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Abstract

This thesis discusses decelerating atomic beams using pulse trains, and studies the

possibility of cooling atoms or molecules using frequency combs. Using frequency

combs in laser cooling of multilevel systems may eliminate the need for multiple laser

sources, which are currently required to pump the population between manifolds of

energy states. It is shown that a small amount of momentum is transferred to two-

level atoms during an interaction with a single weak laser pulse. However, there is a

considerable change of the atomic momentum when the atoms interact with a pulse

train due to the interference between successive pulses.
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Chapter 1

Introduction

1.1 Applications of Cold Atoms

Laser cooling is the process of decelerating atoms and molecules using counter-

propagating laser radiation which imparts momentum to the atomic or molecular

beams. Deceleration of these beams by radiation pressure can produce ensembles of

cold atoms and molecules that have a temperature less than 1 µK [1, 2]. Such cold

atomic ensembles are of great interest in many fields of physical research, such as

optical, atomic, and nuclear physics.

In optical and atomic physics cold atoms may be found in many applications. For

example, they are required in optical frequency standards [3, 4], which are devices for

producing or probing frequencies. Also, they play a key role in super-high resolution

spectroscopy [5, 6], atomic clocks [7], as well as cold and ultra cold collisions [8, 9].

Besides these uses, cold atoms paved the way to the first experimental realization of

Bose-Einstein condensation (BEC) [10, 11].

Along with their applications in atomic and optical physics, cold atoms can also be

found in the field of nuclear and particle physics. The possibility to cool and trap sig-

nificant quantities of short-lived radioactive atoms with laser light enabled the study
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of radioactive decay of isotopes such as 21Na [12]. Furthermore, the technique of laser

cooling and trapping of isotopes has improved trace analysis methods dramatically.

For example, it has been used to count individual krypton-85 and krypton-81 atoms

present in a natural krypton gas sample with isotopic abundances in the range of

10−11 and 10−13, respectively [13].

1.2 Overview of Some Laser Cooling Experiments

The possibility of trapping neutral atoms near the nodes or antinodes of a standing

wave was first suggested by Letokhov in 1968 [14]. A few years later, Kazantsev

predicted the existence of velocity-dependent forces acting upon an atom moving in

an intense standing wave [15].

The concept of radiation-pressure cooling of atoms was suggested in 1975 by

Hänsch and Schawlow [16]. They showed that light exerts a radiation pressure on any

substance which reflects or scatters it. Thus, a low-density gas can be cooled by illu-

minating it with intense, quasi-monochromatic light confined to the lower-frequency

half of a resonance line’s Doppler width. Three years later, the first observation of

radiation-pressure cooling on a system by Walls et al. was reported [17]. They were

able to cool Mg II ions to less than 40 K by irradiating them with 8− µW dye laser.

Additionally, they indicated the possibilty to cool the atoms to 10−3 K.

Throughout the 1980s, important experiments on laser cooling were performed. In

1982 Phillips and Metcalf built the first Zeeman slower, as a solution to the problems

of the Doppler shift and the optical pumping [18]. The problem of the Doppler shift

is while the Na atoms slow down in the experiment, they experience Doppler shift

out of resonance. The other problem is when the Na atoms are excited from one of

the two hyperfine levels in the ground states 3S to the 3P excited state, the excited

atoms may decay to the other hyperfine ground state. Phillips and Metcalf were able
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to solve theses problems by using a spatially varying magnetic field applied along the

laser atomic beam axis. They demonstrated in their experiment that the magnetic

field can Zeeman tune the decelerating atoms into constant resonance with the fixed

frequency cooling laser. Also, the applied field is capable of producing selection rules

and Zeeman shifts that strongly discriminate against optical pumping.

In 1985, Chu et al. [19] experimentally demonstrated the idea of the “optical

molasses.” They were able to confine the atoms in a small region in space for times

of the order ∼ 0.1 sec, and cool them to ∼ 240 µK. The basic scheme was not a trap

but rather a confinement, and they proposed the configuration to be as follows. An

atom moving with velocity +vx will blue shift into resonance with a red detuned laser

beam propagating towards −x̂. Thus, with the use of six beams along ±x̂, ±ŷ, and

±ẑ, and averaging over many absorptions, the net effect is a viscous damping force

opposite the velocity of the atom.

Another milestone was reached in 1987. Raab et al. [20] introduced the first

magneto-optical trap (MOT), which relies on near-resonance radiation pressure to

both confine and cool the atoms. In a MOT, atoms can be trapped using six red de-

tuned, circularly polarized, counter-propagating laser beams together with a quadru-

ple magnetic field. The magnetic field is created by two coils carrying opposite cur-

rents, which produce zero field in the middle and change linearly along x, y, and

z axes. If the circular polarization of the lasers are set correctly, a linear restoring

force is produced in each direction. This apparatus managed to trap as many as 107

atoms for 2 minutes. Once the atoms were trapped, they were cooled to less than a

millikelvin and compacted into a region less than 0.5 mm in diameter.

The preceding paragraphs have outlined Doppler cooling, the most common method

of laser cooling, on which this thesis is based. However, there are several similar pro-

cesses that are also referred to as laser cooling, in which photons are used to pump
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heat away from a material and thus cool it. These are sisyphus cooling [21], resolved

sideband cooling [22],and cavity mediated cooling [23].

1.3 Cooling Atoms Using Pulses

In the preceding section we have presented a brief history on laser cooling using

continuous wave (CW) lasers. Here we will summarize some previous works on cooling

atoms using pulses.

In 1992 Mark Kasevich and Steven Chu demonstrated the ability to cool sodium

atoms in one dimension to an effective temperature of 100 nK for the first time [24].

In their scheme, an atom with two ground states |1⟩ and |2⟩, and one excited state

|e⟩, is irradiated by a pulse of light from two laser sources where the first beam at

frequency ω1 and the second beam at frequency ω2 propagates in opposite direction.

When ω1 − ω2 is nearly equal to the frequency of the |1⟩ → |2⟩ transition, these

states will behave as a two-level system coupled by a two-photon Raman process1

[25]. Thus, when the frequency difference ω1−ω2 is red-detuned from the two photon

resonance, an atom moving with velocity +v will Doppler shift the transition into

resonance. Consequently, It will receive a momentum kick towards v = 0 as it makes

the transition ω1−ω2. Therefore, using sequences of Raman pulses will excite all the

atoms except those with a velocity near v = 0. Cooling is achieved by following the

stimulated excitation with a a pulse of frequency tuned to the |2⟩ → |e⟩.

A new approached was introduced in 1995 by Reichel et al. which was inspired by

Lèvy Flight Statistics to optimize the Raman cooling [26]. In this experiment Reichel

1 Raman cooling is based on two-photon stimulated Raman transitions induced by two laser
beams between two states, involving the presence of allowed dipole transitions to a third common
state. This leads in effect to a two level description analogous to having a single photon and two
level system with wave properties k ↔ k1 − k2 and ω ↔ ω1 − ω2.
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and his colleagues used square pulses in a one dimensional problem with cesium atoms

obtaining temperatures below 3 nk.

The last experiment we mention here was done in 2006. Although the lowest

temperature achieved in this experiment was not even below 1 K, the method was

successfull in cooling very hot atoms (∼ 4000 m/s) [27]. Blinov et al. demonstrated

broadband laser cooling of atomic ions in an rf trap using ultrafast pulses from a

mode-locked laser. They assumed that once the atom was excited, it decays back to

the ground state faster than the time period of the mode-locked pulse train Trep. In

this case, the atom has little memory between pulses or, equivalently, the absorption

spectrum is a single broad line of width ∆ ∼ 1/τ (τ is the pulse duration) and the

frequency comb of spacing 1/Trep has very little contrast.

The motivation beyond this work relies on the idea that frequency combs, gener-

ated by the interference of ultrashort laser pulses, may eliminate the need for multiple

laser sources currently needed to achieve efficient cooling.

1.4 Thesis Structure

This introduction provides the foundation for the calculations presented in this thesis.

The remainder is as follows. In Chapter 2 an overview is given of the relevant concepts

and characteristics of pulse trains and optical frequency combs, which will be used to

drive the atoms.

Chapter 3 provides the derivation of the basic equations used in calculating the

the probability amplitudes of the atomic states using the Schrödinger equation, to-

gether with a brief description of the conditions for complete population inversion

and resonance.

In Chapter 4 the density matrix method to find the population in the atomic

states is introduced. Also, Chapter 4 provides a brief discussion about laser cooling
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of atomic beams and the radiation force when atoms interact with laser pulses. The

expressions formulated in Chapter 4 set the foundation for the two following chapters.

In Chapter 5 we present the results of simulations for the Doppler cooling of a two-

level system with a single laser pulse. This Chapter shows a comparison between the

results of the numerical calculations and the analytical approach for the coherences

and the momentum imparted to the atoms after the interaction.

Chapter 6 extends the calculations in Chapter 5 to the cooling with pulse train

(frequency comb). It contains a detailed discussion about population transfer due to

coherent interaction and the momentum imparted to the atoms through the interac-

tion.

The thesis also includes several appendices containing relevant supplementary

information. The Fortran code used to calculate the numerical results presented in

Chapter 5 and 6 is included in Appendix D.
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Chapter 2

Frequency Combs

2.1 Introduction

Experiments on the excitation of atoms and molecules using frequency combs have be-

come a major interest. Frequency combs are generated by an interference of ultrashort

pulses in a train. The selective excitation of the population in the molecular vibra-

tional levels is required for many applications such as quantum computing [28, 29],

ultrahigh resolution spectroscopy [30], and chemical reactions [31].

An optical frequency comb is an electromagnetic field that contains a set of

regularly-spaced frequencies fm = f0 + mfrep, where m = 0 ± 1 + ±2 + ... frep is

the frequency interval and f0 is the offset from zero [32]. The frequency spectrum

is related to a train of successive short pulses in the time domain by the Fourier

transform; the spacing between the comb frequencies is related to the time interval

between pulses Trep by frep = 1/Trep. The width of each tooth of the comb is 1/NTrep,

where N is the number of pulses in the train which contributes to the interference;

therefore, for large N the comb teeth will be extremely narrow. Using a train of

femtosecond laser pulses to generate a frequency comb as a driving field will keep us

away from the obstacles introduced by the excitation of the atomic and molecular
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energy levels using single pulses. These obstacles are: the multilevel excitation of the

excited vibrational levels caused by the broad spectrum of a femtosecond pulse, and

the inefficient interaction between the weak pulse and the atom or the molecule [33].

Consider a truncated train of N laser pulses f(t) as depicted in Fig.(2.1), that is

used to excite the atoms or the molecules. The train has the profile

f(t) =
N−1∑
n=0

g(t− nTrep)e
inϕ,

where g(t−nTrep) is the envelope of the pulses, and ϕ is the phase difference between

two consecutive pulses. The pulses are identical, have a fixed repetition period Trep.

The electric field profile of the train in the time domain is then

E(z, t) =1

2
ϵ̂E0f(t)ei(kLz−ωLt) + c.c.,

E(z, t) =1

2
ϵ̂E0

N−1∑
n=0

g(t− nTrep)e
inϕei(kLz−ωLt) + c.c.. (2.1)

Here E0 is the pulse amplitude which is complex in general, though its complex phase

can just be associated with a time delay. Such a time delay has no physical significance

for the problem at hand, and thus E0 will be assumed real [34]. kL = ωL/c is the

wave vector, ωL is the carrier or the laser frequency, and c.c. stands for the complex

conjugate of the preceding term. Here ϵ̂ is the polarization vector and ϵ̂ · kL = 0.

The detailed derivation for the Fourier transform of the pulse train (2.1) is included

in Appendix A. The Fourier transform of the electric field is given by Eq.(A.5)

E(ω) = [F+
1 (ω)

sin (N
2
ζTrep)

sin (1
2
ζTrep)

+ F−
1 (ω)

sin (N
2
ηTrep)

sin (1
2
ηTrep)

]. (2.2)
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Figure 2.1: (a) A train of Gaussian pulses in the time domain showing the real electric
field (in arbitrary units) and the envelope as a function of the time (in arbitrary units).
(b) The Fourier transform of the pulse train (frequency domain picture).
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where

ζ = (ω − ωL) +
ϕ

Trep

,

η = (ω + ωL)−
ϕ

Trep

.

Also, F+
1 (ω) is the Fourier transform of the first pulse and F−

1 (ω) is the Fourier

transform of its complex conjugate.

Eq.(2.2) has the behavior shown in Fig.(2.2). When the arguments of the numer-

ator sin functions (i.e. NζTrep/2 or NηTrep/2) become an integer multiple of π, the

numerator vanishes and the fraction gives zero. However, when the sin functions in

a numerator and its denominator become zero simultaneously, the fraction will not

vanish, but instead it will give a peak of magnitude proportional N .

2.2 Power Spectrum of the Frequency Comb

The energy associated with a harmonic wave is proportional to the amplitude squared.

And since the Fourier transform tells us the amplitudes of all the constituent frequen-

cies that make up the input signal, the square of the transform provides a measure of

the distribution of energy, or power, at each and every component frequency. Con-

sequently, the square of the transform is a function of frequencies called the power

spectrum.

Here we study the behavior of the first term on the r.h.s of Eq.(2.2) by using the

L’Hôpital rule (this study is applicable also to the second term). From the L’Hôpital

rule

lim
ζTrep→0

sin (N
2
ζTrep)

sin (1
2
ζTrep)

= N
cos (N

2
ζTrep)

cos (1
2
ζTrep)

,

therefore, we have two special cases:
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• When ζ = 2mπ/Trep the spectral density increases by the factor of N .

• When ζ ̸= 2mπ/Trep the spectral density becomes zero.

Here m = 0,±1,±2, · · · ,etc. The power spectrum IN(ω) for N pulses can now be

calculated from

IN(ω) ∝ |E(ω)|2 ∝ N2 cos
2 (N

2
ζTrep)

cos2 (1
2
ζTrep)

.

The preceding equation states that the peaks occurs when both the numerator and

the denominator simultaneously are zeros.

2.3 Frequency Comb Parameters

In this section we will find two characteristic expressions for the frequency comb, one

is the frequency separation between the teeth, and the other is the width of a single

tooth.

