem, simply decrease grid spacing to obtain a more desirable
result.

It is hoped that in the future this work can be used with various po-
tentials and Hamiltonians to accurately describe the physical phenomena
surrounding Bose-Einstein condensates. For example, this work can be used
to model dipolar interactions within, and ballistic expansion of Bose-Einstein
condensates.
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Figure 1: Propagation in imaginary time to the ground state of the harmonic
oscillator in cartesian coordinates.
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Figure 2: Ground state of a one dimensional BEC in cartesian coordinates
with varying inter-atomic interactions. The confining potential is that of the
harmonic oscillator.
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Figure 3: Ground state of a two dimensional, axially symmetric BEC in
scaled cylindrical coordinates with varying inter-atomic interactions. The
confining potential is that of the harmonic oscillator.
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Figure 4: Energy of BEC as a function of small values of the inter-atomic
interaction coefficient (U).
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Figure 5: Numerically derived ground state energies of the GP equation
(blue) with varying inter-atomic interactions as well as the approximate en-
ergies (purple) given by first order perturbation theory.
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6 Appendix

Coding for 1D Gross-Pitaevskii Equation

!The following is the programming for the Gross-Pitaevskii equation

!in Cartesian coordinates.

PROGRAM OneDimGPit

IMPLICIT NONE

REAL, EXTERNAL :: kron, sqinter, mu, muprime

REAL, PARAMETER :: M=99, TERM=700

INTEGER, PARAMETER :: Mc=99, TERMc=700, num_pts=2*Mc-1

INTEGER :: i,j,n,q

REAL :: h, tau, lambda, xi,norm,normt

COMPLEX :: carrier

COMPLEX, DIMENSION (2*Mc-1,TERMc) :: PHI

REAL, DIMENSION (2*Mc-1) :: PHISQ1, PHISQ2

COMPLEX, DIMENSION (2*Mc-1,2*Mc-1,TERMc) :: G

COMPLEX, DIMENSION (2*Mc-1,2*Mc-1) :: INV, MIN1, MIN2, prop, IM

h=.05

tau=.01

lambda=20.0

IM=0

!Pre-Workhorse stuff. Initial PSI, IM input, etc.

DO i=1,num_pts

xi = (i-Mc) * h

!Initial Phi function

PHI(i,1)= EXP(-.5*xi**2)*EXP((-.5)*(0.0,1.0)*tau)

!Identity Matrix Input

IM(i,i)=1.0
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END DO

norm= sqinter(PHI,num_pts,TERMc,h,1)

WRITE(*,*) "Propagating..."

G=0 !The Workhorse

DO n=1,TERMc-1

!Populate H matrix, which I have called G(i,j,n)

DO i=1,num_pts

DO j=1,num_pts

xi = (i-Mc) * h

G(i,j,n)= (-1/(2.0*h**2)*(kron(i,j+1) - 2.0*kron(i,j) &

+ kron(i,j-1)) + &

(1/2.0*xi**2 + lambda*PHI(j,n)*CONJG(PHI(j,n))) &

*kron(i,j))*(0.0,-1.0)

MIN1(i,j)=IM(i,j)+(0.00,1.00)*tau*G(i,j,n)/2

MIN2(i,j)=IM(i,j)-(0.00,1.00)*tau*G(i,j,n)/2

END DO

END DO
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!Invert the first term

CALL TRIINV (MIN1,num_pts,INV)

!The propogator

prop=MATMUL(INV,MIN2)

!Putting it all together and propagating, PHI(n+1)=prop*PHI(n)

DO i=1,num_pts

carrier=0

DO j=1,num_pts

carrier=carrier+prop(i,j)*PHI(j,n)

END DO

PHI(i,n+1)=carrier

END DO

normt=sqinter(PHI,num_pts,TERMc,h,n+1)

DO i=1,num_pts

!PHI(i,n+1)=((3.1415926**.5/normt))*PHI(i,n+1)

PHI(i,n+1)=((norm/normt)**(.5))*PHI(i,n+1)

