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Abstract

For over a decade, enormous effort has been invested towards building a practical

quantum computer. Such a machine promises to revolutionize scientific computing,

but there are many challenges to be overcome. The dominant problem for most

proposals is decoherence: random and uncontrollable loss of quantum information

to the computer’s environment. Here we consider one promising implementation for

quantum computation using the Rydberg blockade mechanism, which stores qubits in

optically trapped neutral atoms. A detailed theory for these optical traps is presented.

While the traps are essential, they induce decoherence in the atoms they trap. We

propose a method of “magic” trapping by which this decoherence may be completely

removed. Numerical calculations show that, while the commonly used alkalis cannot

be trapped with this scheme, a “magic” trap could be built for aluminum.
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Chapter 1

Introduction

1.1 Motivation for Quantum Computation

Quantum computation was first suggested by Feynman [9]. Noting the inherent in-

efficiency in simulating quantum phenomena with classical computers, Feynman pro-

posed instead to simulate one quantum system with another. This simulator would

be composed of computing elements that obey the laws of quantum, rather than

classical, mechanics. Deutsch [7] formalized some implications of this by defining a

universal quantum computer, a generalization of a Turing machine, and exploring

some basic algorithms that could be performed with such a hypothetical machine. It

is worth emphasizing that Deutsch suggests, but does not conclusively demonstrate,

that some problems could be solved faster with a quantum computer than with a

classical computer.

Such a demonstration was first achieved in Shor’s landmark work [23], which

provided an efficient algorithm for factoring large integers.1 In classical complexity

theory, this problem is regarded as so difficult2 that it forms the basis of the widely

1Simon’s algorithm [24] was developed first and even inspired Shor’s algorithm, but it solves a
“black box” problem that is of little practical interest.

2More precisely, Shor’s algorithm is polynomial time: the required computing time is a polynomial
function of the size of the input (the number of digits), while the best classical algorithm is super-
polynomial (in fact, sub-exponential) and therefore impossibly slow for large numbers.
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used RSA encryption system [18].

Since Shor’s original work, there has been a proliferation of proposed quantum

algorithms which offer significant computational speed-up compared to classical algo-

rithms (see, e.g., reviews [4] and [17]). In short, a practical quantum computer would

enable a revolution in the computational sciences.

1.2 Experimental Realization

Following from the theoretical motivations in Sec. 1.1, there have been intense exper-

imental efforts in recent years to build a useful quantum computer (see, e.g., reviews

on ions [25], superconductors [5], and atoms [20]). Although their details vary widely,

most center around qubits (a contraction of quantum bits), the quantum analog of 0s

and 1s familiar from classical binary computers.

Like classical algorithms, quantum algorithms contain sequences of gate operations

to be performed on qubits, usually categorized into one- and two-qubit operations.

Unlike classical algorithms, quantum algorithms must make careful consideration of

measurement operations as well, since unlike a classical computer, observing a qubit

in the middle of a computation usually destroys the result.

Essentially then, paraphrasing DiVincenzo [8], building a useful quantum com-

puter has a few broad requirements:

1. Choose a system to store the qubits with favorable scalability.

2. Implement measurements and gate operations on the qubits.

3. Protect the qubits from decoherence.

The primary outstanding challenges are scalability (increasing the number of qubits)

and decoherence (irreversible loss of a qubit’s information to its environment).
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Figure 1.1: (Color online) Relevant energy levels in the Rydberg blockade scheme.
Qubits |0〉 and |1〉 are stored in hyperfine sublevels of the ground state in each atom.
Interactions are turned on when the control atom is excited to a Rydberg state |R〉
(π pulses), accompanied by a shift B of its neighbor’s energy levels. Adapted from
Ref. [26]

This thesis focuses on one particular implementation of quantum computing, out-

lined below in Sec. 1.3.

1.3 Rydberg blockade

The Rydberg blockade implementation of quantum computing was originally pro-

posed by Jaksch et. al. [11]. In this scheme, a single qubit is stored in an atom’s

internal energy levels (usually two hyperfine sublevels attached to the ground state).