The teeth separation is simply the frequency separation between any two succes-

sive zeros of the denominator of Eq.(2.2), i.e.,

sin (
1

2
ζTrep) = 0.

From the definition of ζ, this translates into

1

2
((ωn − ωL)Trep + ϕ) = nπ. (2.3)

Therefore, the teeth separation in the frequency domain between any two teeth ωn

and ωn+1 reads

ωrep = ωn+1 − ωn =
2π

Trep

.

This equation states that the value of the phase does not affect the teeth separation.
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Intensity IN (w) [Arb. Units] Intensity IN (w) [Arb. Units]

Frequency w[MHz]

Frequency w[MHz] Frequency w[MHz]
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(a) (b)

(c) (d)

Figure 2.2: The interference pattern in the frequency domain of a train of Gaussian
pulses with a repetition period Trep = 4 ns in the time domain. The frequency comb
envelope is centered around the laser carrier frequency ωL as the phase shift between
the pulses is zero. The number of train pulses affects the width of the individual
teeth rather than the number of teeth in the comb. The intensity of the teeth in the
frequency comb is progressively proportional to the square of the number of pulses.
The number of pulses is (a)N = 1, (b)N = 2, (c)N = 5 and (d)N = 50.

The phase, however, shifts the whole comb structure around the carrier frequency ωL

depending on its value as shown in Fig.(2.3).

The phase-dependence of the frequency comb shift could be inferred from Eq.(2.3).

For the first tooth n = 1, the shift is

ωshift = ω1 − ωL =
2π

Trep

− ϕ

Trep

.

The last equation confirms that the values of ϕ = 0 and ϕ = 2π are identical since

it is a property of periodic functions. This means that for the value of ϕ = 2π the

positions of the teeth in the comb are identical to those positions for the case of ϕ = 0.

The maximum shift in the teeth positions in the frequency comb is ωrep/2, as plotted
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Figure 2.3: Dependence of the comb teeth positions in the frequency domain on the
phase between the pulses in the time domain. The tooth separation is 250 MHz
corresponding to a repetition period in the time domain Trep = 4 ns. When ϕ =
0, ϕ = 2π the comb is centered inside the Gaussian envelope and there will be a tooth
at the carrier frequency ωL. but as the phase begins to increase the comb teeth move
to the left to a maximum shift of ωrep/2, which corresponds to phase a ϕ = π.

in Fig.(2.3) which corresponds to the value of ϕ = π.

Derivation of a single tooth width is similar to the previous procedure but using

the sin functions in the numerator instead of the denominator. In Eq.(2.2) the argu-

ment of the numerator is N times the argumaent of the denominator, therefore, the

oscillation of the numerator sinusoidal function is fast compared to the denominator.

Thus, the magnitude of the numerator will decline very fast to zero, while that of the

denominator is still appreciable. Consequently, a tooth requires two oscillations. One

oscillation to bring the magnitude from zero to a maximum, then another oscillation

to bring the intensity to zero again.
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The zeros of the sin function in the numerator of Eq.(2.2) occur when

N

2
((ωn − ωL)Trep + ϕ) = nπ,

the tooth width is

∆ωwidth = ωn+2 − ωn =
4π

NTrep

,

and

∆ωFWHM ≈
2π

NTrep

.

This is the full angular frequency width of a single tooth in the frequency comb at

half maximum.

2.4 The Interference picture of Infinite Number of

Pulses

As N → ∞, the peaks in the frequency comb get progressively higher and propor-

tionately narrower, so that they ultimately approach Dirac delta functions. From

Eq.(2.2), the term responsible for the comb structure is

lim
N→∞

sin (N
2
ζTrep)

sin (1
2
ζTrep)

=
2π

Trep

∑
m

δ(ζ − 2mπ

Trep

). (2.4)

The substitution of Eq.(2.4) into Eq.(2.2) gives the frequency comb spectrum repre-

sented by an infinite sum of delta functions as

E(ω) = 2π

Trep

[F+
1 (ω)

∑
m

δ(ζ − 2mπ

Trep

) + F−
1 (ω)

∑
n

δ(η − 2nπ

Trep

)].
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Applying the inverse Fourier transform to the preceding equation gives

E(t) =
√

π

2

τ

Trep

E0[
∑
m

e
− τ2(−2mπ+ϕ)2

2T2
rep · ei(−

ϕ
Trep

+mωrep+ωL)t

+
∑
n

e
− τ2(2nπ+ϕ)2

2T2
rep · ei(

ϕ
Trep

+nωrep−ωL)t]. (2.5)

It can be inferred from the last equation that when an atom is irradiated by a train

of Gaussian pulses, the atom will be effectively subjected to a large number of laser

sources with frequencies separated by ωrep = 2π/Trep. The first exponential function

is independent of time and frequency; it just acts as a scaling factor for the amplitudes

E0 for these effective laser sources in the time domain.
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Chapter 3

Probability Amplitude Equations

for a Multilevel System

3.1 Introduction

Consider driving transitions between initial and final stationary states, |g, j⟩ and |e, n⟩

of a model system as in Fig.(3.1). The two manifolds are separated by an energy gaps

Enj = ~(ωen−ωgj) and are connected by a time dependent interaction. Furthermore,

no direct interaction is allowed within each manifold.

The driving field is a train of femtosecond Gaussian pulses that interfere to excite

many transitions simultaneously. The presence of the external field is required for

stimulated absorption and stimulated emission, without which all matrix elements

of the perturbing Hamiltonian vanish [35]. In this derivation we will neglect the

spontaneous decay of the excited atoms.

To obtain the transition probability amplitudes of the energy levels, when atoms

interact with electromagnetic radiation, it is necessary to specify the proper form of

the interaction Hamiltonian Ĥint(ξ, r, t). The interaction Hamiltonian is a function

of the set of coordinates ξ that describe the internal atomic motion and the spatial
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Figure 3.1: Model system to be interacted with a pulse train. States within the
ground manifold g are labeled by the quantum number j; and states within the excited
manifold e are labeled by the quantum number n. The electric field is assumed to
resonant with a g→ e transition.

coordinates r that describe the motion of the center of mass of an atom. This elec-

tromagnetic field consists of time-varying electric and magnetic fields. Therefore, the

time-dependent Hamiltonian that represents the interaction of an atom with the field

to leading order is

Ĥint(ξ, r, t) = −D̂(ξ) · E(r, t), (3.1)

where D̂(ξ) is the dipole matrix operator, and E(r, t) is the time-dependent elec-

tric field. This dipole-electric interaction is the dominant term, as the coupling to

magnetic field is much smaller in magnitude1.

We use Schrödinger equation to find the probability amplitudes of the energy

states and the equations that govern their time evolution. We start by writing the

state of our model system in the interaction picture [36] at some arbitrary time t in

1In the interaction Hamiltonian equation, we neglected the term −(e/m)Ŝ ·B(r, t), which is the
interaction of the spin magnetic moment of the electron with the oscillating magnetic field of the
plane wave. The relative order of magnitude of the spin-magnetic field interaction term to the
dipole-electric interaction term ≃ a0/λ ≪ 1. Usually, λ is much greater than a0, the Bohr radius.
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terms of the unperturbed eigenstates as

|Ψ⟩ =
va∑
j=0

aj(t)e
−iωgjt|g, j⟩+

vb∑
n=0

bn(t)e
−iωent|e, n⟩, (3.2)

where aj(t) and bn(t) are the probability amplitudes of the ground eigenstates j or

the excited eigenstates n respectively. va and vb are the numbers of states in the

ground and excited manifolds respectively. We assume that if t = t0, then bn(t) = 0

and aj(t) = δj0, where δj0 is the Dirac delta function. Thus, all the population is

initially in the ground state. The equations of motion governing the time evolution of

the probability amplitudes aj(t) and bn(t) are derived from the Schrödinger equation

i~
∂

∂t
|Ψ⟩ = Ĥ|Ψ⟩. (3.3)

The Hamiltonian describing the interaction of such an atom with the external

classical electric field can be written as

Ĥ = ~(
va∑
j=0

ωgj|g, j⟩⟨j, g|+
vb∑

n=0

ωen|e, n⟩⟨n, e|)− D̂(ξ) · E(r, t). (3.4)

In Eq.(3.4), the first term on the r.h.s corresponds to the Hamiltonian that governs

the field-free evolution of the system. The second term is the interaction Hamiltonian

that drives the dipole transitions excited by the electric field. Such a Hamiltonian

model for wave packet excitation is very common in the literature [35–37].

In the long-wavelength approximation2, the classical electric field may be replaced

2For atomic systems, the relevant length scale for the particles is approximately determined by
the atomic Bohr radius (a0 = 0.5 Å), which is typically four orders of magnitude smaller than the
optical wavelengths that determine the characteristic length scale of the optical fields. Therefore, in
the long-wavelength approximation k · r → 0, and e−ik·r ≈ 1.
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by its value at r = 0

E(r, t) ≈ E(t) =1

2
ϵ̂E0f(t)e−iωLt + c.c.

On substituting Eq.(3.2) of the wave function expansion into the Schrödinger

Eq.(3.3), we find the coupled differential equations for the probability amplitudes.

The l.h.s. of resulting equation is

i~
∂

∂t
|Ψ⟩ =i~

va∑
j=0

ȧj(t)e
−iωgjt|g, j⟩+ ~ωgj

va∑
j=0

aj(t)e
−iωgjt|g, j⟩

+ i~
vb∑

n=0

ḃn(t)e
−iωent|e, n⟩+ ~ωen

vb∑
n=0

bn(t)e
−iωent|e, n⟩, (3.5)

while the r.h.s. is

Ĥ|Ψ⟩ =~(
va∑
j=0

ωgj|g, j⟩⟨j, g|
va∑
j=0

aj(t)e
−iωgjt|g, j⟩)

+

vb∑
n=0

ωen|e, n⟩⟨n, e|
va∑
j=0

aj(t)e
−iωgjt|g, j⟩

+
va∑
j=0

ωgj|g, j⟩⟨j, g|
vb∑

n=0

bn(t)e
−iωent|e, n⟩

+

vb∑
n=0

ωen|e, n⟩⟨n, e|
vb∑

n=0

bn(t)e
−iωent|e, n⟩

− 1

2
(D̂ · ϵ̂)E0f(t)e−iωLt

va∑
j=0

aj(t)e
−iωgjt|g, j⟩

− 1

2
(D̂ · ϵ̂)E0f(t)e−iωLt

vb∑
n=0

bn(t)e
−iωent|e, n⟩

− 1

2
(D̂ · ϵ̂)E0f(t)∗e+iωLt

va∑
j=0

aj(t)e
−iωgjt|g, j⟩

− 1

2
(D̂ · ϵ̂)E0f(t)∗e+iωLt

vb∑
n=0

bn(t)e
−iωent|e, n⟩. (3.6)
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To determine the probability amplitude aj(t) of the eigenstates |g, j⟩, we need to

multiply the the r.h.s of the last two equations by the bra ⟨g, j| and then equate them

to each other. Thus, the resulting equation is

i~ȧj(t)e−iωgjt + ~ωgjaj(t)e
−iωgjt =~ωgjaj(t)e

−iωgjt

− 1

2

vb∑
n=0

⟨j, g|D̂ · ϵ̂|e, n⟩f(t)E0e−iωLtbn(t)e
−iωent

− 1

2

vb∑
n=0

⟨j, g|D̂ · ϵ̂|e, n⟩f(t)∗E0e+iωLtbn(t)e
−iωent,

or in a compact form

ȧj(t) =
i

2

vb∑
n=0

⟨j, g|D̂ · ϵ̂|e, n⟩E0
~

f(t)bn(t)e
−i(ωL+ωen−ωgj)t

+
i

2

vb∑
n=0

⟨j, g|D̂ · ϵ̂|e, n⟩E0
~

f(t)∗bn(t)e
i(ωL−ωen+ωgj)t.

Further, near the resonance (when ωL ≈ ωen − ωgj), the sinusoidal terms with

arguments (ωL + ωen − ωgj) and ωL vary more rapidly than those of argument (ωL −

ωen + ωgj). The former rapidly varying terms do not make significant contributions

to the differential equations for long times: they average out. This is referred to as

the “rotating wave approximation”3. For the rotating wave approximation we retain

only terms containing (ωL − ωen + ωgj) in the preceding equation to obtain

ȧj(t) =
i

2

vb∑
n=0

⟨j, g|D̂ · ϵ̂|e, n⟩E0
~

f(t)∗bn(t)e
i(ωL−ωen+ωgj)t. (3.7)

The probability of finding the system in one of the eigenstates |e, n⟩ at time t can

be derived by following the same procedure as for aj(t). On multiplying Eq.(3.5) and

3See Appendix B for detailed discussion of the rotating wave approximation.
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Eq.(3.6) from the left by the bra ⟨e, n| and equating them to each other, we obtain

ḃn(t) =
i

2

vb∑
n=0

⟨j, g|D̂ · ϵ̂|e, n⟩E0
~

f(t)aj(t)e
−i(ωL−ωen+ωgj)t. (3.8)

Eq.(3.8) and Eq.(3.7) give a pair of coupled differential equations for the probability

amplitudes aj(t) and bn(t) of the two manifolds of the ground state and the excited

state as in Fig.(3.1). They are rewritten here in a slightly different notation as

ȧj(t) =
i

2

vb∑
n=0

Ωjnf(t)
∗bn(t)e

iδnt, (3.9a)

ḃn(t) =
i

2

vb∑
n=0

Ωjnf(t)aj(t)e
−iδnt. (3.9b)

For convenience, the equations have been rewritten in terms of the Rabi frequency4

Ωjn =
⟨j, g|D̂ · ϵ̂|e, n⟩E0

~
,

and the detuning

δn = ωL − ωen + ωgj,

the later is the difference between the incident field carrier frequency and the transi-

tion frequency. Detuning is a measure of the amount by which the frequency of the

applied field is “off-resonance” from the frequency of the target transition.