END DO

! End Workhorse

END DO

!Final Hamiltonian Term

DO i=1, num_pts

DO j=1,num_pts

xi = (i-Mc) * h
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G(i,j,TERMc)= (-.5/(h**2)*(kron(i,j+1) - 2.0*kron(i,j) &

+ kron(i,j-1)) + &

(.5*xi**2 + lambda*PHI(j,TERMc)*CONJG(PHI(j,TERMc))) &

*kron(i,j))*(0.0,-1.0)

END DO

END DO

DO i=1,num_pts

!WRITE(*,*) PHI(i,TERMc)

PHISQ1(i)=PHI(i,TERMc)*CONJG(PHI(i,TERMc))

PHISQ2(i)=PHI(i,TERMc-1)*CONJG(PHI(i,TERMc-1))

END DO

!WRITE(*,*) "And Phi Squared, middle time..."

!DO i=1, num_pts

! PRINT *, PHISQ2(i)

!END DO

!WRITE(*,*) "And Phi Squared, final time..."

DO i=1,num_pts

PRINT *, PHISQ1(i)

END DO

!WRITE(*,*) "Norms for various times: "

!DO i=10,TERMc,10

! PRINT *, sqinter(PHI,num_pts,TERMc,h,i)

! PRINT *, sqinter(PHI,num_pts,TERMc,h,TERMc-1)

!END DO
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!WRITE(*,*) "Mu: "

!DO i=10,TERMc,10

! PRINT *, mu(PHI,G,num_pts,TERMc,h,i)

!END DO

!WRITE(*,*) "Mu Prime (analytical):"

!DO i=10,TERMc,10

! PRINT *, muprime(PHI,num_pts,TERMc,h,TERMc,lambda)+.5

!END DO

END PROGRAM

!Kronecker Delta Function REAL FUNCTION kron(i,j)

IMPLICIT NONE

INTEGER, INTENT(IN) :: i,j

IF (i==j) THEN

kron = 1.0

ELSE

kron = 0.0

END IF

END FUNCTION kron

REAL FUNCTION mu(M,G,N,T,h,time)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N,T,time

REAL, EXTERNAL :: kron, sqinter

INTEGER :: i,j

COMPLEX :: carrier

COMPLEX, INTENT(IN), DIMENSION(N,T) :: M
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COMPLEX, INTENT(IN), DIMENSION(N,N,T) :: G

COMPLEX, DIMENSION(N,1) :: dimmer1, dimmer2, secterm

REAL, INTENT(IN) :: h

COMPLEX, DIMENSION (N,N) :: E

DO i=1,N

dimmer1(i,1)=CONJG(M(i,time))

dimmer2(i,1)=M(i,time)

DO j=1,N

E(i,j)=G(i,j,time)*(0.0,1.0)

END DO

END DO

secterm=MATMUL(E,dimmer2)

carrier=0

DO i=1,N

rho=i*h

carrier=carrier+dimmer1(i,1)*secterm(i,1)

END DO

mu=carrier*h/sqinter(M,N,T,h,time)

!mu=carrier*h

END FUNCTION mu

REAL FUNCTION muprime(M,N,T,h,time,lambda)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N,T,time

REAL, EXTERNAL :: kron, sqinter

INTEGER :: i,j

COMPLEX :: carrier

COMPLEX, INTENT(IN), DIMENSION(N,T) :: M

COMPLEX, DIMENSION(N,1) :: dimmer1, dimmer2, secterm

REAL, INTENT(IN) :: h,lambda

COMPLEX, DIMENSION (N,N) :: E
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DO i=1,N

dimmer1(i,1)=CONJG(M(i,1))

dimmer2(i,1)=M(i,1)

DO j=1,N

E(i,j)= lambda*M(j,time)*CONJG(M(j,time))*kron(i,j)

END DO

END DO

secterm=MATMUL(E,dimmer2)

carrier=0

DO i=1,N

carrier=carrier+dimmer1(i,1)*secterm(i,1)

END DO

muprime=carrier*h/sqinter(M,N,T,h,1)

!muprime=carrier*h

END FUNCTION muprime

!Square-Integrator using Simpson’s Rule

REAL FUNCTION sqinter(M,N,T,h,time)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N,T,time

INTEGER :: i

COMPLEX, INTENT(IN), DIMENSION (N,T) :: M

REAL, INTENT(IN) :: h
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REAL :: S0,S1,S2,S

!

