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Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar
bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement
tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF
Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields
are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby,
the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea,
I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of
the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function
fully determines N -point correlation functions. For a network of ND devices within the coherence length of
the field, the sensitivity compared to a single device can be improved by a factor of

√
ND . Further, I derive a

VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to
the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the
discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates
and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism
developed to atomic clocks and their networks.
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I. INTRODUCTION

Exacting the microscopic nature of dark matter (DM) is one
of grand challenges of modern physics and cosmology [1,2].
Here I focus on a general class of DM candidates: ultralight
bosonic fields. These include both pseudoscalar and scalar
fields, axions being the example of pseudoscalars and dilatons
of the scalars. I will collectively refer to such ultralight fields
as virialized ultralight fields (VULFs). Such fields behave as
classical entities coherent on a scale of individual devices and
can be searched for with low-energy precision-measurement
tools. Precision measurements, with their exquisite precision,
have been historically important [3] in powerfully constraining
new physics beyond the standard model (SM) and can be
repurposed for dark-matter searches.

Individual direct VULF DM search proposals cover a broad
range of experiments [4–11], e.g., atomic clocks, magnetome-
ters, accelerometers, interferometers, cavities, resonators, and
permanent electric dipole and parity-violation measurements,
and extend to gravitational wave detectors. The sought DM
signature in these proposals is DM-induced oscillations of
the measured signals at the VULF Compton frequencies at
the device location. All these proposals can either discover
VULFs or substantially constrain yet unexplored parameter
space. These distinct tools can be located at geographically
separated laboratories across several continents or in space
and one can envision a network of such tools as a global DM
observatory. The network can be heterogenous, i.e., nodes can
be populated with different kinds of devices. Here I explore
the DM-induced temporal and spatial correlations between
nodes of such a global network with the goal of analyzing
the network’s discovery potential.

An important point is that VULFs are waves, and while
they do induce an oscillating in time signal at a given spatial
location, DM signals at different locations have a fixed phase
relation [see Fig. 1(a)], i.e., the signals are correlated. Based
on this observation, here we argue that a wider discovery reach
can be gained by sampling the DM wave at several locations via
a network of precision-measurement tools. Further, the VULF
signal is composed of interfering waves traveling at differ-
ent velocities and in different directions. Then the problem
of relating signals at different space-time locations requires
computations of dark-matter correlation functions, derived
here. Based on these ideas and derivations, one can envision
a number of DM wave detection experiments. In the most
basic version, the modifications to already running experiments
are minor and only require simple global positioning system–
assisted (GPS-assisted) time stamping of data acquisition [12].
Previously, a network of precision-measurement devices have
been proposed for detecting clumpy DM objects sweeping
through the networks [13,14]. Here we show that such networks
can be used also as discovery tools for VULF “wavy” dark
matter.

This paper also addresses the difference between the deter-
ministic and stochastic nature of ultralight dark-matter fields
as detected by an individual device. It seems that so far the
previous VULF literature approach was to treat ultralight
dark-matter field signals as deterministic. This is related to
the long coherence times of VULFs on a timescale of a typical
measurement campaign. As discussed in this paper, individual
devices can also be sensitive to the VULF of frequencies
much higher than the sampling rate through the aliasing effect
inherent to discretized measurements. For such high-frequency
fields the coherence time is reduced and the more adequate
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FIG. 1. (a) Dark-matter wave observatory based on a global
network of existing low-energy precision-measurement laboratories
(red dots) around the globe. (b) Satellite mission for probing VULF
DM correlation function; both the distance between the satellites and
the angle between galactic velocity vg and separation d vectors can be
varied. (c) Terrestrial experiment with fixed nodes utilizes the daily
variation of the angle between the galactic velocity and two-node
separation vector.

description is the stochastic approach of this paper. I derive
the expected line shape of a stochastic dark-matter signal
and present a frequency-space data analysis strategy. I also
discuss an application of the developed formalism to atomic
clocks.

