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Postulating the existence of a finite-mass mediator of T,P-odd coupling between atomic electrons and
nucleons, we consider its effect on the permanent electric dipole moment (EDM) of diamagnetic atoms. We
present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM
results for the conventional contact interaction. Based on this analysis, we derive limits on coupling
strengths and carrier masses from experimental limits on EDM of the 199Hg atom.
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I. INTRODUCTION

The observational evidence for dark matter indicates the
intriguing possibility of a “dark sector” extension to the
Standard Model (SM). Dark matter in fact may be a small
part of the dark sector, or indeed many dark sectors could
exist, each with their own “dark forces” and constituent
particles. Dark matter may be accompanied by hereto
unknown gauge bosons (dark force carriers,) which can
couple dark matter particles and ordinary particles with
exceptionally weak couplings. Modern colliders can be
blind to such new forces, even though the mass of the dark
force carriers can be quite small. This is because the cross
sections of relevant processes for ordinary matter are so
small that the dark force events are simply statistically
insignificant and are discarded in high-energy experiments.
Dark sector light weakly coupled particles that interact

with ordinary matter have been proposed as explanations of
astronomical anomalies [1,2] as well as discrepancies
between the calculated and measured muon magnetic
moment [3,4]. Such interactions would be inevitably below
the weak force scale, ergo, the dark sector has so far
escaped detection. There are several proposed inroads into
the detection of weakly coupled particles and their asso-
ciated dark forces [5]. One such example is the dark photon
[6] that is hypothesized to be a massive particle which
couples to electromagnetic currents just like the photon
does. In addition, dark Z bosons have been proposed [7]
that couple to the weak neutral currents, (i.e., their
interactions are parity violating.) In a sense dark photons
are massive photons while dark Z bosons are light versions
of Z bosons. From here on we will refer to this type of dark
force mediator particle as the light gauge boson.
Motivated by such dark force ideas, here we place

constraints both on couplings and masses of dark force
carriers (light gauge bosons) by reinterpreting results of
experiments on searches for permanent electric dipole
moments (EDMs) of diamagnetic atoms. Specifically we
focus on dark forces generated by the P,T-odd interaction of
electrons and nucleons through the exchange of a massive
light gauge boson. We will refer to the carrier as χ.

Effectively, the usually employed contact interactions are
replaced with Yukawa-like interactions.
The SM predicts the existence of intrinsic permanent

EDMs in particles as varied as quarks, leptons, and
baryons. These SM predictions, however, are below the
current levels of experimental accuracy. As an example,
in the SM framework, the electron EDM is estimated
to be of the order of 10−41 e cm (see, e.g., Ref. [8]),
while the most stringent experimental limit stands at de <
8.7 × 10−29 e cm ð90% C:L:Þ from the ThO molecular
search [9]. Remarkably, however, there are many theoreti-
cal extensions to the SM that predict EDM values com-
parable to the present experimental constraints.
Overall, the searches for atomic EDM can be classified

into two major categories: EDM of paramagnetic atoms and
molecules and diamagnetic atoms. Paramagnetic atoms,
such as Tl and Cs, have an unpaired valence electron, and
the atomic EDM in this category is attributed to the EDM of
the unpaired electron. Diamagnetic atoms, on the other
hand, are closed-shell atoms. In discussions of diamagnetic
atomic EDMs, the EDM is usually associated with the
intrinsic EDM of an unpaired nucleon (Schiff moment or P,
T-odd electron-nucleon interactions). The best limit on a
diamagnetic atom so far is [10]

dð199HgÞ < 3.1 × 10−29 e cmð95% C:L:Þ: ð1Þ
While we will use the Hg EDM result for putting
constraints on the light mediators, the formalism and
derived analytical expressions are applicable to other
diamagnetic systems, such as the atoms of current exper-
imental interest: xenon [11], ytterbium [12,13], radon [14],
and radium [15,16].