S = 0.0

S0 = 0.0

S1 = 0.0

S2 = 0.0

DO I = 2, N-1, 2

S1 = S1+M(I-1,time)*CONJG(M(I-1,time))

S0 = S0+M(I,time)*CONJG(M(I,time))

S2 = S2+M(I+1,time)*CONJG(M(I+1,time))

END DO

S = h*(S1+4.0*S0+S2)/3.0

! ! If N is even, add the last slice separately

! NOTE: In this program N is programed to be odd

! So this isn’t necessary.

IF (MOD(N,2).EQ.0) S = S &

+H*(5.0*M(N,time)*CONJG(M(N,time)) &

+8.0*M(N-1,time)*CONJG(M(N-1,time)) &

-M(N-2,time)*CONJG(M(N-2,time)))/12.0

sqinter=S

END FUNCTION sqinter

!Inversion of a tridiagonal matrix using Gauss-Jordan elimination

!to the identity matrix and recording the elimination matrices.

SUBROUTINE TRIINV (A,N,X)

IMPLICIT NONE

REAL, EXTERNAL :: kron

INTEGER, INTENT (IN) :: N
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COMPLEX, INTENT (IN), DIMENSION (N,N) :: A

COMPLEX, DIMENSION(N,N) :: COP

COMPLEX, INTENT (OUT), DIMENSION (N,N):: X

COMPLEX, DIMENSION (N,N) :: B

INTEGER :: i,j

COMPLEX :: temp

!Initialize B to the identity matrix

!Copy A in to COP

DO i=1,N

DO j=1,N

B(i,j)=kron(i,j)

COP(i,j)=A(i,j)

END DO

END DO

DO i=1,N

IF(i/=N) THEN

temp=COP(i,i)

DO j=1,i

B(i,j)=B(i,j)/temp

END DO

DO j=i,i+1

COP(i,j)=COP(i,j)/temp

END DO

temp=COP(i+1,i)

DO j=1,i

B(i+1,j)=B(i+1,j)-B(i,j)*temp

END DO

DO j=i,i+1

COP(i+1,j)=COP(i+1,j)-COP(i,j)*temp

END DO

ELSE

temp=COP(N,N)

DO j=1,N
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B(N,j)=B(N,j)/temp

END DO

COP(N,N)=1

END IF

END DO

DO i=N,1,-1

IF(i/=1) THEN

temp=COP(i-1,i)

DO j=1,N

B(i-1,j)=B(i-1,j)-B(i,j)*temp

COP(i-1,j)=COP(i-1,j)-COP(i,j)*temp

END DO

END IF

END DO

DO i=1,N

DO j=1,N

X(i,j)=B(i,j)

END DO

END DO

END SUBROUTINE TRIINV

Appendix B: Coding for 2D Gross-Pitaevskii

Equation

PROGRAM OneDimGPit
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IMPLICIT NONE

REAL, EXTERNAL :: kron, sqinter, mu,kinen

REAL, PARAMETER :: M=100, TERM=400

INTEGER, PARAMETER :: Mc=100, TERMc=400, num_pts=Mc

INTEGER :: i,j,r,s,n

REAL :: h, lambda, rho,norm,normt

COMPLEX :: carrier,tau

COMPLEX, DIMENSION (num_pts) :: PHI1,PHI2

REAL, DIMENSION (num_pts) :: PHISQ1, PHISQ2

COMPLEX, DIMENSION (num_pts,num_pts) :: INV1, MIN1, &

MIN2, prop ,prop2,IM,Hp,Gp

h=.05

tau=.01

lambda=1

IM=0

!If imaginary time then the following line

tau=tau*(0.0,-1.0)

!Pre-Workhorse stuff. Initial PSI, IM input, etc.