4Rabi frequency is a measure of the interaction strength that gives the the rate at which transi-
tions are coherently induced between the two atomic levels. Qualitatively, it is the frequency of the
population oscillation.
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3.2 The Complete Population Inversion (CPI)

Conditions for a strong interaction, or a resonance, of the applied electric field with

the transition frequencies can be inferred form the comb Eq.(2.3). At the resonance,

the transition frequency (ωen−ωgj) must be equal to one of the frequency comb teeth

frequencies. To show this, the frequencies of the comb teeth ωn from the previous

section are

ωn = ωL +
2nπ

Trep

− ϕ

Trep

,

and the condition to be fulfilled at the resonance is ωn = (ωen − ωgj). Subsequently,

(ωen − ωgj) = ωL +
2nπ

Trep

− ϕ

Trep

.

On substituting for the detuning δn = ωL − ωen + ωgj, and rearranging the equation,

we obtain

ϕ = δnTrep + 2nπ. (3.10)

This equation is important to our calculations in this thesis as it helps in tuning

the frequency comb teeth to a specific resonance. It relates the detuning and the

phase, which we can control to get the resonance. For instance, in case of non-zero

detuning δn ̸= 0, we can change the value of the phase to compensate for the detuning

to get into resonance.

In Fig.(3.2), the detuning of the laser frequency from the transition frequency is

∼ 0.1π, and all the population at time t = 0 is assumed to be in the ground state as

shown. The solid curve is the stimulated absorbtion and emission when δn = 0.1π. It

is shown that when the laser frequency is off-resonance with the transition frequency,

most of the population (v 75%) remains in the ground state. On calculating the

phase which will compensate for the value of the detuning from Eq.(3.10), we were
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able to recover the resonance case, showed by the dashed curve.

Consider the weak excitation limit in which the population of the ground state is

change by the interaction of the first pulse, but instead needs N pulses to completely

transfer the population to the excited state. Since these first few pulses which extends

in time from −∞ to t do not change the population in the ground state significantly,

we can substitute for a0(t) ≈ 1 in Eq.(3.9b) and then integrate to obtain

bn(t) =
i

2

N−1∑
m=0

∫ t

−∞
g(t−mTrep)Ω0ne

−iδnteimϕdt.

This gives the probability amplitudes of the system to be in one of the excited states.

As the pulse width is much shorter than the repetition period and the pulses do not

overlap, we can extend the upper limit of the integration to infinity. Therefore, for

the first pulse, the probability amplitudes of the excited states is

bn(Trep) =
i

2

∫ +∞

−∞
g(t)Ω0ne

−iδntdt.

The integral
∫ +∞
−∞ g(t)e−iδntdt has the form of the Fourier transform of g(t) evalu-

ated at frequency −δn, and is thus riven by

bn(Trep) =
i

2

√
2πΩ0nF1(−δn).

After the interaction with the second pulse at t = 2Trep, the amplitudes are

bn(2Trep) =
i

2

√
2πΩ0nF1(−δn) +

i

2

√
2πΩ0nF1(−δn)e

i(ϕ−δnTrep).

This second pulse transfer another wave packet to the excited state which interferes
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(a) Ground state probability amplitude.

(b) Excited state probability amplitude.
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Figure 3.2: A two-level system interacting with laser radiation. Eq.(3.10) holds per-
fectly as the resonance interaction (dashed curve) is recovered from the off resonance
interaction (solid curve).
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with the wave packet created by the first pulse [38]. After the excitation by N pulses

bn(NTrep) =
i

2

√
2πΩ0nF1(−δn)[

N−1∑
m=0

eim(ϕ−δnTrep)],

and on substituting for the last summation from Eq.(A.4), we obtain

bn(NTrep) = bn(Trep)
sin(N

2
(ϕ− δnTrep))

sin(1
2
(ϕ− δnTrep))

.

From the previous consideration, in case of zero phase and detuning, the population

in the excited state levels increases as the square of the number of pulses and the

population accumulated by the first pulse

|bn(NTrep)|2 = N2|bn(Trep)|2, (3.11)

where we have used the L’Hôpital rule as in the previous section.

As an example, let us consider Fig.(3.2) to illustrate the accumulation dependence.

The driving pulses are assumed to have a Gaussian envelope g(t) = exp [−t2/2τ 2],

where τ = 0.1 and Trep = 1.0 in arbitrary units. This repetition period is large enough

that pulse wings vanish before the next pulse arrives. For a two-level one may define

the pulse area

θ =

∫ ∞

−∞
Ωgeg(t)dt.

If θ = π, the atom is driven from the ground state exactly to the excited state, and

it is called “π − pulse” inversion. A “2π − pulse” takes the atom from the ground

state to the excited state then back to the ground state. It is shown in Fig.(3.2)

that for our choice of parameters, the pulse area is very small θ = π/18 (the dashed

line). The first driving pulse merely perturbs the atom, only exciting ∼ 0.78% of

the ground state population. After the arrival of the second pulse the the population
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Figure 3.3: The excited state population as a function of time evaluated for different
Rabi frequencies. As the Rabi frequency (∼

√
I) increases, the pulse area will increase

and the system needs less number of pulses to reach the complete population inversion.
(a) The solid curve is a plot for arbitrary Rabi frequency Ω0, and the complete
population inversion is achieved after 19 pulses, (b) Ω1 = 3Ω0/2, and the complete
population inversion is achieved after 16 pulses, and (c) Ω2 = 2Ω0, and the complete
population inversion is achieved after 9 pulses.

accumulated in the the excited state is ∼ 3.1%. So at the arrival of each new pulse

the accumulation increase with the square of the number of pulse as indicated in

Eq.(3.11), reaching the CPI after 18 pulses when the total area of the pulses becomes

equal to π.
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Chapter 4

Manipulating Atoms Using Pulses

4.1 Cooling Atoms Using lasers

The first successful laser cooling of atoms was demonstarted in 1978 by Wineland,

Drullinger and Walls [17]. Since then, a variety of techniques have been developed

to cool atoms as low as possible. The essence of the laser cooling is based on the

fact that photons of a laser beam can impart momentum to the atoms. The simplest

technique of laser cooling is the Doppler cooling. It needs only two atomic states and

a counterpropagating laser beam tuned near the transition frequency ωeg.

By absorbing a photon, the atom obtains the photon momentum ~kL, where kL

is the laser wave vector. The photon momentum ~kL is called the recoil momentum

precoil and is defined as the change in the atomic momentum due to the absorption of

a single photon.

After the absorbtion of a photon, we have two possible mechanisms. An atom

may spontaneously emit the absorbed photon by decaying from the excited to the

ground state, as may emit the photon through a stimulated emission process. If the

atom emitted the photon through the spontaneous decay process, there will be a net

change in the atomic momentum by an amount of ∆p = ~kL. Although, when the
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atom acquires the photon momentum in the process of absorbtion from a specific

direction, it will emit the photon in a random direction during spontaneous emission.

Therefore, an atom continues to receive impulses in the direction of the laser beam

kL, while all the directions in space are equally probable for spontaneous decay, which

means ⟨ks⟩ = 0, where ks is the wave vector of the spontaneous emitted photon. The

second probable case is that the emission of the photon is stimulated by the laser

which originally excited it. In this situation, the direction of the emitted photon

will be the same as the absorbed photon. Thus, if an atom got an impulse in a

specific direction through the process of absorbtion, the stimulated emitted photon

will impart the same momentum to the atom in the opposite direction, resulting in

the zero change in the atomic momentum.

As the atoms absorb photons from the laser beam, their velocities will change.

One of the important considerations in slowing atomic beams is the effective detuning

δeff = δ − kL · vz, where vz is the velocity of the atoms in the positive z direction.

Atoms in a beam are slowed down by a single laser beam propagating against their

direction of motion. Consequenctly, in the frame of reference of the moving atoms,

the laser frequency appears higher than the real frequency by an amount of kLvz, due

to the Doppler shift. Detuning below the resonance frequency (δ is negative) is called

“red” detuning because the laser frequency is lowered. When the detuning is positive,

it is refereed to as “blue” detuning, as the frequency of laser beam is increased.

Atomic temperature is defined from the classical theory of equipartition energy,

that is the thermal energy per particle per degree of freedom at a temperature T is

given by

E =
1

2
kBT,

where kB is the Boltzmann constant. In a gas of non-interacting atoms, moving in

a single direction, we can set the kinetic energy for a velocity component in this
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direction equal to kBT/2 as follows

1

2
mv2z =

1

2
kBT,

from which we can find the r.m.s. thermal velocity

vrms =

√
kBT

m
.

This equation states that there is a direct relationship between the root mean square

of the velocity vrms and the temperature T. We can use this relationship to determine

the temperature from measurements of the average speed. It is also the basis of

laser cooling, which uses the mechanical force between a laser beam and the moving

atoms in a gas to slow them down and hence to produce low temperatures. The

temperatures that are now achieved by laser cooling are in the microKelvin range,

which corresponds to atomic speeds that are about four orders of magnitude smaller

than the velocity at room temperature.

4.2 Cooling Atoms with Laser Pulses

Atoms and molecules mostly are multilevel systems, and their interaction with a

radiation field can involve many levels. Nevertheless, if the radiation field frequency

ωL is monochromatic, often we can limit the consideration to the levels which are

nearly resonant with that frequency. When only one such excited level exists, a

two-level approximation can be made.

Consider a one-dimensional problem of two-level system, moving in the positive

z direction, interacting with an electric field in the form of a train of laser pulses

traveling in the negative z direction. We will assume that the single pulse intensity
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is hardly sufficient to transfer the population from the ground state to the excited

state. The total electromagnetic field can be divided into two parts: the classical

electromagnetic field exciting the electric dipole transitions of the atom which can

be attributed to the first part, and the quantized vacuum field responsible for the

spontaneous decay of the atomic state can be considered as the second part of the

total field. Thus, the Hamiltonian of the system is given by the sum of the field-free

atomic hamiltonian Ĥ0 which determines the internal states of the atom, the kinetic

energy operator P̂2/2M of the center of mass, the interaction Hamiltonian Ĥint for the

atom with the laser pulse, the vacuum filed Hamiltonian Ĥvac which determines the

quantized vacuum field, and finally Ĥγ which is the operator of the dipole interaction

of the atom with the vacuum field that is responsible for the spontaneous emission.

Thus, we have

Ĥ = Ĥ0 +
P̂

2

2M
+ Ĥint + Ĥvac + Ĥγ. (4.1)

The two-level atom Hamiltonian Ĥ0 has eigenvalues ~ω1 and ~ω2 for the energies of

the ground state and the excited state respectively.

As we are interested in the time evolution of this system after the interaction

with laser pulses, we need to consider the “Optical Bloch Equations” derived from

the density matrix after considering the relaxation terms. The need for a statistical

description via density matrices arises when one considers either an ensemble of sys-

tems or one system whose preparation history is uncertain and one does not know

with 100% certainty which pure quantum state the system is in [39].

To analyze the problem using the density matrix, we need to specify the interaction

Hamiltonian Ĥint. From Eq.(3.1) it given by

Ĥint(ξ, z, t) = −D̂(ξ) · E(z, t), (4.2)
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where D̂(ξ) = −|e|ξ is the dipole moment operator, and E(z, t) is the space- and

time-dependent electric field. The electric field for a train of laser pulses traveling in

the negative z direction can be written as

E(z, t) = E0
2
(f(z, t) + c.c.), (4.3)

where

f(z, t) =
N−1∑
n=0

e−
(t+ z

c−nTrep)
2

2τ2
+i(kLz+ωLt)+inϕ,

Now we begin working on the problem using the density matrix, which is written as

ρ =

 ρee ρeg

ρge ρgg

 =

 beb
∗
e bea

∗
g

agb
∗
e aga

∗
g

 ,

where ag and be are the probability amplitudes of the ground state and the excited

state, respectively. The elements of the density matrix have the following interpreta-

tion: the diagonal elements ρjj give the probability that the system is in the eigen-

state; the off-diagonal elements ρji (or coherences) are non-zero only if the system is

in a superposition of energy eigenstate j and i.

The evolution equation for the elements ρij may be found from the evolution

equation of the amplitudes derived in Chapter 3. For a two-level atom, they have the

forms

ȧg(t) =
1

i~
be(t)Ĥge(ξ, z, t)e

−iωegt,

ḃe(t) =
1

i~
ag(t)Ĥeg(ξ, z, t)e

iωegt.
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Time evolution equation of ρgg may be derived as follows

dρgg
dt

=
dag(t)

dt
a∗g(t) + ag(t)

da∗g(t)

dt

=
1

i~
be(t)a

∗
g(t)Ĥge(ξ, z, t)e

−iωegt +
1

−i~
b∗e(t)ag(t)Ĥeg(ξ, z, t)e

iωegt. (4.4)

On substituting the electric field Eq.(4.3) into the interaction Hamiltonian Eq.(4.2),

we obtain

Ĥint(ξ, z, t) = |e|⟨g|ξ|e⟩ · E(z, t)

=
−~
2

Ωo
ge(f(z, t) + f̃(z, t)) (4.5)

= Ĥge(ξ, z, t),

where

Ωo
ge =

−|e|E0
~

⟨g|ξ|e⟩,

is the Rabi frequency. We define the space- and time-dependent Rabi frequency as

Ωge(z, t) = Ωo
ge

N−1∑
n=0

e−
(t+ z

c−nTrep)
2

2τ2
+inϕ. (4.6)

Now substitution of Eq.(4.5) into Eq.(4.4) gives

dρgg
dt

=
i

2
ρegΩge(f(z, t) + f̃(z, t))e−iωegt

− i

2
ρgeΩeg(f̃(z, t) + f(z, t))e+iωegt,

where we replaced the probability amplitudes by the appropriate notation of the

elements of the density matrix. We can simplify the preceding expression further by
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applying the rotating wave approximation1

dρgg
dt

=
i

2
ρegΩge(z, t)e

i(kLz+δt) − i

2
ρgeΩeg(z, t)e

−i(kLz+δt).

Here we have extracted the exponential term that contains the laser frequency and

wave vector to add it to the exponential term that contains the transition frequency,

then we used the expression for the detuning δ = ωL − ωeg to rewrite it in a compact

form.

The summation in Eq.(4.6) for the Rabi frequency has the implicit comb structure

in it. It states that for a two level atom interacting with a train of ultrashort pulses,

the Rabi frequency is time- and space-dependent.