Gate operations are achieved through highly excited Rydberg states. Fig. 1.1 depicts

the level structure.

To illustrate the method, we outline an experimental implementation demon-

strated in [26]. Multiple atoms are trapped near each other using optical traps,

discussed in detail in Chap. 2. Laser pulses control two-qubit gate operations on
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neighboring atoms by toggling their interaction on and off as follows. Trapped at

∼ µm separations, neutral ground state atoms have negligible interactions, but Ryd-

berg states with principal quantum number n ∼ 100 have a spatial extent on the order

of a µm. Thus when one atom is excited to the Rydberg state |R〉, a neighboring

atom experiences a strong electric dipole force that shifts its Rydberg levels, which

blocks excitation of the second atom to |R〉. The excitation to |R〉 is also dependent

on the qubit state so that, for instance, |1〉 can be excited to |R〉 but |0〉 can not

be excited. With such a protocol, blockade interactions can be used to entangle the

atoms and execute cnot gates, forming a basis for arbitrary logic gates in the circuit

model of quantum computation.3

Basic qubit operations have been experimentally demonstrated using the Rydberg

blockade [26], and their fidelity is improving [21]. While some technical issues remain

in order to improve the gate operations [21], the Rydberg blockade holds great po-

tential for scaling to a large number of qubits. A variety of methods for doing so are

surveyed in [20].

This thesis is concerned with the optical traps used in these experiments, and in

particular, two problems arising from the traps: atom loss and decoherence. In exper-

iments thus far, the ground and Rydberg states experience vastly different potentials

due to the laser trap, so the laser trap must be turned off when an atom is excited to a

Rydberg state.4 The atom may or may not be successfully recaptured when the trap

is turned back on after de-excitation. Moreover, even if the atom is recaptured, the

qubit’s information is now entangled with the atom’s center of mass motion, leading

to decoherence [20]. Either outcome reduces gate fidelity. Furthermore, in between

3Proposals exist [20] for controlling interactions between widely separated atoms in an array, or
for using mesoscopic ensembles of atoms [12], but the blockade interaction remains essentially the
same.

4In fact, for the widely-used red-detuned traps, the ground state potential is attractive while
the excited state potential is repulsive. Chap. 2 contains more details. Also, photoionization of the
Rydberg state is a problem in red-detuned traps [26].
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gate operations, the trap can directly induce qubit decoherence since the qubit states

have a different trapping potential. This motivates the development of a new type of

trap that can remain on while the atom is excited to a Rydberg level.

These requirements are quite similar to those for optical lattice clocks. In clock

experiments, the critical quantity is the energy spacing between two levels. Time

is defined in terms of the frequency of photons emitted or absorbed when the atom

undergoes a transition between the two levels. Therefore, any effect that disturbs the

energy splitting leads to clock errors; in particular, the trapping laser itself shifts the

levels significantly. The solution is known as a “magic” trap (see, e.g., [15, 28]) in

which a particular laser wavelength is chosen such that the two clock states experience

the same shift. This means the internal and external degrees of freedom of the atom

are completely decoupled, if we are only interested in these two states.

For the present problem, we have three, not two, levels for which we must build a

magic trap: a Rydberg state along with two qubit states.

This thesis contains a theoretical proposal, supported by computational results,

for reducing decoherence in the Rydberg blockade implementation of quantum com-

putation. Chapter 2 considers the Stark-effect formalism necessary to describe optical

trapping of atoms and introduces the concept of “magic” optical trapping. Chapter 3

presents computational results for several atomic species, and Appendix A outlines

our library of atomic structure computer codes.
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Chapter 2