This paper is organized as follows. Section II presents the
derivation of the N -point correlation function for ultralight
dark-matter fields. Section III explores the VULF parameter
space. Section IV presents the VULF dark-matter line shape for
an individual device signal. Section V extends the discussion
to a network of devices. Implications of the formalism and
specific data analysis strategies are discussed in Sec. VI. This
section also addresses the importance of the aliasing effect in
the search for high-frequency VULF DM signals and intro-
duces SNR statistic based on the derived correlation function.
An illustrative application of some of the ideas to atomic clock
DM searches is presented in Sec. VII. Section VIII draws con-
clusions. Appendix A reviews the discrete Fourier transform
and frequency-space probability distributions for deterministic
and stochastic signals. Appendixes B and C present derivations
of certain equations. Since the intended audience includes both
atomic and particle physics communities, I restore h̄ and c in
the formulas in favor of using natural or atomic units. I use the
rationalized Heaviside-Lorentz units for electromagnetism.

II. CORRELATION FUNCTION FOR ULTRALIGHT
DARK-MATTER FIELDS

In the VULF models, dark matter is composed of ultralight
spin-0 bosonic fields, oscillating at their Compton frequency
ωφ = mφc2/h̄, where mφ is the boson mass (see, e.g., the
review in [15]). The frequencies can span many orders of mag-
nitude: 10−10 Hz � fφ = ωφ/2π � 1015 Hz for 10−24 eV �
mφ � 10 eV. Here the lower bound comes from requiring that
the virial de Broglie wavelength is smaller than the galactic size
and the upper limit from requiring that number of particles per
de Broglie volume is macroscopic. I formalize these estimates
below. The proposals [4–8,10] have focused on searching for
an oscillating signal at the Compton frequency. Unfortunately,
in a laboratory environment, an observation of an oscillating
signal could be ascribed to some mundane ambient noise and
it is desirable to establish additional DM signatures. To this
end, in this section, I derive VULF spatiotemporal correlation
functions and explore its experimental significance in later
parts of the paper.

A. Linear SM-DM portals

Additional phenomenological commonality of all the
VULF searches is the coupling of DM fields to SM particles and
fields in terms of so-called portals, when the gauge-invariant
operators of the SM fields OX are coupled to the operators
involving DM fields [14,16]. One of possibilities is the portal
linear in the VULF field φ(t,r),

−Llin =
√

h̄cφ(t,r)
∑
X

γXOX. (1)

Here we introduced coupling strengths γX; these are to be
determined as a result of a positive DM signal detection or
constrained otherwise. Fixing the units of fields φ to be that of
energy ε, [γX] = [ε]−1 and one could equivalently parametrize
the linear portal (1) in terms of energy scales �X = 1/|γX|.

For axions and axionlike pseudoscalar fields
(see, e.g., a recent review [17]), the portals are
parametrized as

√
h̄cgaγ γ φFμνF̃

μν ,
√

h̄cgaggφGμνG̃
μν ,

and
√

h̄cgaff ∂μφψ̄f γ μγ 5ψf , where Fμν and Gμν are
Faraday tensors for electromagnetism and QCD, F̃μν and
G̃μν are dual tensors, ψf are SM fermionic fields, γ are
the Dirac matrices, and gX are coupling constants. Only
the last portal does not conform to the parametrization (1)
as it contains the 4-derivative of the axion field. However,
when computing action as an integral of the Lagrangian
density, the offending 4-derivative ∂μφ can be moved to the
fermion current by integrating by parts, thus restoring
the canonical parametrization (1). Further application
of the Dirac equation leads to an equivalent form [18]
∂μφψ̄f γ μγ 5ψf → 2mf c2φψ̄f iγ 5ψf , with mf being the
fermion mass. Therefore, the formalism developed in this
paper is applicable to direct searches for axionlike particles.