II. BASIC SETUP

We start by reviewing the structure of contact inter-
actions formed out of products of bilinear forms. The entire
set of ten unique semileptonic Lorentz-invariant products is
tabulated in Ref. [17]. In this paper we focus on the most
commonly used parity, time-violating tensor current term
(see, e.g., Refs. [18,19])
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WTeTn
¼

Z
drεχλμν½ψ̄eig0Te σχλψe�ðrÞ½ψ̄nig0Tnσμνψn�ðrÞ:

ð2Þ

Here ψe;n are the electron=nucleon Dirac bispinors, and
ψ̄e;n ¼ ψ†

e;nγ0 are their adjoints, while g0Te;n are coupling
constants. Further, σμν ¼ 1

2
ðγμγν − γνγμÞ, where γ’s are

Dirac matrices and εijkl is the four-dimensional Levi-
Civitá tensor. From Eq. (2) one could easily read off the
interaction Hamiltonians acting in the electron space by
removing averaging over r and “rubbing off” ψe;n and ψ

†
e;n,

hTeTn
ðreÞ ¼ εχλμν½γ0ig0Te σχλ�e½ψ̄nðreÞig0TnσμνψnðreÞ�;

where the subscript e emphasizes that the operators inside
½…�e act on the electron degrees of freedom.
The interaction (2) is of the contact nature; i.e., it is

constructed in the limit of the infinite mass of the carrier.
For the finite mass mχ of the mediator χ, the interaction
needs to be modified by sandwiching the currents with the
Yukawa-type interaction (see, e.g., Ref. [20])

Vχðr; r0Þ ¼
e−mχcjr−r0j

4πjr − r0j : ð3Þ

The “upgraded” Eq. (2) reads

Wχ
TeTn

¼ ðmχcÞ2
Z Z

drdr0εχλμν½ψ̄eig0Te σχλψe�ðrÞ

× Vχðr; r0Þ½ψ̄nig0Tnσμνψn�ðr0Þ ð4Þ
or

hχTeTn
ðreÞ ¼ ðmχcÞ2εχλμν½γ0ig0Te σχλ�e

×
Z

drnVχðre; rnÞ½ψ̄nðrnÞig0TnσμνψnðrnÞ�:
ð5Þ

It is easily verified that in the limit of large propagator
mass, mχ , the Yukawa potential in the above equation
becomes δ3ðre − rnÞ=ðmχcÞ2 recovering Eq. (2). We add a
superscript χ to the interaction (WTeTn

→ Wχ
TeTn

) to dis-
tinguish between the contact and finite-range interactions.
The structure of the expression (5) suggests that the

nuclear property ½ψ̄nðrnÞig0TnσμνψnðrnÞ� is “carried out”
beyond the nucleus by the Yukawa potential. Thus, one
anticipates the P,T-odd forces would “leak out” of the
nucleus on characteristic distances

λχ ¼ 1=ðmχcÞ
equal to the Compton wavelength of the mediator.
We are interested in the atomic permanent electric dipole

moments of diamagnetic systems induced by the P,T-odd

semileptonic interaction. The induced EDM d of the atomic
state Ψ0 of energy E0 can be expressed as

d ¼
X
i

hΨ0jDejΨiihΨijHχ
TeTn

jΨ0i
E0 − Ei

þ c:c:; ð6Þ

where c.c. stands for the complex conjugate of the
preceding term and Ei and Ψi are the atomic energies
and wave functions.Hχ

TeTn
¼ P

ih
χ
TeTn

ðriÞ, De ¼ −jejPiri
is the operator of electric dipole moment for atomic
electrons, and the sum is over all atomic electrons.
Tensor interaction (5) can be simplified further [17] as

the nucleon motion can be well approximated as being
nonrelativistic. The result is

hχTeTn
ðreÞ ¼ −ðmχcÞ24i½ig0Te γ0γ5σ�e

·
X

nucleons

Z
drnVχðre; rnÞig0Tnσnψ†

nðrnÞψnðrnÞ;

ð7Þ

i.e., it is proportional to the linear combination of weighted
scalar products between nucleon and electron spins. Here
we explicitly introduced the summation over the nucleons.
We further define

X
nucleons

Z
drnVχðre; rnÞig0Tnσnψ†

nðrnÞψnðrnÞ

≡ i~g0TnσN

Z
drnVχðre; rnÞρðrnÞ; ð8Þ

since ψ†
nðrnÞψnðrnÞ is the contribution of an individual

nucleon to the nuclear density ρðrnÞ. The two sides of
this equation can be related from nuclear structure calcu-
lations (see, e.g., Ref. [21]) which would define the
constant ~g0Tn . Thereby, the effective form of the interaction
can be represented as a scalar product of the nuclear spin
and a rank-1 irreducible tensor acting in the electron space

hχTeTn
ðreÞ ¼ σN · tχe ð9Þ

with

tχe ¼ 4π
ffiffiffi
2

p
GFðmχcÞ2CTNðmχÞ

× ðiγ0γ5σÞe
Z

drnVχðre; rnÞρðrnÞ; ð10Þ

where we introduced the parametrization ~g0Tng0Te ¼
π

ffiffiffi
2

p
GFC

χ
TN in terms of the Fermi constant, GF, and the

mass-dependent coupling constant, Cχ
TN . In the contact

approximation, this parametrization recovers the conventional
form of the semileptonic operator (Cc