“Magic” optical traps and
Stark-effect theory

2.1 Optical traps

Before giving a quantitative treatment of optical trapping of atoms, we offer some

classical intuition. When an atom is placed in an electric field, the field polarizes

the atom, pulling the electrons and protons in opposite directions. This creates an

electric dipole which can then interact with the field; in particular, if the field is non-

uniform, there will be a net force on the atom, which can be used to trap the atom

with appropriately chosen geometry.1

Quantum mechanically, the interaction of an atom with an external electric field

is described by the Stark effect. Consider an atom in some state |nF,MF 〉 with

total angular momentum F , projection MF , and any additional quantum numbers

necessary to describe the state collectively denoted n. The atom experiences an energy

shift δEnFMF
proportional to the square of the electric field E , given by2

δEnFMF
= −αtotnFMF

(
E
2

)2

, (2.1)

1This argument applies to any polarizable dielectric; it has even been used to trap µm size scale
glass beads [].

2Eq. (2.1) is the quadratic (in E) Stark effect. There also exists a linear Stark effect if the atom
has degenerate states of opposite parity, but no such states appear in this thesis.
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where αtotnFMF
is known as the polarizability, discussed in detail in Sec. 2.2. Briefly,

αtotnFMF
depends only on the atom’s internal energy level structure,3 so it may be

regarded as a constant.

We can now see why optical trapping is possible using non-uniform electric fields

generated by laser beams. Consider first the case in which αtotnFMF
> 0, commonly

called a red-detuned trap4. Then the energy is minimized when the atom is at a

location of maximum field intensity. This creates an attractive potential, drawing the

atom towards a high-intensity location, which effectively traps the atom.5 Fig. 2.1

depicts a realization of such a trap formed by a tightly focused laser beam: the

intensity is a maximum at the center of the beam waist and falls off smoothly in all

directions, creating an (approximately) harmonic trapping potential.

The case of αtotnFMF
< 0 (commonly, blue-detuned) is more difficult to realize

experimentally, but also more useful (see, e.g., [20] for a review). In this situation,

the atom is attracted to regions of minimum laser intensity, meaning a “barricade”

of light must be erected around the atom. One such configuration, dubbed a bottle

beam trap, was experimentally demonstrated with Cs atoms [10] and is depicted in

Fig. 2.2. This design uses two coaxial laser beams, each with a Gaussian profile but

with different beam waists. Interference creates an intensity null at their common

focus, surrounded by non-zero laser intensity in all directions.

3This is not quite correct and will be clarified in Sec. 2.2. The key point is that αtot
nFMF

has no
dependence on E , the magnitude of the external electric field.

4For reasons discussed in Sec. 2.2, this case occurs when the laser wavelength is set somewhat
longer (redder) than a strong atomic transition. Conversely, the case αtot

nFMF
< 0 is usually called

blue-detuned.
5The energy shift due to the trap must be large compared to any other forces acting on the atom,

such as collisions with other atoms or gravity.
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Figure 2.1: (Color online) A red-detuned optical trap may be formed by a tightly
focused laser beam. Since αtotnFMF

> 0, the atom’s potential energy is minimized at
the intensity maximum at the center. From Ref. [26].

Figure 2.2: (Color online) A blue-detuned optical trap may be formed by the inter-
ference of two coaxial laser beams focused to different beam waists. By setting an
appropriate relative phase between the two beams, destructive interference is achieved
at the trap center. Since αtotnFMF

< 0, the atom’s potential energy is a minimum at
the intensity null at the center. From Ref. [10].



9

2.1.1 “Magic” Optical Traps

We emphasize that two different atomic states usually have different polarizabili-

ties, i.e., the polarizabilities αtotnFMF
(ω) and αtotn′F ′MF ′ (ω) of two states |nF,MF 〉 and

|n′F ′,MF ′〉, respectively, are generally not equal. This is the cause of the decoherence

discussed in Sec. 1.3. When an atom makes a transition from |1〉 to |R〉, its trapping

potential abruptly changes due to the new polarizability, which can excite vibrational

motion of the atom. This remains a problem even if the trap is turned off during

Rydberg excitation: no potential is just as detrimental as a different potential. Sup-

pose the atom is initialized in a qubit superposition such as 1√
2

(|0〉+ |1〉). Following

Sec. 1.3, only |1〉 may be excited to |R〉, and if this excitation is accompanied by vi-

brational excitation, the qubit’s state becomes entangled with the atom’s vibrational

state in a random and uncontrollable manner, leading to decoherence. A more formal

argument of this point is given in [20].