For scalar fields, such as moduli [19–22] and dila-
tons [23,24], the OX in Eq. (1) are scalars. For example,
these could be various pieces from the SM Lagrangian den-
sity −LSM = ∑

X OX such as the fermion rest mass ener-
gies mf c2ψ̄f ψf , electromagnetic Faraday tensor contribution
(1/4)FμνF

μν , and gluon field contribution. Quite naturally,
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these portals, when combined with the SM Lagrangian, lead
to variation of fundamental constants, e.g., the electron rest
mass me is modulated by the DM field as me(t,r) = me,0[1 +√

h̄cγme
φ(t,r)] or the electromagnetic fine-structure constant

α(t,r) = α0[1 + √
h̄cγαφ(t,r)], where me,0 and α0 are un-

perturbed quantities. Virialized ultralight fields oscillate at
Compton frequencies, leading to oscillating corrections to
fundamental constants. The coupling constants γme

and γα can
be expressed in terms of dimensionless dilaton couplings used,
e.g., in Refs. [4,10], de = γαEP/

√
2π and dme

= γme
EP/

√
2π ,

where the Planck energy EP =
√

h̄c5/G ≈ 1.22 × 1019 GeV.
A typical apparatus takes measurements associated with an

operator OX (or a combination of operators). For example, an
optical clock measures transition frequencies that depend on α

(and me; see Sec. VII). Then the measured quantity has a DM-
induced admixture SX(t,r) that is proportional to the field value
φ(t,r) at the device location. Thereby, in the assumption of the
linear portal, the correlation between two devices’ DM signals
can be expressed in terms of the two-point DM field correlation
function g(τ,d) = 〈φ(t ′ = t + τ,r = r′ + d)φ(t,r)〉:

〈SX
′ (t ′,r′)SX(t,r)〉 ∝ γXγX′ 〈φ(t ′,r′)φ(t,r)〉.

The correlation function for spatiotemporal variations of fun-
damental constants is also expressed in terms of the DM field
correlation function, e.g.,

〈α(t ′,r′)α(t,r)〉
(α0)2

= 1 + h̄c(γα)2g(τ,d).

The derivation of the DM field correlation function g(τ,d)
is the focus of this section. A limiting case of two colocated
devices or of the same apparatus is when d = 0. Then the
correlation function depends on the delay time τ and through
the Wiener-Khinchin theorem g(τ,0) can be related to the DM-
induced frequency spectrum of the device. We will derive the
dark-matter frequency profile (line shape) in Sec. IV.

B. Derivation of two- and N-point correlation functions

Qualitatively, the VULF’s coherence times and coherence
lengths are related to DM properties. Indeed, in the standard
halo model (see, e.g., Refs. [25,26]), during the galaxy forma-
tion, as DM constituents fall into the gravitational potential,
their velocity distribution in the galactic reference frame
becomes quasi-Maxwellian with a characteristic dispersion
(virial) velocity vvir = ξc, ξ ≈ 10−3, and a cutoff at the galactic
escape velocity. This velocity distribution leads to spectral
broadening of oscillations (dephasing) characterized by the
coherence time τc ≡ (ξ 2ωφ)−1. The velocity distribution also
results in a spatial dispersion of individual wave packets,
leading to the coherence length λc ≡ h̄/mφξc. All these
coherence properties formally emerge from the correlation
function derived below.

I derive the VULF correlation function g(τ,d) by gener-
alizing the formalism of quantum optics to massive spin-0
bosons and the quasi-Maxwellian velocity distribution of DM
fields. The major differences from photons are the dispersion
relation for massive bosons and the conservation of the total
number of particles. In the following two paragraphs, I use
natural units for brevity and later restore the fundamental
constants. I start the derivation in the galactic reference frame

and then transform the result into the moving device frame. The
correlation function is expressed as a trace of field operators
and the density matrix ρ̂,

g(τ,d) = tr[ρ̂φ̂(t ′,r′)φ̂(t,r)].