TN ≡ limmχ→∞C
χ
TNÞ
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tce ≡ lim
mχ→∞

tχe ¼
ffiffiffi
2

p
GFCc

TN × ðiγ0γ5σÞeρðreÞ: ð11Þ

The finite-mass operator (10) can be recast in the form
analogous to the above equation,

tχe ¼
ffiffiffi
2

p
GFC

χ
TN × ðiγ0γ5σÞeρχðreÞ; ð12Þ

by introducing the effective “Yukawa-weighted” nuclear
density

ρχðrÞ≡ 4πðmχcÞ2
Z

drnVχðr; rnÞρðrnÞ: ð13Þ

The essential difference between the infinite-mass (11)
and the finite-mass (12) cases is the replacement of the
nuclear density ρðrÞ with the effective nuclear density
ρχðrÞ. This effective nuclear density was introduced earlier
in Ref. [22] in the context of atomic parity violation
mediated by a light gauge boson. It also plays an important
role in our analysis. For a uniform nuclear distribution
contained inside a sphere of radius R [i.e., ρðr < RÞ≡
ρ0 ¼ 3=ð4πR3Þ], the effective nuclear density can be
evaluated analytically (see the Appendix),

ρχðrÞ ¼ ρ0
λχ
r

8<
:

r
λχ
− e−

R
λχ

�
1þ R

λχ

�
sinh

�
r
λχ

�
; r ≤ R;

e−
r
λχ

�
R
λχ
cosh

�
R
λχ

�
− sinh

�
R
λχ

��
; r > R:

ð14Þ

Notice that outside the nucleus, ρχðrÞ ∝ 1=re−r=λχ ; i.e.,
as expected, the interaction (10) would sample the elec-
tronic cloud at distances λχ ¼ ℏ=ðmχcÞ beyond the nuclear
edge. The values of λχ are (4,2,0.2) fm for mχ ¼
ð50; 100; 1000Þ MeV=c2. In Fig. 1 we plot ρχðrÞ for these
mediator masses for the 199Hg nucleus. The tendency of the
effective density ρχðrÞ to further leak out of the nucleus as
the mχ values are decreased is apparent.
When the range of the force, λχ , is comparable to an

atomic size (aB), the interaction would extend over the
entire atom and would sample atomic shell structure. This
happens at the characteristic value of mχ ¼ αme ¼
3.7 keV=c2.

III. ATOMIC STRUCTURE

Now we focus on the atomic-structure aspect of the
problem. 199Hg is an 80-electron closed-shell system, with
the electron configuration [Xe] 4f145d106s2. One needs to
evaluate the induced atomic EDM (6) with the finite-mass
mediator interaction (we refer to its value as dχ) and
compare it with the contact-interaction result dc. In
particular we focus on the ratio

RðmχÞ≡ dχ=C
χ
TN

dc=Cc
TN

: ð15Þ

We employ two atomic-structure methods to evaluate this
ratio: Dirac–Hartree–Fock (DHF) and relativistic random-
phase approximation (RRPA). RRPA improves upon
DHF’s independent-particle approximation by including
major correlation effects. Both methods are ab initio
relativistic, as they are based on solutions of the Dirac
equation. The relativistic approach is important especially
for large carrier masses for which the interaction is lumped
in the nuclear region where the atomic electrons move at
relativistic velocities. While there are more advanced
techniques available [23], the DHF and RRPA methods
should provide an adequate qualitative understanding of
how the atomic EDM responds to the finite-range forces.
In the independent-particle approximation (DHF), the

induced atomic EDM (6) becomes

dχ ¼ σN
2

3

X
as

ð−1Þja−js ha∥r∥sihs∥t
χ
e∥ai

εs − εa
; ð16Þ

where the summation is carried over atomic orbitals a and
s. a are core orbitals occupied in the ground state Ψ0, and s
are unoccupied (excited or virtual) orbitals. εi are the DHF
energies of these orbitals. Each orbital ϕnκm is characterized
by the principle quantum number n, relativistic angular
momentum number κ, and magnetic quantum number m. κ
encodes the total angular momentum j and the orbital
angular momentum l.
The reduced matrix elements of tχe are