Conversely, if it happens that the polarizabilities αtotnFMF
(ω) and αtotn′F ′MF ′ (ω) are

equal, the atom’s center of mass motion is completely unaffected by excitation of the

atom from |nF,MF 〉 to |n′F ′,MF ′〉. This is the precise condition for a “magic” trap

introduced in Sec. 1.3: if the polarizabilities are equal, the states’ energy splitting

is constant, regardless of the atom’s motion in the trap. This also removes qubit

decoherence induced directly from the trap, since the qubits’ splitting determines

how phase evolves for a superposition.

Thus, our goal is to theoretically determine “magic” trapping conditions that

match polarizabilities of |0〉, |1〉, and |R〉 simultaneously. To do this, we first present

the detailed theory of the Stark effect in Sec. 2.2 below.
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2.2 Stark effect theory

2.2.1 Non-magnetic states

Here we summarize the standard ac Stark effect formalism. The treatment is similar

to Refs. [13, 16, 19]. Consider an electromagnetic plane wave6

~E =
1

2
E ε̂e−i(~k·~r−ωt) + c.c. (2.2)

interacting with an atom. E is the electric field magnitude, ε̂ is the polarization unit

vector, and c.c. stands for the complex conjugate of the prior term.7 In the dipole

approximation, the interaction with an atom is

V (t) = −~E ·D = −1

2
E(ε̂ ·D)e−iωt +H.c. (2.3)

where D is the atomic electric dipole operator and H.c. represents the Hermitian

conjugate of the preceding term. We treat this interaction perturbatively using the

Floquet formalism used in [19]. This reduces to a problem nearly identical in appear-

ance to standard time-independent perturbation theory.8 For instance, the second

order energy shift for a state |n〉 is given by

δE [2]
n =

∑
n′

〈n|v|n′〉〈n′|v|n〉
En − (En′ − ω)

+
∑
n′

〈n|v|n′〉〈n′|v|n〉
En − (En′ + ω)

(2.4)

where v = −1
2
E(ε̂ · D), and additional quantum numbers have been suppressed for

clarity. Note the sum over intermediate states n′ includes all bound states of the

atom, as well as unbound continuum states. This point is critical for our numerical

6We use atomic units throughout unless noted otherwise.
7The effect of the magnetic portion of the light is negligible at our level of approximation.
8See [1] for an excellent discussion of this procedure.
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calculations, discussed in Appendix A.

Eq. (2.4) may be reduced to a more useful form in terms of irreducible tensor

operators. The details may be found in [19]. Ultimately, one finds that the ac Stark

shift of a state |nF,MF 〉 with total angular momentum9 ~F = ~J + ~I and projection

MF can be written as

δEnFMF
= −

(
E
2

)2 [
αSnF (ω) + (k̂ · B̂)AMF

2F
αanF (ω)

+
1

2

(
3|ε̂ · B̂|2 − 1

) 3MF
2 − F (F + 1)

F (2F − 1)
αTnF (ω)

]
. (2.5)

A is the degree of circular polarization (|A| ≤ 1), while αSnF , αanF , and αTnF are the

irreducible scalar, vector, and tensor polarizabilities, respectively.10 The polarizabil-

ities contain expressions resembling Eq. (2.4), but they are much easier to evaluate.

Note also that the polarizabilites depend on the light frequency ω, but otherwise

depend only on the atom’s internal structure. Conveniently, the dependence on field

strength E has been factored out as well. The quantity in square brackets is the total

polarizabiltiy, denoted αtotnFMF
, in which case we recover Eq. (2.1).