When we apply the same procedure to the remaining elements of the density ma-

trix, we obtain the optical Bloch equations (OBEs) which describe the time evolution

of the elements of the density matrix.

Up to this point we have not included the spontaneous decay terms. They have

to be added as follows. As the excited state decays to the ground state, the excited

state loss of population adds to the population of the ground state. Consequently,

we have to add +γρee to the time evolution equation of ρgg and −γρee to the OBE

for ρee, where γ is the radiative decay rate [40]. The relaxation rate of the atomic

coherences is represented by

γcoherence =
γ

2
+ 2γphase,

where γ/2 is the contribution of the spontaneous decay of excited state, while 2γphase

accounts for all other possible mechanisms of relaxation of the atom. Therefore, we

1See Appendix B for more details on the rotating wave approximation.
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add −γ
2
ρeg and −γ

2
ρge to the OBEs for ρeg and ρge, respectively.

The OBEs are then

dρgg
dt

=
i

2
(ρegΩge(z, t)e

i(kLz+δt) − ρgeΩeg(z, t)e
−i(kLz+δt)) + γρee,

dρee
dt

=
i

2
(ρgeΩeg(z, t)e

−i(kLz+δt) − ρegΩge(z, t)e
+i(kLz+δt))− γρee,

dρge
dt

=
i

2
Ωge(z, t)e

+i(kLz+δt)(ρee − ρgg)−
γ

2
ρge,

dρeg
dt

=
i

2
Ωeg(z, t)e

−i(kLz+δt)(ρgg − ρee)−
γ

2
ρeg.

As discussed at the beginning of this section, that laser cooling depends on the dis-

sipative forces that are velocity dependent. From the quantum mechanical point of

view, these forces arise as a result of the quantum mechanical momentum exchange

between the atom and the laser field in the presence of spontaneous relaxation. The

change in the momentum comes from the processes of photon absorption and emis-

sion. Therefore, the radiation forces is a function of the coordinates and the velocity

of the center of mass of the atom [41, 42].

At this step we need to incorporate the atomic velocity into the OBEs, which can

be accomplished using the hydrodynamic derivative

d

dt
=

∂

∂t
+ v

∂

∂z
.

The resulting equations of motion for the density matrix elements are
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∂ρgg
∂t

+ v
∂ρgg
∂z

= +γρee +
i

2
(ρ̃egΩge(z, t)− ρ̃geΩeg(z, t)),

∂ρee
∂t

+ v
∂ρee
∂z

= −γρee +
i

2
(ρ̃geΩeg(z, t)− ρ̃egΩge(z, t)),

∂ρ̃ge
∂t

+ v
∂ρ̃ge
∂z

= −(
γ

2
+ i(δ + kv))ρ̃ge +

i

2
Ωge(z, t)(ρee − ρgg),

∂ρ̃eg
∂t

+ v
∂ρ̃eg
∂z

= −(
γ

2
− i(δ + kv))ρ̃eg +

i

2
Ωeg(z, t)(ρgg − ρee).

Here we used the substitutions

ρ̃eg = ρege
i(kLz+δt),

ρ̃ge = ρ̃∗eg,

and

dρ̃eg
dt

= (
∂

∂t
+ v

∂

∂z
)(ρege

i(kz+δt)),

= ei(kz+δt)(
∂

∂t
+ v

∂

∂z
)ρeg + (iδ + ikv)ρege

i(kz+δt).

We want to simplify these partial differential equations by converting them to a system

of ordinary differential equations by the method of characteristics [43]. If we consider

the center of mass motion semiclassically, the trajectory is fixed z = z0 + vt. We

define the dependence of the density matrix elements along the trajectory as

ραβ(z, t) = ϱαβ(z0 + vt, t)δ(z − [z0 + vt])

= ϱαβ(t)δ(z − [z0 + vt]).

Using this substitution in the OBEs gives, for example, for the l.h.s. of ρgg equation
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of motion

∂ρgg
∂t

+ v
∂ρgg
∂z

=
∂(ϱgg(t)δ(z − [z0 + vt]))

∂t
+ v

∂(ϱ(t)ggδ(z − [z0 + vt]))

∂z

=δ(z − [z0 + vt])
∂ϱgg(t)

∂t
− vϱgg(t)δ

′(z − [z0 + vt])

+ vϱgg(t)δ
′(z − [z0 + vt)

=δ(z − [z0 + vt])
∂ϱgg(t)

∂t
.

Therefore, the time evolution equation of ϱgg is

δ(z − [z0 + vt])
∂ϱgg(t)

∂t
=+ γϱee(t)δ(z − [z0 + vt]) +

i

2
(ϱ̃eg(t)δ(z − [z0 + vt])Ωge(z, t)

− ϱ̃ge(t)δ(z − [z0 + vt])Ωeg(z, t)).

This approach reduces the OBEs from a set of partial differential equations to a set

of ordinary differential equations along the trajectory

ϱ̇gg = +γϱee +
i

2
(ϱ̃egΩge(z0 + vt, t)− ϱ̃geΩeg(z0 + vt, t)), (4.7a)

ϱ̇ee = −γϱee +
i

2
(ϱ̃geΩeg(z0 + vt, t)− ϱ̃egΩge(z0 + vt, t)), (4.7b)

˙̃ϱge = −(
γ

2
+ i(δ + kLv))ϱ̃ge +

i

2
Ωge(z0 + vt, t)(ϱee − ϱgg), (4.7c)

˙̃ϱeg = −(
γ

2
− i(δ + kLv))ϱ̃eg +

i

2
Ωeg(z0 + vt, t)(ϱgg − ϱee). (4.7d)

If the initial conditions are known, the populations of the ground state and the excited

state may be easily found by the direct integration of the preceding OBEs. The

computer code for numerical integration is attached in Appendix D, and it utilizes

the adaptive Runge-Kutta method for solving systems of coupled ordinary differential

equations [44].
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4.3 Radiation Force due to Laser pulse Train

The radiation force on an atom is caused by the quantum mechanical exchange of

momentum between the atom and the resonant laser field. Therefore, the general

quantum mechanical relation that determines the time derivative of the expectation

value of the quantum mechanical variable of atomic momentum P is (see Ref. [42, 45])

⟨Fz⟩ =
d⟨Pz⟩
dt

= − i

~
⟨[Pz, Ĥint]⟩,

where Ĥint is the interaction Hamiltonian defined in Eq.(4.2). The commutator of

Pz and Ĥint is

[Pz, Ĥint] = −i~⟨∂Ĥint

∂z
⟩.

The force on an atom is thus given by

Fz = −⟨∂Ĥint

∂z
⟩. (4.8)

This relation is an example of the Ehrenfest theorem [35]. It is a quantum mechanical

analogue of the classical expression, the force being the negative gradient of the

potential. In the classical limit, this relation determines the classical force exerted on

an atom in the radiation field, which is called the radiation force.

To find the radiation force when atoms interact with laser pulses, we consider the

interaction Hamiltonian Ĥint between the atoms and the laser field. This interaction

operator is expressed here, as before in Chapter 3, as

Ĥint(ξ, z, t) = −D̂(ξ) · E(z, t), (4.9)

where D(ξ) is the operator of the atomic dipole moment.
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The calculation of the mean value in Eq.(4.8) is reduced to evaluating the integral

Fz = −
∫ +∞

−∞
Ψ∗(ξ, t)

∂Ĥint(ξ, z)

∂z
Ψ(ξ, t)dξ, (4.10)

On substituting Eq.(4.9) into Eq.(4.10), we obtain

Fz =

∫ +∞

−∞
Ψ∗(ξ, t)

∂[D̂(ξ) · E(z, t)]
∂z

Ψ(ξ, t)dξ,

Moreover, the wave function expansion is

Ψ(ξ, t) = age
−iωgtϕg(ξ) + bee

−iωetϕe(ξ),

Thus, the force equation after the rearrangement reads

Fz =

∫ +∞

−∞
a∗ge

iωgtϕ∗
g(ξ)

∂[D̂(ξ) · E(z, t)]
∂z

age
−iωgtϕg(ξ)dξ

+

∫ +∞

−∞
a∗ge

iωgtϕ∗
g(ξ)

∂[D̂(ξ) · E(z, t)]
∂z

bee
−iωetϕe(ξ)dξ

+

∫ +∞

−∞
b∗ee

iωetϕ∗
e(ξ)

∂[D̂(ξ) · E(z, t)]
∂z

age
−iωgtϕg(ξ)dξ

+

∫ +∞

−∞
b∗ee

iωetϕ∗
e(ξ)

∂[D̂(ξ) · E(z, t)]
∂z

bee
−iωetϕe(ξ)dξ.

The first and the forth terms on the r.h.s vanish as there is no dipole moment

connecting the same electronic state. Hence, the mean force equation is

Fz =

∫ +∞

−∞
a∗ge

iωgtϕ∗
g(ξ)

∂[D̂(ξ) · E(z, t)]
∂z

bee
−iωetϕe(ξ)dξ

+

∫ +∞

−∞
b∗ee

iωetϕ∗
e(ξ)

∂[D̂(ξ) · E(z, t)]
∂z

age
−iωgtϕg(ξ)dξ.

Here the electric field is for a train of ultrashort laser pulses, and it is given by
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Eq.(4.3). After extracting the laser frequency and wave vector exponential terms

from the electric field and applying the rotating wave approximation by neglecting

the antiresonant terms (i.e. ω = ωL+ωe−ωg) as before, the preceding force equation

reads

Fz =

∫ +∞

−∞
a∗ge

iωgtϕ∗
g(ξ)

∂[D̂(ξ) · E train(z, t)]

∂z
ei(kLz+ωLt)bee

−iωetϕe(ξ)dξ

+

∫ +∞

−∞
b∗ee

iωetϕ∗
e(ξ)

∂[D̂(ξ) · E train(z, t)]

∂z
e−i(kLz+ωLt)age

−i(ωgtϕg(ξ)dξ,

where

E train(z, t) =
E0
2

N−1∑
n=0

e−
(t+ z

c−nTrep)
2

2τ2
+inϕ.

The Rabi frequency for a train of pulses is written in the explicit form in Eq.(4.6) as

Ωeg(z, t) = Ωo
eg

N−1∑
n=0

e−
(t+ z

c−nTrep)
2

2τ2
+inϕ

=
2⟨e|D̂(ξ) · E train(z, t)|g⟩

~

=
2

~

∫ +∞

−∞
ϕ∗
e(ξ)[D̂(ξ) · E train(z, t)]ϕg(ξ)dξ,

and the detuning δ = ωL − ωe + ωg. We can use these substitutions in the preceding

force equation to write it in the more compact form

Fz =
~
2

∂

∂z
[(a∗gbee

i(kLz+δt))Ωge(z, t) + (b∗eage
−i(kLz+δt))Ωeg(z, t)].

With the substitution introduced in Sec.(4.3), for ρ̃eg

ρ̃eg = ρege
i(kLz+δt) = a∗gbee

i(kLz+δt),
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the final radiation force is

Fz =
~
2

∂

∂z
[ρ̃egΩge(z, t) + ρ̃∗egΩeg(z, t)]. (4.11)

From the last equation, the force depends on the optical coherence between the ground

state and the excited state. Since the Rabi frequency is not constant, the force

depends also on the interaction time and position of the moving atom.
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Chapter 5

Interaction of 23Na Atoms with a

Single Laser Pulse

5.1 Problem Set-Up

In the previous sections we developed the formalism needed to calculate the popu-

lation of the energy states and the radiation force when atoms scatter light as they

interact with it. Here we apply these equations to the case of a two-level atom moving

in the positive z direction with velocity vz. A typical example is the sodium transition

3S1/2−3P3/2 depicted in Fig.(5.1) with the hyperfine structure characterized by the to-

tal angular momentum1 F. The absorption takes place on the transition 3S1/2 → 3P3/2

and the radiative relaxation from the excited level 3P3/2 terminates only on the ini-

tial level 3S1/2. The population is then never transferred to levels other than 3S1/2 or

3P3/2. If we choose the driving laser to be tuned to the transition FS = 2 → FP = 3,

the only allowed relaxation transition is therefore FP = 3 → FS = 2 that fulfills the

selection rule ∆F = 0,±1 [46, 47]. The atomic beam of Na is interacting with a

1The total angular momentum F is the vector sum of the spin angular momentum S, the orbital
angular momentum L, and the nuclear spin I.
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Figure 5.1: Hyperfine structure of 23Na showing the transition 3S1/2 − P3/2. A two
level system is achieved by tuning the incident laser frequency to pump the population
from the hyperfine level with total angular momentum F=2 in the 3S1/2 level to the
hyperfine level with total angular momentum F=3 in the 3P3/2 level.

counterpropagating train of laser pulses. Each pulse has a Gaussian envelope with

FWHM τFWHM = 2
√
2 ln 2τ = 230 fs.

Now we need to find the proper value of the Rabi frequency to be used in our

numerical calculations. From the pulse area theorem [48], when the area under the

envelope of the Rabi frequency is θ = π/10, each pulse will be able to transfer 1/10

of the population in the ground state to the excited state. Consequently, the required

Rabi frequency may be estimated from area theorem equation

θ =
π

10
=

∫ ∞

−∞
Ωo

egg(t)dt,

where g is the pulse envelope, and the integration
∫∞
−∞ g(t)dt =

√
2πτ for a single

Gaussian pulse. Therefore, the Rabi frequency is Ωo
eg ∼ 1.2 × 1012 Hz, which in the

units of the radiative decay rate of the excited state is Ωo
eg ∼ 104γ.

In this chapter we discuss the interaction of the first pulse of the train with the
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atoms, and in the next chapter we consider the interaction with all pulses and explore

the possibility of decelerating the atomic beams using coherent pulse trains.

5.2 Coherences after the Interaction with a Single

Pulse

From Eq.(4.11), the force acting on the atoms depends on the coherences; therefore,

incorrect calculation of the coherences values affects the estimate of the cooling force.

This is the reason beyond our interest in estimating of the coherences after interaction

with the first laser pulse.