The field operators are φ̂(x) = ∑
k(âke

−ik·x +
â
†
ke

−ik·x)/
√

2V ωk . Here V is the quantization volume,
k = (ω,k) and x = (t,r) are 4-momentum and 4-position
vectors with k · x denoting their scalar product in flat
space-time, and â

†
k and âk are bosonic creation and

annihilation operators, respectively. The summation
is carried out over the field modes with frequencies
ωk =

√
m2

φ + k2 ≈ mφ + k2/2mφ . The density matrix is
defined as ρ̂ = ∑

{nk} P ({nk})|{nk}〉〈{nk}|, where Fock states
are |{nk}〉 = |n1,n2, . . .〉, with nk specifying occupation
numbers of mode k and P ({nk}) = ∏

k P (nk) being the
probability of finding the ensemble in a particular Fock state.
Here P (nk) = fDM,k(k)(2π )3/V , where fDM,k(k) is the DM
momentum distribution normalized with respect to k.

Taking into account that the average mode occupation
numbers n̄k are macroscopic and taking the continuous limit,

g(τ,d) ≈ 1

(2π )3

∫
d3k

1

ωk

n̄k cos[k · (x − x ′)].

Here the average mode occupation numbers n̄k are related to
the DM energy density ρDM and DM momentum distribution
as n̄k = (2π )3ρDMfDM,k(k)/mφ . Here I used the fact that for
nonrelativistic particles, the number density is ρDM/mφ . The
requirement that the occupation numbers are macroscopic,
n̄k 
 1, leads to mφ � 10 eV.

The resulting two-point correlation function reads (restor-
ing fundamental constants)

g(τ,d) =
(

h̄

mφc

)2

ρDM

∫
d3v

fDM(v)

1 + 1
2 (v/c)2

× cos

(
mφc2

h̄
τ − mφv

h̄
· d+mφv2

2h̄
τ

)
. (2)

Given the DM velocity distribution [27] fDM(v), this expres-
sion can be evaluated numerically.

An analytical result can be obtained by taking the
Maxwellian distribution of the standard halo model fDM(v) =
(2π )−3/2(ξc)−3 exp(− (v−vg )2

2(ξc)2 ), where ξc is the virial velocity

and vg ≈ 10−3c is the Earth’s velocity in the galactic reference
frame. We further take the galactic escape velocity cutoff to be
infinite and neglect the nonrelativistic kinetic energy correction
in the denominator. The resulting correlation function reads

g(τ,d) ≈ 1
2�2

0A(τ,d) cos[ω′
φτ − kg · d + �(τ,d)]. (3)

Here ω′
φ is the Doppler-shifted value of the Compton frequency

ω′
φ = ωφ + mφv2

g/2h̄ and kg = mφvg/h̄ is the “galactic” wave
vector associated with the apparatus motion through the dark-
matter halo. The effective field amplitude �0 is related to the
DM energy density as �0 = h̄

mφc

√
2ρDM, which comes from

directly evaluating the temporal (00) component of the stress-
energy tensor for the bosonic field. The correlation amplitude
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A(τ,d) and phase �(τ,d) are defined as

A(τ,d) =
exp

(− |d−vgτ |2
2λ2

c

1
1+(τ/τc)2

)
[1 + (τ/τc)2]3/4

,

�(τ,d) = −|d − vgτ |2
2λ2

c

τ/τc

1 + (τ/τc)2
+ 3

2
tan−1(τ/τc), (4)

where the coherence time τc ≡ (ξ 2ωφ)−1 ≈ 106/ωφ and length
λc ≡ h̄/mφξc are expressed in terms of the virial velocity
ξc ≈ 10−3c. The correlation function encodes the priors on
the VULFs and DM halo, such as the DM energy density in
the vicinity of the solar system [28], ρDM ≈ 0.3 GeV/cm3,
the motion through the DM halo at vg , and the virial velocity
ξc. Thereby, the correlation function provides an improved
statistical confidence in the event of an observation of the DM
signal.