The unit vectors in Eq. (2.5) are the laser wavevector (k̂), laser polarization (ε̂),

and bias magnetic field (B̂). Their relative geometry is shown in Fig. 2.3. The bias

magnetic field is a static, externally applied field which defines the quantization axis

by breaking the Zeeman degeneracy. This “quantizing magnetic field” guarantees

that MF remains a “good” quantum number for the ac Stark effect perturbation

formalism, from which Eq. (2.5) follows.11 For linearly polarized light, ε̂ · B̂ = cos θp,

where θp is the angle between the polarization and quantization unit vectors. If we

9J and I are the total electronic and nuclear spin angular momenta, respectively.
10Eq. (2.5) only contains the diagonal matrix elements of the polarizability operator; usually the

off-diagonal matrix elements can be neglected, but they will be important in Sec. 2.2.2.
11The energy shifts caused by the Stark effect must be small compared to the Zeeman splitting of

the magnetic sublevels.
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consider circularly polarized light, defining ε̂ using Jones calculus conventions, then∣∣∣ε̂ · B̂∣∣∣2 = 1
2

sin2 θk, where θk is the angle between the wavevector and quantization

unit vectors.

With Eq. (2.5) we can precisely state our goal for “magic” trapping: we must

find ω and either θk or θp such that the Rydberg polarizability αRyd(ω, θ) and the

qubit state polarizabilities αnFMF
(ω, θ) and αnF ′MF ′ (ω, θ) are all equal. The polariz-

abilities in Eqs. (2.1) and (2.5) may be the conventional second-order quantities, as

in Eq. (2.4) and [13], or they may be replaced with third-order hyperfine mediated

polarizabilities, denoted β and described in detail in [19]. The second-order αtotnFMF

includes only the interaction with the external electric field, ignoring the hyperfine

interaction. This accuracy is sufficient for matching Rydberg and ground state po-

larizabilities, but it cannot produce “magic” conditions for the qubit levels. Without

the hyperfine interaction, the qubit levels are degenerate and always experience the

same shift, so trivially “magic” conditions result from any choice of ω and θ [19].

A complete treatment of the qubit states must proceed to third-order perturbation

theory, including hyperfine and external electric field interactions.

Unfortunately, as we show in Chapter 3, the experimentally convenient alkali

metals cannot be “magically” trapped using the above formalism. We next consider

magnetic states, including effects neglected above.

2.2.2 Magnetic states

In this section we outline a method to find “magic” conditions for qubit states with

nonzero MF projection, which closely follows the treatment in [6]. The method de-

veloped above is not sufficient to find “magic” conditions for the qubit transition in

alkalis. Ref. [19] showed that “magic” conditions do not exist for nonmagnetic hyper-
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Figure 2.3: (Color online) Relation of angles to unit vectors in Eq. (2.5). (a) For linear
polarization, k̂, ε̂, and B̂ are the laser wavevector, laser polarization, and quantization
axis, respectively. θp is the angle between the polarization and the quantization axis,
defined by the magnetic field. (b) For circular polarization, the relevant angle is θk,
the angle between the wavevector and the magnetic field. (θp is no longer well-defined
as ε̂ is time-dependent).
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fine states. This is due to the smallness of αT in comparison with αS,12 along with

the strict proportionality of αSnF ′MF ′ and αSnFMF
. However, magnetic substates (with

MF 6= 0) have unacceptable Zeeman sensitivity.

A solution to this problem was developed in [6]. Atoms with a J = 1/2 ground

state are held in a circularly polarized trap to take advantage of vector polarizabilities.

States with opposite projections of MF (i.e., |nF ′,MF 〉 and |nF,−MF 〉) have equal

and opposite electronic g-factors13. For multiphoton transitions between these states,

most of the first order Zeeman shift vanishes. The residual first-order shift is due

only to the (much smaller) nuclear magnetic moment, which can be made to cancel

the second-order shift with the application of a static magnetic field. The “magic”

value of the B-field is given by

Bm ≈
gIµN MF ′

2 |〈nF,MF ′ |µez|nF ′,MF ′〉|2
ωqubit , (2.6)

where ωqubit is the energy splitting between the qubit (hyperfine) levels. While this

expression for Bm is only accurate to second-order, it agrees well with the exact

analysis [6].