DO i=1,num_pts

rho = i * h

!Initial Phi function

PHI1(i)= EXP(-.5*rho**2)*EXP((-.5)*(0.0,1.0)*tau) &

+rho*EXP(-.5*rho**2)*EXP(-1.5*(0.0,1.0)*tau)&

+ 10*SIN(rho)

!Identity Matrix Input

IM(i,i)=1.0

END DO
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norm= sqinter(PHI1,num_pts,h)

WRITE(*,*) "Wait for it! ... Wait for it!"

!Populate H matrix, which I have called Hp(r,s)

DO r=1,num_pts

DO s=1,num_pts

rho = r * h

!1/R*Derivative(R*Derivative)=1/R * (1st derivative + R*2nd-derivative)

Hp(r,s)= - kron(r,s)/(rho**2) + .25*rho*kron(r,s)

Gp(r,s)= 1.0/(2*rho*h)*(kron(r,s-1)-kron(r,s+1)) - &

(kron(r,s+1)-2.0*kron(r,s)+kron(r,s-1))/(h**2) &

+lambda*PHI(r,n)*CONJG(PHI(r,n)))*kron(r,s)

MIN1(r,s)=IM(r,s)+(0.00,1.00)*tau*Gp(r,s)/2.0

MIN2(r,s)=IM(r,s)-(0.00,1.00)*tau*Gp(r,s)/2.0

END DO

END DO
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!Invert the first term

CALL TRIINV (MIN1,num_pts,INV1)

!The propogator

prop=MATMUL(INV1,MIN2)

DO i=1,num_pts

DO j=1,num_pts

prop2(i,j) = EXP((0.0,-1.0)* tau *Hp(i,j))

END DO

END DO

prop=MATMUL(prop,prop2)

!The Workhorse

DO n=1,TERM-1

!Putting it all together and propagating, PHI(n+1)=prop*PHI(n)

PHI2=MATMUL(prop,PHI1)

!renormalize every iteration of time

normt=0.0

DO i=1,num_pts

normt= normt+ PHI2(i) * CONJG(PHI2(i)) * h

END DO
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PRINT *, "normt: ", normt

DO i=1,num_pts

PHI2(i)=((normt)**(-.5))*PHI2(i)

!PHI(i)=((norm/normt)**(.5))*PHI(i)

END DO

PHI1=PHI2

PRINT *, "Mu", mu(PHI2,Gp+Hp,num_pts,h)

PRINT *, "kinen", kinen(PHI2,num_pts,h)

! End Workhorse

END DO

DO i=1,num_pts

PHISQ1(i)=PHI2(i)*CONJG(PHI2(i))

END DO

WRITE(*,*) "And Phi Squared, final time..."

DO i=1,num_pts

PRINT *, PHISQ1(i)

END DO

END PROGRAM
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!Kronecker Delta Function REAL FUNCTION kron(i,j)

IMPLICIT NONE

INTEGER, INTENT(IN) :: i,j

IF (i==j) THEN

kron = 1.0

ELSE

kron = 0.0

END IF

END FUNCTION kron

REAL FUNCTION mu(M,G,N,h)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N

REAL, EXTERNAL :: kron, sqinter

INTEGER :: i,j

COMPLEX :: carrier

COMPLEX, INTENT(IN), DIMENSION(N) :: M

COMPLEX, DIMENSION(N,1) :: dimmer1, dimmer2, secterm

REAL, INTENT(IN) :: h

COMPLEX, INTENT(IN), DIMENSION (N,N) :: G

COMPLEX, DIMENSION(N,N) :: E

DO i=1,N

dimmer1(i,1)=CONJG(M(i))

dimmer2(i,1)=M(i)

DO j=1,N

E(i,j)=G(i,j)

END DO

END DO

secterm=MATMUL(E,dimmer2)

carrier=0
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DO i=1,N

carrier=carrier+dimmer1(i,1)*secterm(i,1)