hna; κa∥tχe∥nb; κbi

¼ −
ffiffiffi
2

p
GFC

χ
TN

Z
∞

0

drρχðrÞðhκa∥σe∥ − κbiPaðrÞQbðrÞ

þ h−κa∥σe∥κbiQaðrÞPbðrÞÞ: ð17Þ
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FIG. 1 (color online). ρχðrÞ, the effective Yukawa-weighted
nuclear density for the 199Hg nucleus is shown as a function of the
radial distance r for specified values ofmχ , the mass of the carrier.
The nuclear cutoff radius is R ¼ 7.0369 fm.

DARK FORCES AND ATOMIC ELECTRIC DIPOLE MOMENTS PHYSICAL REVIEW D 91, 035007 (2015)

035007-3



Here PnκðrÞ and QnκðrÞ are the radial large and small
components from the parametrization

ϕnκmðrÞ ¼
1

r

�
iPnκðrÞΩκmðr̂Þ
QnκðrÞΩ−κmðr̂Þ

�
; ð18Þ

with Ωκm being the spinor spherical harmonics.
The numerical procedure can be described as follows.

First, we solve the DHF equations for the ground state of
the Hg atom using the finite-differencing techniques [24].
Next, we use the obtained DHF self-consistent potential to
construct a finite basis set of atomic orbitals using the dual-
kinetic-balance B-spline technique [25]. This set of basis
functions is finite and numerically complete (i.e., excited
and continuum states are included in the set.) With such a
set, the summation over atomic orbitals in Eq. (16)
becomes a straightforward exercise. In a typical calculation,
we use a set of basis functions expanded over 80 B-splines
of order 9, in a cavity of spherical radius of 30 bohr and a
1000-point grid, out of which 68 points reside inside the
nucleus, providing adequate numerical accuracy for both
large and small carrier masses.
Compared to the DHF method, the more sophisticated

RRPA approach accounts for a linear response of an atom
to a perturbing interaction (hχTeTn

ðreÞ). As a result of
solving the RRPA equations [26] using the described
DHF basis set, we determined a quasicomplete set of
particle-hole excited states and their energies, required for
evaluating the sum over intermediate states in the EDM
expression (6). The developed codes are an extension of the
DHF and RRPA codes of Ref. [27].

IV. RESULTS

We start by describing numerical results for the ratio,
RðmχÞ (15), and then present analytical formulas. Our
calculated ratiosRðmχÞ are plotted in Fig. 2 as a function of
the carrier mass mχ .

A. Numerical approach

To test the quality of the developed code, we first
perform EDM calculations with the usual contact inter-
action of Eq. (11), along with the nuclear Fermi distribu-
tion, in the DHF approximation. The resulting EDM,
dð199HgÞ ¼ 4.5 × 10−12Cc

TNσN a:u., recovers the earlier
result [19] obtained in the same approximation. Next, to
simplify the integration in Eq. (17), we replace the Fermi-
type distribution with the uniform nuclear distribution,
shown with the solid line in Fig. 1. Such calculation yields
dð199HgÞ ¼ 4.8 × 10−12Cc

TNσN a:u., slightly deviating
from the quoted Fermi-distribution value. Since all our
calculations of the ratio (15) are carried out with the
uniform nuclear density distribution, we fix this value as
the infinite-carrier-mass value dc. This result is consistent
with the earlier value [19]

Next we perform the EDM calculations in the RRPA
approximation. Our calculation with the uniform nuclear
density distribution yields dc ¼ 11.2 × 10−12Cc

TNσN a:u: ¼
5.9 × 10−20Cc

TNσN e cm, agreeing with the Ref. [19] value.
The results of our numerical calculation of the ratio

RðmχÞ are plotted in Fig. 2 as a function of the carrier mass
mχ . The ratio tends to zero for small masses. It monoton-
ically increases to unity as the mass increases, as in this
limit the effective Yukawa-weighted nuclear density ρχðrÞ
approaches the true nuclear density ρðrÞ (see Fig. 1),
thereby dχ → dc and R → 1. For small masses we clearly
observe a constant slope on the log-log plot. We will
comment on this scaling law below.
In general, the RRPA and DHF results are in a good

agreement for large carrier masses (about 4% agreement for
mχ > 1 MeV=c2). The difference between two approaches
starts to grow larger as with decreasing mχ the force starts
to probe the atomic shell structure bringing sensitivity to
the details of treating electron-electron correlations. The
most drastic difference arises at mχ ¼ 1 keV=c2 when the
DHF ratio becomes negative while the RRPA ratio remains
positive.