With Zeeman sensitivity removed, we focus on the Stark shift due to the trapping

lasers. The relative shift between the qubit states must vanish, i.e., both states must

experience the same shift. This condition holds when [6]

(βsnF ′ − βsnF ) + δβT +A cos θk MF ′

×
[(

1

2F ′
βanF ′ +

1

2F
βanF

)
+ gI

µN
µB

(
B

Bm

)
αanl1/2

]
= 0. (2.7)

βS, βa, and βT are the third-order hyperfine mediated polarizabilities referred

12From Eq. (2.5), αa does not enter into αtot for states with MF = 0.
13Since J = 1/2, there are only 2 hyperfine states, and F ′ = F + 1.
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to above, while αanl1/2 is the conventional second-order polarizability.14 δβT absorbs

lengthy prefactors. The full form is

δβT = −βTnF ′
3M2

F − F ′(F ′ + 1)

2F ′(2F ′ − 1)
+ βTnF

3M2
F − F (F + 1)

2F (2F − 1)
. (2.8)

Bm is determined from Eq. (2.6), while B is the actual applied field. Ideally B = Bm,

but as suggested in [6] this is not always possible.

Let us consider Eq. (2.7) qualitatively. As in Sec. 2.2.1, we need the leading-order

polarizabilites to cancel, hence the differences of βS, βa, and βT .15 However, the

form of the last term involving αanl1/2 may be surprising. It arises due to interference

between the Zeeman shift and the vector part of the Stark shift, as these are both

(axial) vector operators [6]. Even though µN � µB, αanl1/2 � βTnF , so this term is of

a comparable order of magnitude to the rest and must be included in Eq. (2.7).

14Note αa
nl1/2

and αa
nF use different coupling schemes and are not equal.

15The apparent sum of βa is actually a difference due to angular factors hidden inside.
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Chapter 3

Results and Conclusions

In this chapter we present results of numerical calculations in search of “magic”

optical trapping. Our computer codes are briefly described in App. A. We performed

calculations for qubits stored in ground state hyperfine levels in multiple atomic

species. The alkalis required the method of Sec. 2.2.2, as discussed therein. For Al,

we considered both the methods of Sec. 2.2.1 and Sec. 2.2.2. Before discussing the

quantitative results, we outline some generalities.

For Rydberg states, the tensor polarizability is negligible at optical frequen-

cies [13, 22], so the total polarizability is dominated by the scalar part. This follows

since the Rydberg electron is barely bound to the atom at all, so it polarizability is es-

sentially equal to that of a free electron, αSRyd(ω) = −1/ω2. Our ab initio calculations

confirmed this conclusion; see App. A below for details. Since αSRyd is independent

of the external fields’ geometry (either θk or θp), the “magic” trap frequency will be

determined by αSRyd(ω) = αtotnl1/2(ω), i.e., when the ground and Rydberg state polariz-

abilities are equal.

As we show below, evaluating Eq. (2.6) with representative values, we find that

Bm is on the order of a few Gauss. This relatively large magnetic field may adversely

impact the Rydberg blockade interactions. While a detailed treatment of these effects

is well outside the scope of this thesis, the case of Zeeman degenerate blockade states
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is considered in [27], and a similar approach should be able to calculate the impact

of Bm on the blockade.

3.1 Alkalis

We considered 87Rb first, as it is already in use in experiments [26]. This isotope has

nuclear spin I = 3/2 and a J = 1/2 ground state. The only possible multiphoton

transition between the qubit states is from the |F ′ = 2,MF ′ = 1〉 state to the |F =

1,MF = −1〉 state, which are attached to the 5s1/2 electronic ground state. The

hyperfine splitting is 6.83 GHz, and from Eq. (2.6), Bm ≈ 3.25 G.