END DO

mu=carrier*h/sqinter(M,N,h)

!mu=carrier*h

END FUNCTION mu

REAL FUNCTION kinen(M,N,h)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N

REAL, EXTERNAL :: kron, sqinter

INTEGER :: i,j

COMPLEX :: carrier

COMPLEX, INTENT(IN), DIMENSION(N) :: M

COMPLEX, DIMENSION(N,1) :: dimmer1, dimmer2

REAL, INTENT(IN) :: h

COMPLEX, DIMENSION(N,N) :: E,D2

DO i=1,N

dimmer1(i,1)=CONJG(M(i))

dimmer2(i,1)=M(i)

END DO

DO i=1,N

DO j=1,N

D2(i,j)= (kron(i,j-1)-2.0*kron(i,j)+kron(i,j+1))/(h**2)

END DO

END DO

dimmer1=MATMUL(D2,dimmer1)

carrier=0.0

DO i=1,N

carrier=carrier+dimmer1(i,1)*dimmer2(i,1)

END DO
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kinen=carrier*h

END FUNCTION kinen

!Square-Integrator using Simpson’s Rule

REAL FUNCTION sqinter(M,N,h)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N

INTEGER :: i

COMPLEX, INTENT(IN), DIMENSION (N) :: M

REAL, INTENT(IN) :: h

REAL :: S0,S1,S2,S

!

S = 0.0

S0 = 0.0

S1 = 0.0

S2 = 0.0

DO I = 2, N-1, 2

S1 = S1+M(I-1)*CONJG(M(I-1))

S0 = S0+M(I)*CONJG(M(I))

S2 = S2+M(I+1)*CONJG(M(I+1))

END DO

S = H*(S1+4.0*S0+S2)/3.0

! ! If N is even, add the last slice separately

! NOTE: In this program N is programed to be odd

! So this isn’t necessary. !

IF (MOD(N,2).EQ.0) S = S &

+H*(5.0*M(N)*CONJG(M(N)) &

+8.0*M(N-1)*CONJG(M(N-1)) &

-M(N-2)*CONJG(M(N-2)))/12.0
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sqinter=S

END FUNCTION sqinter

SUBROUTINE TRIINV (A,N,X)

IMPLICIT NONE

REAL, EXTERNAL :: kron

COMPLEX, INTENT (IN), DIMENSION (N,N) :: A

COMPLEX, DIMENSION(N,N) :: COP

INTEGER, INTENT (IN) :: N

COMPLEX, INTENT (OUT), DIMENSION (N,N):: X

COMPLEX, DIMENSION (N,N) :: B

INTEGER :: i,j

COMPLEX :: temp

!Initialize B to the identity matrix

!Copy A in to COP

DO i=1,N

DO j=1,N

B(i,j)=kron(i,j)

COP(i,j)=A(i,j)

END DO

END DO

DO i=1,N

IF(i/=N) THEN

temp=COP(i,i)

DO j=1,i

B(i,j)=B(i,j)/temp

END DO

DO j=i,i+1
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COP(i,j)=COP(i,j)/temp

END DO

temp=COP(i+1,i)

DO j=1,i

B(i+1,j)=B(i+1,j)-B(i,j)*temp

END DO

DO j=i,i+1

COP(i+1,j)=COP(i+1,j)-COP(i,j)*temp

END DO

ELSE

temp=COP(N,N)

DO j=1,N

B(N,j)=B(N,j)/temp

END DO

COP(N,N)=1

END IF

END DO

DO i=N,1,-1

IF(i/=1) THEN

temp=COP(i-1,i)

DO j=1,N

B(i-1,j)=B(i-1,j)-B(i,j)*temp

END DO

DO j=1,N

COP(i-1,j)=COP(i-1,j)-COP(i,j)*temp

END DO

END IF

END DO

DO i=1,N
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DO j=1,N

X(i,j)=B(i,j)

END DO

END DO

END SUBROUTINE TRIINV