B. Analytical approach

1. Region λχ ≪ aB=Z (mχ ≳MeV)

We find that for sufficiently large masses the entire
dependence of the ratio R on the carrier mass can be well
approximated by taking only a single channel contribution
in the EDM sum over states (16). This is the contribution
from the excitation of the outermost occupied orbital jai ¼
6s1=2 to the excited orbitals jsi ¼ np1=2; ðn ¼ 6; 7;…Þ.
The 6s1=2 orbital is the least bound leading to the smallest
energy denominators. Moreover, as j increases the elec-
trons tend to reside less in the nuclear region due to the

100 101 102 103 104 105 106
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

( keV/c2)

RRPA

DHF

FIG. 2 (color online). The dependence of the EDM ratio R for
the 199Hg atom on the carrier mass mχ .
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increased centrifugal barrier thereby suppressing T,P-odd
matrix elements. This single-channel approximation is fully
supported by our numerical experimentation [28].
The above observation motivates an analytical approach

which consists of evaluating matrix elements of the P,T-odd
interactions analytically. We use the fact that the matrix
elements are mostly accumulated in the region close to the
nucleus. In this region, the large and small radial compo-
nents of atomic orbitals (18) can be approximated as

PnκðrÞ ¼
κζ

jκj
ðγ − κÞ

Γð2γ þ 1Þ

ffiffiffiffiffiffiffiffi
1

Zν3

r
ð2ZrÞγ;

QnκðrÞ ¼
κζ

jκj

ffiffiffiffiffiffiffiffi
1

Zν3

r
Z

cΓð2γ þ 1Þ ð2ZrÞ
γ; ð19Þ

where ν is the effective principal quantum number,
ν ¼ n − σl, with σl being the quantum defect. ζ is the
effective screened charge felt by the electron; e.g., for the
valence orbital ζ ¼ 1. Z is the nuclear charge, and
γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ðαZÞ2

p
. These formulas were adopted from

Ref. [17] for our parametrization (18) of atomic orbital
bispinors. Notice that these expressions were obtained for a
pointlike nucleus and they are valid for radial distances
r ≪ aB=Z where the nuclear charge can be considered
unscreened.
Now the reduced matrix element (17) can be evaluated

with the effective nuclear density (A7). While forming the
ratio (15) and limiting the summation to the single channel,
we factor out the integrals

IðρχÞ ¼
Z

∞

0

rβρχðrÞdr; ð20Þ

which depend on the nuclear density. Such integrals do not
depend on principal quantum numbers, energies, nor dipole
matrix elements, and the ratio can be simplified to

R ¼ IðρχÞ
IðρÞ ð21Þ

with β ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðαZÞ2

p
, because jκj ¼ 1 for both the s1=2

and p1=2 orbitals. Notice that this ratio does not depend on
specific quantum numbers, and it is valid as long as one of
the excitation channels from an occupied orbital a
(nas1=2 → p1=2 or nap1=2 → s1=2) is dominant. This argu-
ment is applicable to all diamagnetic atoms of current
experimental interest: Xe, Yb, Hg, Rn, and Ra.
For the uniform nuclear density distribution, we find the

following formula (u≡ R=λχ):

R ¼ 1þ ð1þ βÞE1−βðuÞ
�
coshðuÞ − 1

u
sinhðuÞ

�

þ −ð1þ uÞe−u1F2

�
1

2
þ β

2
;
3

2
;
3

2
þ β

2
;
u2

4

�
: ð22Þ

It is expressed in terms of the generalized hypergeometric
function 1F2 and the exponential integral function
EnðzÞ ¼

R
∞
1 e−zt=tndt.