As noted above, “magic” trapping for the Rydberg states occurs at the ω satisfying

αSRyd(ω) = αtotnl1/2(ω). In Fig. 3.1 we plot αRyd, α
S
5s1/2

, and the ratio B/Bm. To achieve

“magic” trapping for the qubit using the scheme above, we must have |B/Bm| ≤ 1 in

Eq. (2.7). If |B/Bm| is slightly greater than 1, “nearly-magic” trapping is possible as

considered in [6]. But in the present case, B/Bm diverges near ωm, and the B required

to remove the Stark shift is prohibitively large. The reason behind this divergence

can be seen from Eq. (2.7) by solving for B/Bm:

B

Bm

= − µB
gIµNα

a
nl1/2

[
(βsnF ′ − βsnF ) + δβT

A cos θk MF ′

+

(
1

2F ′
βanF ′ +

1

2F
βanF

)]
.

(3.1)

As B/Bm is inversely proportional to αa5s1/2 , this ratio diverges wherever αa5s1/2 is zero.

The situation is qualitatively the same for 133Cs. Our numerical calculations show

a similar zero-crossing of αa6s1/2 and corresponding divergence near ωm. Unfortunately

the lighter alkalis have no doubly-magic or nearly-magic points for the qubit transi-

tion.
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Figure 3.1: (Color online) Polarizabilities of the 5s state (dashed), the Rydberg state
(solid), and the ratioB/Bm (lower frame) for the hyperfine transition |F = 2,MF = 1〉
to |F = 1,MF = −1〉 in 87Rb. Since αa5s � αS5s, the “magic” ω simply occurs where
αRyd = αS5s1/2 at approximately ω = 0.1062 a.u. (λ = 429 nm). B/Bm is obtained

from Eq. (2.7). Near the circled “magic” ω, B/Bm diverges, so magic trapping is
impossible.
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Since it is impossible to build a “magic” three-level trap with the alkalis, we

need a different atom. Alkaline-earth atoms are a popular choice for many cold-atom

trapping experiments, but they have J = 0 ground states (zero electronic angular

momentum). This means they have no hyperfine structure, and thus no states in

which to store qubits.

Instead, we turn to 27Al. It has been successfully laser cooled [14], and as was

shown in [3], “magic” trapping of its ground state hyperfine sublevels is aided by

comparatively large tensor polarizabilities. This is because the ground state 3p1/2 is

part of a fine-structure multiplet (3p1/2 and 3p3/2): the presence of this nearby state

leads to terms with small energy denominators in the perturbation theory expressions

for α, but due to angular selection rules these terms enhance only αT and not αS.

3.2 Al

Al has only one stable isotope, 27Al, with I = 5/2. We consider the |F ′ = 3,MF ′ = 1〉

and |F = 2,MF = −1〉 qubit states attached to the 3p1/2 electronic ground state.

The hyperfine splitting is 1.506 GHz, and Eq. (2.6) gives Bm ≈ 4.32 G. We may use

either a linearly or circularly polarized trapping laser.

In the case of a linearly polarized trap, the situation is just as above and similar to

that in [16]. The “magic” wavelength is set at αRyd = αS3p1/2 , near ω = 0.121 a.u. (λ =

377 nm). The large tensor polarizability virtually guarantees that the qubit transition

can be made “magic” with a suitable angle choice. Our numerical calculations show

the “magic” angle is θp ≈ 65◦.

For a circularly polarized trap, B/Bm remains finite near the “magic” frequency

ωm. The “magic” condition is more complicated, as the ground state second order

αa3p1/2 cannot be neglected compared with αS3p1/2 . We find the total second-order
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Figure 3.2: (Color online) Left-hand side (solid) and right-hand side (dashed) of
Eq. (3.3). “Magic” trapping of the Rydberg transition follows from Eq. (3.2) and
lies between the resonance at ω = 0.1155 a.u. (λ = 394 nm) and the dotted line
at ω = 0.121 a.u. (λ = 377 nm). The “magic” frequency and “magic” angle for
the qubit transition are obtained from the curves intersection, just under ω = 0.121
a.u. This combination of ωmagic and θmagic will allow Stark and Zeeman insensitive
trapping for the three-level system in Al.
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polarizability of the ground state from Eq. (2.5)1. Equating with the Rydberg polar-

izability, we obtain

αSF (ω) +A cos θk
MF

2F
αaF (ω) = αRydFMF

(ω). (3.2)