From the OBEs, Eq.(4.7c) and Eq.(4.7d), the differential equation for the coher-

ences are

˙̃ϱeg = −(
γ

2
− i(δ + kLv))ϱ̃eg +

i

2
Ωeg(z0 + vt, t)(ϱgg − ϱee), (5.1a)

˙̃ϱge = ˙̃ϱ∗eg. (5.1b)

In our calculations the Rabi frequency has the value Ω ∼ 104γ, which indicates that

the excitation time is much shorter than the lifetime of the excited state. Therefore,

we can neglect the first term in the differential equations Eq.(5.1a) as γ ≪ Ω. Addi-

tionally, all the population initially is in the ground state, then ϱgg ≈ 1 and ϱee ≈ 0.

Thus, the resulting differential equation for ϱ̃eg reduces to

˙̃ϱeg ≃
i

2
Ωeg(z0 + vt, t).

On substituting for the Rabi frequency from Eq.(4.6) we obtain

ϱ̃eg ≃
i

2
Ωo

eg

∫ ∞

−∞
e−

(t+ z
c−Trep)

2

2τ2 dt+ C, (5.2)
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From the initial conditions ϱ̃eg(0) = 0 and Ωeg(0) = 0, the integration constant C = 0

. Although the original integration limits are {0, τp}, here we can extend them to

{−∞,+∞} because the integrand is zero when t < 0 and t > τ . Ultimately, the

off-diagonal density matrix element ϱ̃eg, in the weak excitation limit, and after the

interaction with a single laser pulse is

ϱ̃eg ≃
i

2
Ωo

eg

√
2πc2τ 2

(c+ v)2
,

Now we compare the results from this analytical approach with the numerical cal-

culation for the interaction of a single pulse with FWHM τFWHM = 230 fs with an

atom initially has temperature T = 100 K. The results are

ϱ̃eg,analytical = 0.0779605i,

ϱ̃eg,numerical = 0.07764374i.

These two values differ only by ∼ 0.4% indicating the accuracy of our code.

5.3 Atom-Pulse Momentum Exchange

In addition to the estimate of coherences after the interaction with the first pulse, we

are also interested in the momentum imparted to the atoms due to the interaction

with that pulse. From Eq.(4.11), the force is

Fz =
~
2

∂

∂z
[ρ̃egΩ

∗
eg(z, t) + ρ̃∗egΩeg(z, t)]

=
i

2
~kL[ρ̃egΩ∗

eg(z, t)− ρ̃∗egΩeg(z, t)],
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where

∂(ρ̃geΩeg(z, t))

∂z
= −ikLρ̃geΩeg(z, t).

From the Newton’s second law, the total momentum transferred to the atoms is

∆p =

∫ ∞

−∞
Fzdt

=
i

2
~kL

∫ ∞

−∞
[ρ̃egΩ

∗
eg(z, t)− ρ̃∗egΩeg(z, t)]dt.

Using Eq.(5.2), we obtain

∆p = −1

4
~kL|Ωeg|2

∫ ∞

−∞
e−

(t+ z
c−Trep)

2

2τ2

(∫ t′

−∞
e−

(t′+ z
c−Trep)

2

2τ2 dt′

)
dt− c.c.,

where c.c. is the complex conjugate of the first term. Now we will express ∆p in terms

of the recoil momentum ~kL. The recoil momentum ~kL is defined as the amount of

momentum transferred to the atom due to the absorption of a single photon. Upon

substituting for the appropriate values and performing the integration, the previous

equation gives

(
∆p

~kL
)analytical = −0.00607785,

which is close to the value calculated from the numerical integration of the OBEs,

(
∆p

~kL
)numerical = −0.0060826.

Thus,

∆perror ∼ 10−3%.

which is a relatively negligible value. The previous calculations states that, the

momentum transferred to the atoms is really small, as it corresponds to a change in

the atomic velocity by the value ∼ 0.15 mm/s.
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In the last two sections we showed the accuracy of our approach, from the smallness

of the error between the analytical and numerical calculations. This increases our

confidence in the code used to integrate the OBEs; and therefore, we are ready move

on to the case of the interaction of atomic beam with a train of laser pulses.
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Chapter 6

Interaction of 23Na Atoms with a

Train of Ultrashort Laser Pulses

6.1 Problem Set-Up

In the previous chapter we showed how a single pulse is interacting with an atomic

beam of sodium atoms. We found that in the weak excitation limit a single laser

pulse hardly changes the atomic velocity (∼ 0.15 mm/s).

In this chapter we are studying the slowing of an atomic beam of 23Na atoms, by

a train of ultrashort laser pulses. The laser frequency is tuned to optically pump the

population from the hyperfine level F = 2 in the 3S1/2 energy level to the hyperfine

level F = 3 in the 3P3/2 energy level, to achieve a two level atom, as shown in

Fig.(5.1). The laser pulses of the train are identical, have Gaussian profile with a

FWHM= 2
√
2 ln 2τ = 230 fs, and they do not overlap. The repetition period in that

train Trep is 4 ns, which is smaller than the lifetime of the excited state for sodium

3P3/2 level τrad = 16.4 ns.

When the first pulse interacts with the atoms, it transfers a wave packet to the

excited state. After the second pulse arrives, it transfers another wave packet which
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interferes with first one. As the pulses interact with the atoms, the created wave

packets interfere, and build a coherent excitation.

The pulse area is set to θ = π/10, for which we need 10 pulses to achieve the

complete population inversion (CPI). The Rabi frequency is set to Ωo
eg = 104γ as in

the preceding chapter.

The frequency comb associated with this train of Gaussian pulses has a frequency

envelope width of 1/τFWHM = 4.3× 106 MHz, and the separation between the comb

teeth is frep = 1/Trep = 250 MHz. Therefore, the comb envelope includes more than

17, 000 teeth. Such a broad frequency comb envelope and the large number of comb

teeth will make it hard to see the difference in the adjacent comb teeth intensities.

Also, we set the phase between the pulses to ϕ = 0.

Now we are ready to solve the optical Bloch equations numerically with the enu-

merated parameters. The used algorithm is based on the integration by the adaptive

6th order Rung-Kutta method, in which the numerical error was about 10−14.

The next sections discuss the results of solving the OBEs. They present estimates

to the population of the excited state due to the interaction with pulses, the radiation

force on the sodium atoms, and the momentum transferred to the atomic beam.

6.2 Results

6.2.1 Population in the Excited State

In Fig.(6.1), the solid line shows the accumulation of the population in the excited

state as the pulses interact with the atomic beam. It can be seen that the smallness

of the repetition period (Trep < τrad) does not give the population enough time to

completely decay to the ground state before the arrival of the second pulse. Therefore,

there is an accumulation of the population in the excited state, and that is why there
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ρee(t0)=17.7%

ρee=0.61% [1 pulse]

[10 pulses]

Trep= 4 nsec

ρee(t0+Trep)=13.8%

Figure 6.1: The population accumulated in the excited state due to the interaction
of successive pulses with the atomic beam.

is an interference between the old and the new wave packets excited by successive

laser pulses.

As seen from Fig.(6.1), the first pulse hardly perturbs the system, and excites only

0.6% of the ground state population. After the interaction with the second pulse, the

total population in the excited state is almost 2.1%, which indicates that Eq.(3.11)

(i.e. |bn(NTrep)|2 = N2|bn(Trep)|2) holds. But after the arrival of the third pulse, the

accumulated population is about 27% less than the expected from Eq.(3.11). The

reason for that is, the radiative decay rate is not included in Eq.(3.11).

Also, from Fig.(6.1) we can show that in the absence of any applied signals (i.e.

between the pulses), the population in the excited state level decays with time expo-

nentially [49]

ρee(t0 + Trep) = ρee(t0)e
−γTrep . (6.1)
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For example, we pick an arbitrary time from Fig.(6.1) as the time of maximum exci-

tation by pulse number 10, to be our ρee(t0) = 0.177. Just before the excitation by

pulse number 11, the population of the excited state decreased from 17.7% to 13.8%

due to the spontaneous decay in a period equal to the repetition period of the pulses.

Therefore, ρee(t0 + Trep) = 0.138, and from Eq.(6.1)

ρee(t0 + Trep)

ρee(t0)
= 0.78,

and e−γTrep = 0.78. All these estimates and matches between results increase our

confidence in the used numerical code.

6.2.2 Atom-Train Momentum Exchange

In Chapter 5 we found that a single weak pulse transfers a small amount of momentum

to the atomic beam (∼ 0.006~kL) that hardly changes the atomic velocity (∼ 0.15

mm/s). In this section we discuss the momentum exchange between the sodium atoms

and a pulse train.

Consider an ideal case when sodium atoms moves in the positive z direction with

velocity vz, and they are irradiated by a coherent train of ultrashort femto-second laser

pulses. The detuning of the laser frequency is set to −kLvz. In the rest frame of the

atoms, the laser source is moving towards the atoms, therefore, they see the frequency

of the laser is blue shifted (Doppler shifted) by the value kLvz, which compensates

for the red detuning −kLvz indicated above. Thus, the laser frequency matches the

transition frequency perfectly, and a resonant interaction is achieved.

For cooling atoms we calculated the light pressure force on the atoms using

Eq.(4.11), then we integrated the force over time to compute the imparted momentum
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Figure 6.2: The momentum transferred to the atomic beam due to the accumulation
of the population in the excited state by the individual pulses.

using

∆p =

∫
Fzdt. (6.2)

The results are shown in Fig.(6.2), Fig.(6.3), and Fig.(6.4).

Fig.(6.2) shows the total momentum imparted to the atoms by the train. The first

pulse imparts a total momentum of ∼ 0.6% of precoil. For the case of sodium atoms,

the recoil momentum (defined in Sec.(4.1)) is precoil = 1.125×10−30 N · s, which limits

the change in the velocity due to a single photon absorbtion to v = 3 cm/s. Thus,

the first pulse has changed the atomic velocity by an amount of ∼ 0.15 mm/s which

is a negligible amount due to the weakness of the pulse (see Chapter 5).

After the arrival of the second pulse, the total momentum transferred to the atoms

is ∼ 0.0225 precoil, which may be predicted from Eq.(3.11) as follows.
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The population transferred to the excited state by a pulse train is directly pro-

portional to the population excited by the first pulse, and the square of the number

of pulses as in Eq.(3.11)

|be(NTrep)|2 = N2|be(Trep)|2.

Moreover, the force from absorbtion followed by spontaneous emission can be written

as (see Ref.[45])

Fsp = ~kLγϱee,
∆p

∆t
= ~kL

∆N

∆t
.

The previous equation is interpreted as follows. During the time interval ∆t, the

atoms absorbs ∆N photons and obtains a total momentum of ∆p = ~kL∆N . From

quantum mechanics, the population of the excited state is directly proportional to the

number absorbed photons ∆N ∝ |be(t)|2. Therefore, we can formulate an equation

for the total imparted momentum similar to Eq.(3.11) as

∆p(NTrep) ∝ ~kL|be(NTrep)|2,

∆p(NTrep) = N2∆p(Trep), (6.3)

where ∆p(Trep) ∝ ~kL|be(Trep)|2 is the momentum transferred by the first pulse.

From the preceding equation, after the interaction with the third pulse we expect

to have a total momentum transferred to the atom equals ∼ 0.055 precoil, which excess

the actual value by 15%. Hence, Eq.(6.3) valid only for the first few pulses (i.e. for

small N). It is indicated in Fig.(6.2) that, the total imparted momentum to the atoms

due to the interaction of ten pulses is 0.37 precoil, corresponding to a change in the
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velocity equals ∼ 1.13 cm/s.

6.2.3 Doppler Cooling Using Frequency Combs

In the previous section we showed that by using a train of ten pulses we have been

able to decelerate the sodium atoms by a maximum amount of ∼ 1.13 cm/s at the

resonance. In this section we seek the ability to cool the atoms using pulses based on

the previous discussions and results.

As stated in the beginning of the previous section, a beam of sodium atoms is

interacting with a counterpropagating laser beam tuned to resonance is a typical

example of Doppler cooling. The natural line width of the 3p3/2 energy level for

sodium is 10 MHz, and having an effective cooling for an atomic beam of 23Na atoms

requires that the detuning is larger than the line width.

Fig.(6.3) shows the momentum imparted to the atoms with different Doppler

shifts. It can be noticed that the maximum momentum transferred is 0.37 precoil, as

indicated before in Fig(6.2), but in this case it transfers only to a narrow group of

atoms with a specific velocity. The total momentum is plotted versus the Doppler

shift normalized to the frequency comb teeth separation frep = 250 MHz. The re-

sulting profile, qualitatively, is similar to the comb structure discussed in Chapter 2.

The atoms see different laser sources with different detunings. In the the frequency

range −1.5frep +1.5frep, which is plotted in Fig.(6.3), we have three comb teeth; one

is located at the carrier frequency fL, corresponding to the zero detuning, and the

other two are at frequencies fL ± frep, corresponding to detunings δ = ±250MHz,

respectively. From Fig.(6.3) we observe that whenever the Doppler shift equals the

detuning, the momentum transfer is maximum. When the detuning δ = −γ, two

groups of velocities are decelerating, one group has vz = −δ/kL (the middle teeth),

and the other group has vz = frep/kL− δ/kL (the right teeth). As the atoms continu-
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Figure 6.3: The momentum imparted to the moving atoms due to the interaction
with a train of ultra short pulses. Some of the atoms are decelerated fast when their
Doppler shift equals the frequency of a certain tooth “Resonance”, while others are
decelerated very slowly due to the “Off-Resonance” interaction.
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ously slow down due to photon absorption, the Doppler shift changes and the atoms

are out of resonance with the applied laser pulses. When the atoms are far enough

off resonance, the rate of absorption is significantly reduced. The result is that only

atoms with a proper velocity are slowed down, and they are only slowed by a small

amount.

Nevertheless, this process of slowing down atoms results in a cooling or narrowing

of the velocity distribution. In an atomic beam, there is typically a spread of velocities

around vrms. Atoms with the proper velocity will absorb rapidly and decelerate.

Those with velocity vz > vrms will absorb slowly, then rapidly as they come into

resonance, and finally slowly as they continue to decelerate. Atoms with velocity

vz < vrms absorb little and decelerate little. Thus atoms from a range of velocities

around the resonant velocity are pushed into a narrower range centered on a lower

velocity.