For small values of the argument, i.e., in the limit λχ ≫ R
(yet λχ ≪ aB=Z),

R ≈
1

3
ð1þ βÞΓðβÞ

�
R
λχ

�
2−β

⟶
αZ≪1

�
R
λχ

�ðαZÞ2
;

where we also show the nonrelativistic limit. In the opposite
case, λχ ≪ R,

R ≈ 1 − ð1þ βÞð2 − βÞ
�
λχ
R

�
2

⟶
αZ≪1

1 − 3ðαZÞ2
�
λχ
R

�
2

;

i.e., as expected, for large carrier masses the interaction
becomes increasingly contact. In this case the mass scaling
of the ratio from the above equation is

R − 1 ∝ m−2
χ :

We present the comparison between fully numerical and
analytical results in Fig. 3 for the mercury atom. Now we
would like to specify the region of validity of the formula
(22). First of all, the atomic wave functions (18) were
obtained using pointlike nuclear charge distribution. In
reality, the atomic orbitals are affected by the extended
nuclear charge, and inside the nucleus the relevant product
Pns1=2Qn0p1=2

∝ r2 instead of the “softer” dependence

Pns1=2Qn0p1=2
∝ rβ (0 < β < 2) used in the integral (20).

Thus, Eq. (22) would tend to deemphasize the nuclear
region. Another limitation comes from the fact that the
approximate wave functions are valid only in the region
r ≪ aB=Z. This places constraints on the Compton wave-
length of the force mediator λχ ≪ aB=Z, translating into

101 102 103 104 105 106

0.2

0.4

0.6

0.8

1.0

Analytical

RRPA

DHF

( keV/c2)

FIG. 3 (color online). Comparison of numerical (DHF and
RRPA) and analytical (22) results for the Yukawa-to-contact-
interaction EDM ratio R for the 199Hg atom. The ratio is plotted
as a function of the carrier mass.
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mχ ≫ αme=Z or mχ ≫ 0.3 MeV=c2 for 199Hg, consistent
with Fig. 2.
Figure 4 compares ratios R computed with Eq. (22) for

xenon (Z ¼ 54), mercury (Z ¼ 80), and radon (Z ¼ 86).
For smaller Z the ratio tends to start off steeper at smaller
massesmχ and saturates earlier for larger values of mχ . It is
worth emphasizing that Eq. (22) and the curves on Fig. 4
hold only for R=λχ ≫ ZR=aB ∼ 4 × 10−3.

2. Region λχ ≫ aB (sub-keV carrier mass)

To extend the analytical treatment into the region of sub-
keV masses, we notice that when the force range is much
larger than the atomic size (λχ ≫ aB) the Yukawa potential
(3) becomes Coulomb-like since e−jre−rnj=λχ ≈ 1. In this
case the interaction no longer resides near the nucleus, and
the single-channel approximation introduced in Sec. IV B 1
may break down. However, we may still find the mass
dependence of the ratio analytically. Indeed, for λχ ≫ aB,
the effective nuclear distribution is simply (see the
Appendix)

ρχðrÞ ¼ ρ0

�
R
λχ

�
2
�

1
2
− 1

6
ðrRÞ2; r ≤ R;

1
3
R
r ; r > R:

ð23Þ

Thereby we may simply factor out the entire mass
dependence from the ratio, and for very low masses,
mχ ≪ αme ≈ 3.7 keV=c2,

R ¼ A ×

�
R
λχ

�
2

∝ m2
χ ; ð24Þ

where the mass-independent proportionality constant A has
to be evaluated with atomic-structure techniques,

A≡ ðλχ=RÞ2R, with the effective density (23). For
199Hg we find A ¼ −49 in the DHF approximation and
A ¼ 215 in the more accurate RRPA method.
To summarize this section, the entire dependence of R

on R=λχ can be described analytically with Eq. (22) for
masses above ∼MeV and with Eq. (24) formχ below ∼keV.
The values of R in the transition region between these two
limits depend on the atomic-shell structure of specific atom.

V. CONCLUSIONS

Now with the computed Yukawa-to-contact-interaction
EDM ratio R, Eq. (15), we proceed to placing constraints
on the coupling strengths and masses of the light gauge
bosons. Essentially, we require

dχ ¼ Cχ
TN

dc
Cc
TN

R < Experimental limit on atomic EDM:

To place the limits on the coupling constant Cχ
TN , we

use the ratio R computed in the more sophisticated
RRPA approach together with the atomic EDM for
contact interaction taken from Ref. [19]. The experimental
limit [10] on the Hg atom EDM reads jdð199HgÞj < 3.1 ×
10−29 e cm (95% C.L.). Thereby,

jCχ
TN j < jdð199HgÞj

����C
c
TN

dc

1

R

����:
The resulting exclusion region for 1 eV < mχ < 1 GeV is
shown in Fig. 5. The exclusion region can be trivially
extended to the lower masses using Eq. (24) (basically
continuing the straight line on the log-log plot, Fig. 5).
For higher masses jCχ

TN j saturates to jCc
TN j ≤ 1.9 × 10−9.