We must choose ω and θk simultaneously satisfy Eqs. (2.7) and (3.2). Solving for

MFA cos θk appearing in Eqs. (2.7) and (3.2) and equating the results giving

2F ′
ω−2 + αSF

αaF
=

βsF ′ − βsF + δβT

1
2F ′βaF ′ + 1

2F
βaF + gI

µN
µB

B
Bm
αanp1/2

. (3.3)

The left and right hand sides of Eq. (3.3) are plotted in Fig. 3.2. Since they

intersect in the range allowed by Eq. (3.2), “magic” trapping for this three-level

system in Al is possible. While circularly polarized trapping would be experimentally

more complex than the linearly polarized trapping, it has the advantage of less Zeeman

sensitivity. This is because the “magic” B-field removes Zeeman effects to second-

order, while the linearly polarized trap only removes Zeeman decoherence to first

order in the B-field.

3.3 Conclusion and Future Work

We have theoretically demonstrated the feasibility of a simultaneous “magic” trap for

a three-level system. Such a trap could dramatically reduce decoherence in Rydberg

blockade experiments striving towards quantum computation.

It is worth considering what other atoms might be amenable to this trapping

scheme. In Sec. 3.1, we remarked that the alkaline-earth atoms could not be trapped

with this scheme because they lack hyperfine structure. This is true of their ground

1αT is identically zero as J = 1/2.
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states. But instead consider a metastable excited state with nonzero J . In particular,

we have in mind the lowest 3P2 state, which has a lifetime on the order of seconds.

We predict that “magic” trapping would be aided by the nearby fine-structue levels,

as we found in Al. “Magic” trapping of the Rydberg states would be aided by the

existence of J = 0 levels which would be virtually impervious to Zeeman decoherence.

Work is currently underway to extend our codes to such divalent systems.
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Appendix A

Numerical methods for atomic

structure calculations

Our library of codes begins with the B-spline technique to generate a quasi-complete

set of orbitals that are solutions to the Dirac-Hartree-Fock equations. To refine these

solutions, we find the second-order self-energy operator to build the so-called Brueck-

ner orbitals. Matrix elements are then calculated using the relativistic random-phase

approximation. The spline codes are presented in [2], and the other codes are demon-

strated in [16].

For this thesis, the new additions to our codes concerned the Rydberg states. To

generate a complete B-spline basis set including physically accurate Rydberg states,

we radically increased the size of the cavity and the number of basis functions. As

an illustration, a typical run to calculate low-lying states uses ∼ 40 splines in a

∼ 50aB cavity. For calculations aimed at the 50s state, we obtained accurate results

using ∼ 200 splines in a ∼ 8000aB cavity. We also used a logarithmic rather than

an exponential distribution of spline knots. This increased the accuracy of matrix

elements by improving the representation of wavefunctions at large R near the cavity

wall.
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Correlations were included for Rydberg states by building the self-energy operator

using a small basis set (∼ 40 splines in a ∼ 50aB cavity) and using this potential to

build Brueckner orbitals for a large set. This is justified since the self-energy operator

diminishes rapidly outside the core, so highly excited states have a negligible contri-

bution. Neglecting these states decreases calculation time dramatically. Inclusion

of correlations introduced small but detectable corrections to Rydberg state energies

and matrix elements. Corrections were around the fourth significant figure for n = 50

states and diminished with increasing n.
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gates for neutral atoms. Phys. Rev. Lett., 85(10):2208–11, Sept. 2000.

[12] M. D. Lukin, M. Fleischhauer, R. Côté, L. Duan, D. Jaksch, J. Cirac, and
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