Fig.(6.4) shows the main tooth interaction with the atomic beam as it approaches

the zero. When atoms velocity is close to zero (i.e. kLvz/frep → 0), the equation of

the momentum imparted to the atoms behaves as (the dashed line)

∆ptotal = ∆p0(vz=0) − αvz, (6.4)

which matches the equation of the force in the case of the interaction of atomic beams

with the CW lasers (see Eq.(3.20) in Ref. [45])

F = F0 − βvz + · · · , (6.5)

where

β = −~k2 4s0(δγ)

(1 + s0 + (2δ/γ)2)2
, (6.6)

in which s0 = 2|Ω|2/γ2, is the saturation parameter. The first term in Eq.(6.4) is
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the intercept with the ∆p/precoil axis at vz = 0 in Fig.(6.4), therefore, it is velocity

independent. This term is the momentum transferred to the atoms at rest. It is

responsible for decelerating the atomic beam then deflecting the atoms direction of

motion when the atomic velocity vz = 0. This term, ∆p0, corresponds to the first

term F0 in Eq.(6.5), the force on a two level atom at rest. The second term in

Eq(6.4), is the momentum transferred to the atoms at motion, thus, it is velocity

dependent. This term is also responsible for slowing the atoms, and ultimately, cooling

them. The second term in Eq.(6.4) contains the slope α, which is analogous to the

damping coefficient β introduced in Eq.(6.5) and defined in Eq.(6.6). It is obvious

form Fig.(6.4) that, when the laser frequency is red detuned (i.e. δ < 0, the dashed

line) the coefficient α is negative, and if the laser frequency is blue detuned (i.e. δ > 0,

the dotted line) the coefficient α is positive. These results perfectly agree with the

definition of the damping coefficient β in Eq.(6.6).

The distinction between cooling and slowing the atomic beams is as follows. Even

though the momentum transferred to the atomic beam reduces the average velocity

to zero, the mean squared velocity may be not zero. An atom with zero velocity is

equally likely to absorb a photon from the traveling laser pulses. When this occurs,

the mean squared velocity will increase. Thus, we need to decrease the mean squared

velocity in addition to having an average velocity equal to zero to get an efficient

cooling.
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Figure 6.4: Interaction of the main comb tooth with atomic beam when its velocity
is brought close to zero. The figure shows the momentum transfer to slowly moving
atoms when the carrier frequency is red detuned (dashed line) and blue detuned
(dotted line).
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Chapter 7

Conclusion

This thesis explores the possibility of cooling atomic beams using a coherent train of

ultrashort laser pulses (frequency combs). It is a preliminary step towards cooling

multilevel atoms and molecules using frequency combs as they may eliminate the need

for multiple laser sources required to cool mutilevel atoms.

We discussed the possibility of changing the separation between the comb teeth

by changing the repetition period of the pulses in the time domain, as they are related

by Trep = 1/frep. We also mentioned in Chapter 2 the ability to move the teeth inside

the comb envelope around the carrier frequency by changing the phase between the

pulses. Therefore, we are able to tune the frequency comb teeth to a target transition

using the repetition period and the phase between the pulses in the time domain.

In Chapter 5 we made estimates for a two-level atom interacting with a single laser

pulse. We have shown that the numerical estimates of the excited state population

and the momentum transferred to the atom agree with the analytical approach, for

weak pulses, with a negligible percent error. We also found that when an atom

interacts with a weak single laser pulse, the pulse only perturbs the population in the

ground state, and transfers a small percentage of the population to the excited state.

In addition to this, there is almost no change in the velocity of the atoms after the

interaction.
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However, as shown in Chapter 6 for an atomic beam interacting with a train of

ultra-short Gaussian pulses, there is an appreciable amount of the initial population

transferred to the excited state due to the coherent interference between the pulses in

the train. Furthermore, although the pulses are assumed to be weak, they impart to

the atoms an amount of momentum equal to 0.37 ~kL. This transferred momentum

has changed the atomic velocity by a considerable amount.
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spired by lévy flight statistics. Phys. Rev. Lett., 75(25):4575–4578, Dec 1995.

[27] Blinov et al. Broadband laser cooling of trapped atoms with ultrafast pulses.
Opt. Soc. Am. B, 23(6), June 2006.

[28] Carmen M. Tesch and Regina de Vivie-Riedle. Phys. Rev. Lett., 89:157901, 2002.

[29] Carmen M. Tesch and Regina de Vivie-Riedle. quant-ph, 1005.4144, 2010.

[30] Carmen M. Tesch and Regina de Vivie-Riedle. J. Phys. Chem. A, 102, 1998.

[31] R. N. Zare. Science, 279:1875, 1998.

[32] Gordon W.F. Drake, editor. Springer Handbook of Atomic, Molecular, and Op-
tical Physics. Springer, 2005.

[33] Lus E. E. de Araujo. Phys. Rev. A, 77:033419, 2008.

[34] J. D. Jackson, editor. Classical Electrodynamics Third Edition. Wiley, 1998.

[35] Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Quantum Mechanics,
volume I and II. Wiley, John & Sons, 1998.
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[47] Wolfgang Demtröder. An Introduction to Atomic and Molecular Physics.
Springer, 2006.

[48] Pierre Meystre and Murray Sargent. Elements of Quantum Optics. Springer,
1998.

[49] A. E. Siegman, editor. Lasers. University Science Books, 1986.

[50] Hans J. Weber George B. Arfken and Frank Harris, editors. Mathematical Meth-
ods for Physicists. Academic Press, 2000.

[51] Ronald Bracewell. The Fourier Transform & Its Applications. McGraw-Hill,
1999.

[52] L. Allen and J. H. Eberly. Optical Resonance and Two-Level Atoms. Dover
Publications, 1987.



64

Appendix A

Fourier Transform of a Train of

Gaussian Pulses

Consider a train of identical pulses emitted from an ideal mode-locked laser at equal

time intervals and moving in the negative z direction. The repetition period of the

pulses in the train is Trep, defined as the separation between two successive envelopes.

The electric field of the total pulse train for a general envelope g(t) is

E(z, t) = 1

2
E0(

N−1∑
n=0

g(t− nTrep)e
inϕe−i(kLz+ωLt) + c.c.).

The term g(t− nTrep) is the pulses envelope which are assumed to be identical, this

requires that the pulse separation is an integer number of optical cycles Trep = NTL,

ϕ is the phase shift between the consecutive pulses ϕ = ωLTrep.

When the envelope is in the form of a Gaussian shape

g(t− nTrep) = e−
(t−nTrep)

2

2τ2 ,
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the electric field train in the long-wavelength approximation1 takes the form

E(t) ≈ 1

2
E0[

N−1∑
n=0

e−iωLt−
(t−nTrep)

2

2τ2
+inϕ + c.c.]. (A.1)

We want to Fourier transform the preceding electric field equation to obtain the

frequencies of the electromagnetic waves that make up E(t). By using the Fourier

transform, which is generally calculated by [50]

E(ω) = F [E ](t) = 1√
2π

∫ ∞

−∞
E(t)eiωtdt,

the Fourier transform of the first pulse in the train, corresponding to n = 0 in both

summations on the r.h.s. of Eq.(A.1), are

F+
1 (ω) =

1

2
τE0e−

1
2
τ2(ω−ωL)

2

,

F−
1 (ω) =

1

2
τE0e−

1
2
τ2(ω+ωL)

2

,

With the use of the shift theorem [51], we can find the Fourier transform for all pulses

in the train. Therefore, the electric field in the frequency-domain for a train consisted

of N pulses is

E(ω) = [F+
1 (ω)

N−1∑
n=0

ein(ϕ+Trep(ω−ωL)) + F−
1 (ω)

N−1∑
n=0

e−in(ϕ−Trep(ω+ωL))].

This is the equation for the electric field in the frequency domain. Simplifying both

1For atomic systems, the relevant length scale for the particles is approximately determined by
the atomic Bohr radius (a0 = 0.5 Å), which is typically four orders of magnitude smaller than the
optical wavelengths that determine the characteristic length scale of the optical fields. Therefore, in
the long-wavelength approximation k · r → 0, and e−ik·r ≈ 1.
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summations further by treating each of them as the first N terms in geometrical series

N−1∑
n=0

e
in( ϕ

Trep
+(ω−ωL))Trep =1 + e

i( ϕ
Trep

+(ω−ωL))Trep + · · ·

+ e
i(N−1)( ϕ

Trep
+(ω−ωL))Trep . (A.2)

On multiplying both sides of Eq.(A.2) by

e
i( ϕ

Trep
+(ω−ωL))Trep ,

we obtain

e
i( ϕ

Trep
+(ω−ωL))Trep · Sn(ω) =e

i( ϕ
Trep

+(ω−ωL))Trep [1 + e
i( ϕ

Trep
+(ω−ωL))Trep

+ · · ·+ e
i(N−1)( ϕ

Trep
+(ω−ωL))Trep ], (A.3)

where

Sn(ω) =
N−1∑
n=0

e
in( ϕ

Trep
+(ω−ωL))Trep .

Subtracting Eq.(A.3) from Eq.(A.2) to obtain

(1− e
i( ϕ

Trep
+(ω−ωL))Trep)Sn(ω) = 1− e

iN( ϕ
Trep

+(ω−ωL))Trep ,

therefore, the summation Sn(ω) has the compact form

Sn(ω) =
1− e

iN( ϕ
Trep

+(ω−ωL))Trep

1− e
i( ϕ

Trep
+(ω−ωL))Trep

.

The last equation is simplified further on multiplying the numerator and the denom-

inator by

e
− i

2
( ϕ
Trep

+(ω−ωL))Trep · e−iN
2
( ϕ
Trep

+(ω−ωL))Trep ,
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which results in

Sn(ω) =
e
− i

2
( ϕ
Trep

+(ω−ωL))Trep [e
iN
2
( ϕ
Trep

+(ω−ωL))Trep − e
−iN

2
( ϕ
Trep

+(ω−ωL))Trep ]

e
−iN

2
( ϕ
Trep

+(ω−ωL))Trep [e
i
2
( ϕ
Trep

+(ω−ωL))Trep − e
− i

2
ϕ

Trep
+(ω−ωL))Trep ]

.

Making the substitution ζ = ϕ
Trep

+ (ω − ωL) for further simplification

Sn(ω) = e
i
2
(N−1)ζTrep

[ei
N
2
ζTrep − e−iN

2
ζTrep ]

[e
i
2
ζTrep − e−

i
2
ζTrep ]

.

Using the substitution for the sin function

sin (ζTrep) =
1

2i
(eiζTrep − e−iζTrep),

thus, the summation has the simple form

N−1∑
n=0

einζTrep =
sin (N

2
ζTrep)

sin ( ζTrep

2
)

. (A.4)

Similarly, the second summation has the form

N−1∑
n=0

einηTrep =
sin (N

2
ηTrep)

sin (ηTrep

2
)
,

where

η = (ω + ωL)−
ϕ

Trep

.

Ultimately, the final electric field profile in the frequency-domain is

E(ω) = [F+
1 (ω)

sin (N
2
ζTrep)

sin ( ζTrep

2
)

+ F−
1 (ω)

sin (N
2
ηTrep)

sin (ηTrep

2
)
]. (A.5)
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Appendix B

The Rotating Wave Approximation

The time evolution equations for a two-level atom interacting with weak electromag-

netic field, whether expressed in terms of amplitudes or density matrix elements, have

no known exact analytical solution. An approximate solution for the interaction can

be obtained using the rotating wave approximation (RWA), which was first employed

by Rabi in his derivation of the “flopping formula” [48].

Under the influence of a monochromatic electromagnetic field of frequency ωL,

atoms undergo transitions between their lower and upper states by interacting with

either the positive or the negative frequency part of the field. The corresponding

contributions to the atomic evolution equations oscillate at frequencies ωL − ωeg and

ωL + ωeg. For near-resonant atom-field interactions, the rapidly oscillating contribu-

tions ωL +ωeg lead to small corrections, and do not make significant contributions to

the differential equations for long times. Thus, they average out.

The physical idea behind the RWA is that a linear oscillation can be decomposed

into a sum of two counterrotating motions, one of which will be resonant with the

precessing dipole moment (representative of the quantum mechanical transitions be-

tween two states), and the other is antiresonant, i.e., rotating opposite to that dipole

precession [52].
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Appendix C

Cooling Parameters of Sodium

23Na

Time domain parameters:

Parameter Value

Pulse duration τ= 100fs = 0.1 ps

Repetition period Trep= 4 ns

Life time τrad= 16.4 ns

Frequency domain parameters:

Parameter Value

Radiative decay γrad=60 MHz

Teeth spacing ∆fteeth=250 MHz

Rabi Frequency at Ipeak Ω ≈ 1 THz ≈ 104γrad

Laser Frequency at δ = 0 ωL ≈ 3200 THz

Wave number kL ≈ 107m−1
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Atomic velocities for different Temperatures:

Atomic temperature(K) Velocity of the atoms(m per s) Doppler shift (MHz)

0 0 0

10−6 0.012 0.13

10−3 0.6 6.4

1 19 202.7

100 190 2026.8
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Appendix D

Computer Code for Numerical

Integration of the OBEs

PROGRAM Laser-Cooling-Prop-ampl

!========= Constants, Variables, and Data =========

INTEGER*8 va,vb,n,j,e,g,Nr,tstep,tdel,termn,termn Rho ee max

REAL*8 Tr,Tdly,dt,t,c,phi,tau,lambda,hbar,m,Pi,z0,vel,dp,KB,Temp,try

REAL*8 CPI,NCPI,Rho ee max,Weg,p,mass,Mmntm

COMPLEX*16 Rhogg,Rhoee,Rhoeg,Rhoge,error,Omega,Force

COMPLEX*16 Omegazt,Gamma,Delta,k,F Num,F Prev,Omg

COMPLEX*16 Rho gg tmp,Rho ee tmp,Rho eg tmp,Rho ge tmp

COMPLEX*16 Rho gg error,Rho ee error,v,Rho ee old

COMPLEX*16 ,PARAMETER :: i = (0,1) ! sqrt(-1)