Xe

Rn

Hg

m c
R

FIG. 4 (color online). Yukawa-to-contact-interaction EDM
ratios R, Eq. (22), for xenon (Z ¼ 54, black solid line), mercury
(Z ¼ 80, green dashed line), and radon (Z ¼ 86, dotted red line)
as a function of the ratio of the nuclear radius R to the Compton
wavelength of the force carrier. Notice that Eq. (22) and the
plotted curves hold only for R=λχ ≫ ZR=aB ∼ 4 × 10−3.

10-6 10-4 10-2 100 102
10-9

10-7

10-5

10-3

10-1

101

103

mχ(MeV/c2)

Excluded region

FIG. 5. Exclusion region parametrized in terms of coupling
strengths jCχ

TN j and carrier masses mχ . This exclusion region is
derived from computed Yukawa-to-contact-interaction EDM
ratio R in the RRPA method and the experimental limit [10]
on the EDM of the 199Hg atom.
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The bounds on jCχ
TN j become less stringent for lighter

carriers due to the fact that as the range of the interaction
becomes larger than the atomic size the effective nuclear
density scales down as m2

χ , Eq. (23), reducing the atomic
EDM enhancement factor. For a fixed experimental limit on
EDM, this translates into larger values of the coupling
constant jCχ

TN j.
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APPENDIX: THE EFFECTIVE YUKAWA-
WEIGHTED NUCLEAR DENSITY

The effective Yukawa-weighted nuclear density is
defined as

ρχðrÞ≡ 4π

λ2χ

Z
drnVχðr; rnÞρðrnÞ; ðA1Þ

where the Yukawa potential Vχðr; rnÞ can be expanded as

Vχðr; rnÞ ¼
e−jr−rnj=λχ

4πjr − rnj

¼ −λ−1χ
X∞
l¼0

jlðir<=λχÞhð1Þl ðir>=λχÞ

×
Xl

m¼−l
Y�
lmðr̂ÞYlmðr̂nÞ; ðA2Þ

where r> ¼ maxðr; rnÞ, r< ¼ minðr; rnÞ. For a spherically
symmetric nuclear distribution, the angular part of the
integral in Eq. (A1) is reduced to

Z
Y�
lmðr̂ÞYlmðr̂nÞdΩn ¼

1

4π
δl0δm0; ðA3Þ

i.e., only the monopole contribution remains in Eq. (A2).
The Bessel and Hankel functions of imaginary arguments
are the modified Bessel functions:

j0ðizÞ ¼ i0ðzÞ ¼
sinh z
z

; ðA4Þ

hð1Þ0 ðizÞ ¼ −k0ðzÞ ¼ −
e−z

z
: ðA5Þ

Therefore, we can rewrite Eq. (A1) as

ρχðrÞ ¼
ρ0
λ3χ

Z
∞

0

i0ðr<=λχÞk0ðr>=λχÞr2ndrn: ðA6Þ

For a uniform nuclear distribution contained inside a sphere
of radius R, [i.e., ρðr < RÞ≡ ρ0 ¼ 3=ð4πR3Þ], the integral
yields

ρχðrÞ ¼ ρ0
λχ
r

8<
:

r
λχ
− e−

R
λχ

�
1þ R

λχ

�
sinh

�
r
λχ

�
; r≤R;

e−
r
λχ

�
R
λχ
cosh

�
R
λχ

�
− sinh

�
R
λχ

��
; r > R:

ðA7Þ

Notice that in the limit λχ ≫ R (i.e., for mχ ≪ 10 keV=c2)

ρχðrÞ ¼ ρ0

8<
:

1
2

�
R
λχ

�
2
− 1

6

�
r
λχ

�
2
; r ≤ R;

1
3

�
R
λχ

�
3 λχ

r e
− r
λχ ; r > R:

ðA8Þ

Finally, in the limit λχ ≫ aB (i.e., the range of the potential
being much larger than the atomic size), we could drop the
exponent in the second line of Eq. (A8),

ρχðrÞ ¼ ρ0

�
R
λχ

�
2

8<
:

1
2
− 1

6

�
r
R

�
2
; r ≤ R;

1
3
R
r ; r > R:

ðA9Þ
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