COMPLEX*16 ,DIMENSION(1:1)::ggk1,ggk2,ggk3,ggk4,ggk5,ggk6

COMPLEX*16 ,DIMENSION(1:1)::eek1,eek2,eek3,eek4,eek5,eek6

COMPLEX*16 ,DIMENSION(1:1)::gek1,gek2,gek3,gek4,gek5,gek6

COMPLEX*16 ,DIMENSION(1:1)::egk1,egk2,egk3,egk4,egk5,egk6

COMPLEX*16 ,DIMENSION(1:1,1:2)::Rho gg,Rho ee,Rho ge,Rho eg
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DATA Tr,tau,c,lambda,hbar,KB/4.D-9,100D-15,2.998D8,589.D-9/

DATA hbar,KB/1.054571628D-34,1.3806503D-23

DATA e,g/2,1/

DATA va,vb/1,1/

WRITE(*,*)”====================================”

WRITE(*,*) ”Laser cooling of two level atom system”

WRITE(*,*)”====================================”

! open(1,file=’Ree.txt’)

open(2,file=’Force.txt’)

open(3,file=’dp&d=+G.txt’)

! open(4,file=’paramers.txt’)

!================= initial inputs ==================

! CHANGING TERMS AFTER EACH LOOP

v=(0.0,0.0)

! NOT CHANGING TERMS AFTER EACH LOOP

10 t=0.0; dt=5.D-15; Pi=DAcos(-1.0)

Nr=25.; tstep=1; termn=1;

z0=0.0; p=0.0; Temp=0.0;

Weg=2.*Pi*c/lambda; mass=38.2D-27; F Num=(0.0,0.0)

Gamma=(62203534.54,0.0); Omega=(10.**0.)*Gamma; Delta=(-2.)*Gamma

k=(0.0,0.0)+2.*Pi/(lambda*Sqrt((1-v/c)/(1+v/c))); vel=Real(v)

Temp=mass*(REAL(v))**2/KB; !v=(0.0,0.0)+Sqrt(KB*Temp/mass)

!================= main loop ==================

Rho gg(1,1)=(1.0,0.0);Rho ee(1,1)=(0.0,0.0);Rho ge(1,1)=(0.0,0.0)

Rho eg(1,1)=(0.0,0.0)
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1 Loop 1 : Do

Do j=1,va ! Reset the values.

ggk1(j)=(0.0,0.0);ggk2(j)=(0.0,0.0);ggk3(j)=(0.0,0.0)

ggk4(j)=(0.0,0.0);ggk5(j)=(0.0,0.0);ggk6(j)=(0.0,0.0)

gek1(j)=(0.0,0.0);gek2(j)=(0.0,0.0);gek3(j)=(0.0,0.0)

gek4(j)=(0.0,0.0);gek5(j)=(0.0,0.0);gek6(j)=(0.0,0.0)

ENDDO

Do n=1,vb ! Reset the values.

eek1(n)=(0.0,0.0);eek2(n)=(0.0,0.0);eek3(n)=(0.0,0.0)

eek4(n)=(0.0,0.0);eek5(n)=(0.0,0.0);eek6(n)=(0.0,0.0)

egk1(n)=(0.0,0.0);egk2(n)=(0.0,0.0);egk3(n)=(0.0,0.0)

egk4(n)=(0.0,0.0);egk5(n)=(0.0,0.0);egk6(n)=(0.0,0.0)

ENDDO

Omegazt=Omega*Omg(t,z0,v,Tr,tau,Nr)

!—————————————– K1

DO j=1,va ! gek1(j)

Do n=1,vb

gek1(j)=gek1(j)+dt*Rho ge tmp(t,Rho gg(j,tstep),Rho ee(n,tstep),&

&Rho ge(j,tstep),Rho eg(n,tstep),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! egk1(n)
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Do j=1,va

egk1(n)=egk1(n)+dt*Rho eg tmp(t,Rho gg(j,tstep),Rho ee(n,tstep),&

&Rho ge(j,tstep),Rho eg(n,tstep),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO j=1,va ! ggk1(j)

Do n=1,vb

ggk1(j)=ggk1(j)+dt*Rho gg tmp(t,Rho gg(j,tstep),Rho ee(n,tstep),&

&Rho ge(j,tstep),Rho eg(n,tstep),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! eek1(n)

Do j=1,va

eek1(n)=eek1(n)+dt*Rho ee tmp(t,Rho gg(j,tstep),Rho ee(n,tstep),&

&Rho ge(j,tstep),Rho eg(n,tstep),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

!—————————————– K2

DO j=1,va ! gek2(j)

Do n=1,vb

gek2(j)=gek2(j)+dt*Rho ge tmp(t+dt/4.0,Rho gg(j,tstep)+ggk1(j)/4.0,&

&Rho ee(n,tstep)+eek1(j)/4.0,Rho ge(j,tstep)+gek1(j)/4.0,Rho eg(n,tstep)&

&+egk1(j)/4.0,Gamma,Delta,Omegazt,k,v)

ENDDO
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ENDDO

DO n=1,vb ! egk2(n)

Do j=1,va

egk2(n)=egk2(n)+dt*Rho eg tmp(t+dt/4.0,Rho gg(j,tstep)+ggk1(j)/4.0,&

&Rho ee(n,tstep)+eek1(j)/4.0,Rho ge(j,tstep)+gek1(j)/4.0,Rho eg(n,tstep)&

&+egk1(j)/4.0,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO j=1,va ! ggk2(j)

Do n=1,vb

ggk2(j)=ggk2(j)+dt*Rho gg tmp(t+dt/4.0,Rho gg(j,tstep)+ggk1(j)/4.0,&

&Rho ee(n,tstep)+eek1(j)/4.0,Rho ge(j,tstep)+gek1(j)/4.0,Rho eg(n,tstep)&

&+egk1(j)/4.0,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! eek2(n)

Do j=1,va

eek2(n)=eek2(n)+dt*Rho ee tmp(t+dt/4.0,Rho gg(j,tstep)+ggk1(j)/4.0,&

&Rho ee(n,tstep)+eek1(j)/4.0,Rho ge(j,tstep)+gek1(j)/4.0,Rho eg(n,tstep)&

&+egk1(j)/4.0,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

!—————————————– K3
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DO j=1,va ! gek3(j)

Do n=1,vb

gek3(j)=gek3(j)+dt*Rho ge tmp(t+(3.0*dt/8.0),Rho gg(j,tstep)&

&+(3.0/32.0)*ggk1(j)+(9.0/32.0)*ggk2(j),Rho ee(n,tstep)&

&+(3.0/32.0)*eek1(n)+(9.0/32.0)*eek2(n),Rho ge(j,tstep)+(3.0/32.0)&

&*gek1(j)+(9.0/32.0)*gek2(j),Rho eg(n,tstep)+(3.0/32.0)egk1(n)&

&+(9.0/32.0)*egk2(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! egk3(n) Do j=1,va

egk3(n)=egk3(n)+dt*Rho eg tmp(t+(3.0*dt/8.0),Rho gg(j,tstep)&

&+(3.0/32.0)*ggk1(j)+(9.0/32.0)*ggk2(j),Rho ee(n,tstep)+(3.0/32.0)&

&*eek1(n)+(9.0/32.0)*eek2(n),Rho ge(j,tstep)+(3.0/32.0)*gek1(j)+&

&(9.0/32.0)*gek2(j),Rho eg(n,tstep)+(3.0/32.0)*egk1(n)+(9.0/32.0)&

&*egk2(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO j=1,va ! ggk3(j)

Do n=1,vb

ggk3(j)=ggk3(j)+dt*Rho gg tmp(t+(3.0*dt/8.0),&

&Rho gg(j,tstep)+(3.0/32.0)*ggk1(j)+&

&(9.0/32.0)*ggk2(j),Rho ee(n,tstep)+(3.0/32.0)&

&*eek1(n)+(9.0/32.0)*eek2(n),&

&Rho ge(j,tstep)+(3.0/32.0)*gek1(j)+(9.0/32.0)&
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&*gek2(j),Rho eg(n,tstep)+(3.0/32.0)&

&*egk1(n)+(9.0/32.0)*egk2(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! eek1(n)

Do j=1,va

eek3(n)=eek3(n)+dt*Rho ee tmp(t+(3.0*dt/8.0),&

&Rho gg(j,tstep)+(3.0/32.0)*ggk1(j)+&

&(9.0/32.0)*ggk2(j),Rho ee(n,tstep)+(3.0/32.0)*&

&eek1(n)+(9.0/32.0)*eek2(n),&

&Rho ge(j,tstep)+(3.0/32.0)*gek1(j)+(9.0/32.0)*&

&gek2(j),Rho eg(n,tstep)+(3.0/32.0)&

&*egk1(n)+(9.0/32.0)*egk2(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

!—————————————– K4

DO j=1,va ! gek4(j)

Do n=1,vb

gek4(j)=gek4(j)+dt*Rho ge tmp(t+(12.0*dt/13.0),&

&Rho gg(j,tstep)+(1932.0/2197.0)&

&*ggk1(j)-(7200.0/2197.0)*ggk2(j)+(7296.0/2197.0)&

&*ggk3(j),Rho ee(n,tstep)+(1932.0/2197.0)&

&*eek1(n)-(7200.0/2197.0)*eek2(n)+(7296.0/2197.0)&

&*eek3(n),Rho ge(j,tstep)+(1932.0/2197.0)*&

&gek1(j)-(7200.0/2197.0)*gek2(j)+(7296.0/2197.0)&
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&*gek3(j),Rho eg(n,tstep)+(1932.0/2197.0)*&

&egk1(n)-(7200.0/2197.0)*egk2(n)+(7296.0/2197.0)&

&*egk3(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! egk4(n)

Do j=1,va

egk4(n)=egk4(n)+dt*Rho eg tmp(t+(12.0*dt/13.0),&

&Rho gg(j,tstep)+(1932.0/2197.0)&

&*ggk1(j)-(7200.0/2197.0)*ggk2(j)+(7296.0/2197.0)*&

&ggk3(j),Rho ee(n,tstep)+(1932.0/2197.0)&

&*eek1(n)-(7200.0/2197.0)*eek2(n)+(7296.0/2197.0)*&

&eek3(n),Rho ge(j,tstep)+(1932.0/2197.0)*&

&gek1(j)-(7200.0/2197.0)*gek2(j)+(7296.0/2197.0)&

&*gek3(j),Rho eg(n,tstep)+(1932.0/2197.0)*&

&egk1(n)-(7200.0/2197.0)*egk2(n)+(7296.0/2197.0)&

&*egk3(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO j=1,va ! ggk4(j)

Do n=1,vb

ggk4(j)=ggk4(j)+dt*Rho gg tmp(t+(12.0*dt/13.0),&

&Rho gg(j,tstep)+(1932.0/2197.0)&

&*ggk1(j)-(7200.0/2197.0)*ggk2(j)+(7296.0/2197.0)&



79

&*ggk3(j),Rho ee(n,tstep)+(1932.0/2197.0)&

&*eek1(n)-(7200.0/2197.0)*eek2(n)+(7296.0/2197.0)&

&*eek3(n),Rho ge(j,tstep)+(1932.0/2197.0)*&

&gek1(j)-(7200.0/2197.0)*gek2(j)+(7296.0/2197.0)&

&*gek3(j),Rho eg(n,tstep)+(1932.0/2197.0)*&

&egk1(n)-(7200.0/2197.0)*egk2(n)+(7296.0/2197.0)&

&*egk3(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! eek4(n)

Do j=1,va

eek4(n)=eek4(n)+dt*Rho ee tmp(t+(12.0*dt/13.0),&

&Rho gg(j,tstep)+(1932.0/2197.0)&

&*ggk1(j)-(7200.0/2197.0)*ggk2(j)+(7296.0/2197.0)&

&*ggk3(j),Rho ee(n,tstep)+(1932.0/2197.0)&

&*eek1(n)-(7200.0/2197.0)*eek2(n)+(7296.0/2197.0)&

&*eek3(n),Rho ge(j,tstep)+(1932.0/2197.0)*&

&gek1(j)-(7200.0/2197.0)*gek2(j)+(7296.0/2197.0)&

&*gek3(j),Rho eg(n,tstep)+(1932.0/2197.0)*&

&egk1(n)-(7200.0/2197.0)*egk2(n)+(7296.0/2197.0)&

&*egk3(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

!—————————————– K5
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DO j=1,va ! gek5(j)

Do n=1,vb

gek5(j)=gek5(j)+dt*Rho ge tmp(t+dt,Rho gg(j,tstep)&

&+(439.0/216.0)*ggk1(j)-8.0*ggk2(j)&

&+(3680.0/513.0)*ggk3(j)-(845.0/4104.0)*ggk4(j),&

&Rho ee(n,tstep)+(439.0/216.0)*eek1(n)&

&-8.0*eek2(n)+(3680.0/513.0)*eek3(n)-(845.0/4104.0)&

&*eek4(n),Rho ge(j,tstep)+(439.0/216.0)&

&*gek1(j)-8.0*gek2(j)+(3680.0/513.0)*gek3(j)-&

&(845.0/4104.0)*gek4(j),Rho eg(n,tstep)&

&+(439.0/216.0)*egk1(n)-8.0*egk2(n)+(3680.0/513.0)&

&*egk3(n)-(845.0/4104.0)*egk4(n)&

&,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! egk5(n)

Do j=1,va

egk5(n)=egk5(n)+dt*Rho eg tmp(t+dt,Rho gg(j,tstep)&

&+(439.0/216.0)*ggk1(j)-8.0*ggk2(j)&

&+(3680.0/513.0)*ggk3(j)-(845.0/4104.0)*ggk4(j),&

&Rho ee(n,tstep)+(439.0/216.0)*eek1(n)&

&-8.0*eek2(n)+(3680.0/513.0)*eek3(n)-(845.0/4104.0)&

&*eek4(n),Rho ge(j,tstep)+(439.0/216.0)&

&*gek1(j)-8.0*gek2(j)+(3680.0/513.0)*gek3(j)-&

&(845.0/4104.0)*gek4(j),Rho eg(n,tstep)&
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&+(439.0/216.0)*egk1(n)-8.0*egk2(n)+(3680.0/513.0)&

&*egk3(n)-(845.0/4104.0)*egk4(n)&

&,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO j=1,va ! ggk5(j)

Do n=1,vb

ggk5(j)=ggk5(j)+dt*Rho gg tmp(t+dt,Rho gg(j,tstep)&

&+(439.0/216.0)*ggk1(j)-8.0*ggk2(j)&

&+(3680.0/513.0)*ggk3(j)-(845.0/4104.0)*ggk4(j),&

&Rho ee(n,tstep)+(439.0/216.0)*eek1(n)&

&-8.0*eek2(n)+(3680.0/513.0)*eek3(n)-(845.0/4104.0)&

&*eek4(n),Rho ge(j,tstep)+(439.0/216.0)&

&*gek1(j)-8.0*gek2(j)+(3680.0/513.0)*gek3(j)-&

&(845.0/4104.0)*gek4(j),Rho eg(n,tstep)&

&+(439.0/216.0)*egk1(n)-8.0*egk2(n)+(3680.0/513.0)&

&*egk3(n)-(845.0/4104.0)*egk4(n)&

&,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! eek5(n)

Do j=1,va

eek5(n)=eek5(n)+dt*Rho ee tmp(t+dt,Rho gg(j,tstep)&

&+(439.0/216.0)*ggk1(j)-8.0*ggk2(j)&
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&+(3680.0/513.0)*ggk3(j)-(845.0/4104.0)*ggk4(j),&

&Rho ee(n,tstep)+(439.0/216.0)*eek1(n)&

&-8.0*eek2(n)+(3680.0/513.0)*eek3(n)-(845.0/4104.0)&

&*eek4(n),Rho ge(j,tstep)+(439.0/216.0)&

&*gek1(j)-8.0*gek2(j)+(3680.0/513.0)*gek3(j)-&

&(845.0/4104.0)*gek4(j),Rho eg(n,tstep)&

&+(439.0/216.0)*egk1(n)-8.0*egk2(n)+(3680.0/513.0)&

&*egk3(n)-(845.0/4104.0)*egk4(n)&

&,Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

!—————————————– K6

DO j=1,va ! gek6(j)

Do n=1,vb

gek6(j)=gek6(j)+dt*Rho ge tmp(t+dt/2.0,&

&Rho gg(j,tstep)-(8.0/27.0)*ggk1(j)+2.0*ggk2(j)&

&-(3544.0/2565.0)*ggk3(j)+(1859.0/4104.0)*ggk4(j)&

&-(11.0/40.0)*ggk5(j),Rho ee(n,tstep)&

&-(8.0/27.0)*eek1(n)+2.0*eek2(n)-(3544.0/2565.0)&

&*eek3(n)+(1859.0/4104.0)*eek4(n)-&

&(11.0/40.0)*eek5(n),Rho ge(j,tstep)-(8.0/27.0)&

&*gek1(j)+2.0*gek2(j)-(3544.0/2565.0)&

&*gek3(j)+(1859.0/4104.0)*gek4(j)-(11.0/40.0)&

&*gek5(j),Rho eg(n,tstep)-(8.0/27.0)*&

&egk1(n)+2.0*egk2(n)-(3544.0/2565.0)*egk3(n)&

&+(1859.0/4104.0)*egk4(n)-(11.0/40.0)*&
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&egk5(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! egk6(n) Do j=1,va

egk6(n)=egk6(n)+dt*Rho eg tmp(t+dt/2.0,&

&Rho gg(j,tstep)-(8.0/27.0)*ggk1(j)+2.0*ggk2(j)&

&-(3544.0/2565.0)*ggk3(j)+(1859.0/4104.0)*ggk4(j)&

&-(11.0/40.0)*ggk5(j),Rho ee(n,tstep)&

&-(8.0/27.0)*eek1(n)+2.0*eek2(n)-(3544.0/2565.0)&

&*eek3(n)+(1859.0/4104.0)*eek4(n)-&

&(11.0/40.0)*eek5(n),Rho ge(j,tstep)-(8.0/27.0)&

&*gek1(j)+2.0*gek2(j)-(3544.0/2565.0)&

&*gek3(j)+(1859.0/4104.0)*gek4(j)-(11.0/40.0)*&

&gek5(j),Rho eg(n,tstep)-(8.0/27.0)*&

&egk1(n)+2.0*egk2(n)-(3544.0/2565.0)*egk3(n)+&

&(1859.0/4104.0)*egk4(n)-(11.0/40.0)*&

&egk5(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO j=1,va ! ggk6(j)

Do n=1,vb

ggk6(j)=ggk6(j)+dt*Rho gg tmp(t+dt/2.0,&

&Rho gg(j,tstep)-(8.0/27.0)*ggk1(j)+2.0*ggk2(j)&

&-(3544.0/2565.0)*ggk3(j)+(1859.0/4104.0)*ggk4(j)&
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&-(11.0/40.0)*ggk5(j),Rho ee(n,tstep)&

&-(8.0/27.0)*eek1(n)+2.0*eek2(n)-(3544.0/2565.0)&

&*eek3(n)+(1859.0/4104.0)*eek4(n)-&

&(11.0/40.0)*eek5(n),Rho ge(j,tstep)-(8.0/27.0)&

&*gek1(j)+2.0*gek2(j)-(3544.0/2565.0)&

&*gek3(j)+(1859.0/4104.0)*gek4(j)-(11.0/40.0)&

&*gek5(j),Rho eg(n,tstep)-(8.0/27.0)*&

&egk1(n)+2.0*egk2(n)-(3544.0/2565.0)*egk3(n)&

&+(1859.0/4104.0)*egk4(n)-(11.0/40.0)*&

&egk5(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

DO n=1,vb ! eek6(n)

Do j=1,va

eek6(n)=eek6(n)+dt*Rho ee tmp(t+dt/2.0,Rho gg(j,tstep)&

&-(8.0/27.0)*ggk1(j)+2.0*ggk2(j)&

&-(3544.0/2565.0)*ggk3(j)+(1859.0/4104.0)*ggk4(j)&

&-(11.0/40.0)*ggk5(j),Rho ee(n,tstep)&

&-(8.0/27.0)*eek1(n)+2.0*eek2(n)-(3544.0/2565.0)&

&*eek3(n)+(1859.0/4104.0)*eek4(n)-&

&(11.0/40.0)*eek5(n),Rho ge(j,tstep)-(8.0/27.0)&

&*gek1(j)+2.0*gek2(j)-(3544.0/2565.0)&

&*gek3(j)+(1859.0/4104.0)*gek4(j)-(11.0/40.0)&

&*gek5(j),Rho eg(n,tstep)-(8.0/27.0)*&

&egk1(n)+2.0*egk2(n)-(3544.0/2565.0)*egk3(n)&
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&+(1859.0/4104.0)*egk4(n)-(11.0/40.0)*&

&egk5(n),Gamma,Delta,Omegazt,k,v)

ENDDO

ENDDO

Do j=1,va

Rho ge(j,tstep+1)=Rho ge(j,tstep)+(16.0/135.0)*gek1(j)+(0.0)&

&*gek2(j)+(6656.0/12825.0)*gek3(j)+(28561.0/56430.0)*gek4(j)*gek2(j)&

&+(6656.0/12825.0)-(9.0/50.0)*gek5(j)+(2.0/55.0)*gek6(j)

Rho gg(j,tstep+1)=Rho gg(j,tstep)+(16.0/135.0)*ggk1(j)+(0.0)&

&*ggk2(j)+(6656.0/12825.0)*ggk3(j)+(28561.0/56430.0)*ggk4(j)

-(9.0/50.0)*ggk5(j)+(2.0/55.0)*ggk6(j)

Rho gg error=(1.0/360.0)*ggk1(j)-(128.0/4275.0)*ggk3(j)&

&-(2197.0/75240.0)*ggk4(j)+(1.0/50.0)*ggk5(j)+(2.0/55.0)*ggk6(j)

Rho ge(j,tstep)=Rho ge(j,tstep+1)

Rho gg(j,tstep)=Rho gg(j,tstep+1)

ENDDO

Do n=1,vb

Rho eg(n,tstep+1)=Rho eg(n,tstep)+(16.0/135.0)*egk1(n)+&

&(0.0)*egk2(n)+(6656.0/12825.0)*egk3(n)+(28561.0/56430.0)

*egk4(n)-(9.0/50.0)*egk5(n)+(2.0/55.0)*egk6(n)

Rho ee(n,tstep+1)=Rho ee(n,tstep)+(16.0/135.0)*eek1(n)&

&+(0.0)*eek2(n)+(6656.0/12825.0)*eek3(n)+(28561.0/56430.0)

*eek4(n)-(9.0/50.0)*eek5(n)+(2.0/55.0)*eek6(n)
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Rho ee error=(1.0/360.0)*eek1(n)-(128.0/4275.0)&

&*eek3(n)-(2197.0/75240.0)*eek4(n)+(1.0/50.0)*eek5(n)

+(2.0/55.0)*eek6(n)

!=========== Population of the excited state =============

! If(Mod(termn,100).EQ.0.0) Then

! Write(1,*)t,Real(Omegazt)!Real(Rho ee(n,tstep))

! Write(1,*)t,Real(Rho ee(n,tstep))

! Else

! ENDIF

Rho ee old=Real(Rho ee(n,tstep))

Rho eg(n,tstep)=Rho eg(n,tstep+1)

Rho ee(n,tstep)=Rho ee(n,tstep+1)

ENDDO

!================= Force & Momentum ==================

F prev=F Num

F Num=-Force(t,z0,v,Tr,tau,k,Omegazt,Rho eg(n,tstep),Delta,Nr)

P=P+0.5*dt*(Real(F Num)+Real(F prev))

!================= Error correction ==================

If(Real(Rho ee error).GE.10.**-14.)Then

dt=dt/2.

Else

IF(dt.LE.tau/5.)Then

dt=dt*2.

ELSE

ENDIF

ENDIF
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t=t+dt; termn=termn+1

If (t.GT.(Nr+0.2)*Tr) Exit Loop 1

END DO Loop 1

Write(2,*)REAL(k*v/Gamma),Real(F Num/(k*hbar*Gamma)),Aimag(Rho eg(n,tstep))

! Write(*,*)REAL(k*v/Gamma),Real(F Num/(k*hbar*Gamma)),Aimag(Rho eg(n,tstep))

write(3,*)(REAL(k)*REAL(v)),p/(hbar*Real(k))

! write(*,*)(REAL(k)*REAL(v))/(250000000.*2.*Pi),p/(hbar*Real(k))

If (REAL(v).LT.50.)then

v=v+(2.,0.0)

GOTO 10

ELSE

ENDIF

!================= parameters ==================

Write(*,*)”Rabi’s frequency =”,Real(Omega),” Hz”

Write(*,*)”Radiating rate =”,Real(Gamma),” Photon per sec”

Write(*,*)”Ratio of Omega to Gamma =”,Nint(Real(Omega)/Real(Gamma))

Write(*,*)”Life time =”,(1./Real(Gamma))/1.D-9,” nsec”

Write(*,*)”Resonance frequency =”,Weg ,”Hz”

Write(*,*)”detuning =”,Real(Delta) ,”Hz”

Write(*,*)”Effective detuning =”,Real(Delta)-Real(k)*real(v) ,”Hz”

Write(*,*)”wave number k =”,Real(k) ,”mˆ-1”

2 Close(1);Close(2);Close(3)

Stop

END

!================= Functions ==================

FUNCTION Rho gg tmp(t,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt,k,v)
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REAL*8 t

Complex*16 Rho gg tmp,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt

COMPLEX*16, PARAMETER :: i = (0,1) ! sqrt(-1)

Rho gg tmp=+Gamma*Rhoee+i/2.0*(Conjg(Omegazt)*Rhoeg-Omegazt*Rhoge)

End FUNCTION Rho gg tmp

FUNCTION Rho ee tmp(t,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt,k,v)

REAL*8 t

Complex*16 Rho ee tmp,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt

COMPLEX*16, PARAMETER :: i = (0,1) ! sqrt(-1)

Rho ee tmp=-Gamma*Rhoee+i/2.0*(Omegazt*Rhoge-Conjg(Omegazt)*Rhoeg)

End FUNCTION Rho ee tmp

FUNCTION Rho ge tmp(t,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt,k,v)

REAL*8 t

Complex*16 Rho ge tmp,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt,k,v

COMPLEX*16, PARAMETER :: i = (0,1) ! sqrt(-1)

Rho ge tmp=-(Gamma/2.0+i*(Delta+k*v))*Rhoge+i/2.0*Conjg(Omegazt)*(Rhoee-

Rhogg)

End FUNCTION Rho ge tmp

FUNCTION Rho eg tmp(t,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt,k,v)

REAL*8 t

Complex*16 Rho eg tmp,Rhogg,Rhoee,Rhoge,Rhoeg,Gamma,Delta,Omegazt,k,v

COMPLEX*16, PARAMETER :: i = (0,1) ! sqrt(-1)

Rho eg tmp=-(Gamma/2.0-i*(Delta+k*v))*Rhoeg+i/2.0*Omegazt*(Rhogg-Rhoee)
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End FUNCTION Rho eg tmp

Function Omg(t,z0,v,Tr,tau,Nr)

Integer*8 Nr,m

REAL*8 t,tau,Tr,z,z0,c

Complex*16 Omg,v

Data c/2.998D8/

Omg=(0.0,0.0)

z=z0+Real(v)*t

Omg=(0.0,0.0)

Do m=1,Nr

Omg=Omg+Exp(-(t+(z/c)-m*Tr)**2./(2.*tau**2.))

ENDD

End FUNCTION Omg

Function Force(t,z0,v,Tr,tau,k,Omegazt,Rhoegtmp,Delta,Nr) ! f(t)

Integer*8 Nr,m

Real*8 c,t,z,z0,Tr,tau

COMPLEX*16, PARAMETER :: i = (0,1) ! sqrt(-1)

COMPLEX*16 k,hbar,Rhoegtmp,Omegazt,Force,v

z=z0+Real(v)*t

hbar=(1.054571628D-34,0.0)

Force=i*k*hbar*(Omegazt*Conjg(Rhoegtmp)-Conjg(Omegazt)*Rhoegtmp)

End FUNCTION Force