The derived correlation function is a two-point correlation
function, while, in general, a network could have several
nodes. The N -point correlation function is expressed in
terms of two-point correlation functions. Indeed, the field
is composed of a macroscopic number of individual waves
[see field operators φ̂(x)] and, due to the central-limit
theorem, the resulting field is Gaussian in nature (see,
e.g, Ref. [29]). For Gaussian random fields, the N -point
correlation function is fully expressed in terms of the derived
two-point correlation function (see, e.g., Appendix E of
Ref. [30]). The N -point correlation function vanishes for
odd N and for even N is expressed as a sum of all possible
products of pairwise two-point correlation functions. For
example, for Nd = 4 nodes, 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(x1,x2)g(x3,x3) + g(x1,x3)g(x2,x4) + g(x1,x4)g(x2,x3),
where each of the two-point correlation functions
g(xi,xj ) ≡ g(τ = ti − tj ,d = ri − rj ) is given by Eq. (3).

Finally, in the limit when both the coherence length λc and
time τc are infinitely large, one recovers the fully coherent wave
correlation function

gcoh(τ,d) = 1
2�2

0 cos(ω′
φτ − kg · d). (5)

III. THE VULF PARAMETER SPACE

Now with the correlation function at hand, first we explore
the vast VULF parameter landscape. The conversion formulas
of VULF masses to Compton frequency, coherence time, and
coherence length are, respectively,

fφ = 2.42 × 105

(
mφc2

neV

)
Hz, (6)

τc = 1.59 × 105

(
Hz

fφ

)
s, (7)

λc = 4.77 × 107

(
Hz

fφ

)
km. (8)

Typical values of these parameters are compiled in Table I.
The coherence time is roughly 105 of Compton periods.
The coherence length can be interpreted as the de Broglie
wavelength of a particle moving at the virial velocity and
it is 1000 times larger than the Compton wavelength. The
number density of VULF particles ρDM/mφc2 ranges from
108 to 1032 cm−3 for the indicated masses in Table I, i.e., a

TABLE I. Parameters of VULF dark matter for a range of masses
mφ : Compton frequency fφ , coherence time τc and length λc, and
the inverse galactic wave vector k−1

g ∼ λc associated with the solar
system motion through the DM halo.

mφ (eV) fφ (Hz) τc (s) λc,k
−1
g (km)

10−24 2 × 10−10 7 × 1014 2 × 1017

10−20 2 × 10−6 7 × 1010 2 × 1013

10−15 2 × 10−1 7 × 105 2 × 108

10−10 2 × 104 7 × 100 2 × 103

10−5 2 × 109 7 × 10−5 2 × 10−2

1 2 × 1014 7 × 10−10 2 × 10−7

typical device interacts with a macroscopic number of DM
particles. Compton frequencies range from nanohertz to peta-
hertz. Notice that one oscillation per year corresponds to fφ =
3 × 10−8 Hz (for mφ ∼ 10−22 eV). As points of reference for
the coherence length, the size of our galaxy is ∼1018 km and
the Earth diameter ∼104 km.

IV. DARK-MATTER LINE SHAPE

For a single geographic location, the associated power
spectral density (PSD) in frequency space of a coherent signal
is a spike at the Doppler-shifted Compton frequency. However,
for a stochastic field, the PSD is distributed over a range of
frequencies. In this section, I derive the relevant DM-induced
spectral line shape. Such a spectral profile can be used as a DM
signature.

For a single apparatus, the local temporal correlation the
function reads

g(τ,d = 0) = 1

2
�2

0

exp
[ − 1

2

( vgτ

λc

)2 1
1+(τ/τc)2

]
[1 + (τ/τc)2]3/4

× cos[ω′
φτ + �(τ,0)]. (9)

Notice the presence of the coherence length in the combination
vgτ/λc; it arises due to our motion through the DM halo over
the lag time τ sampling DM fields a distance vgτ ≈ 10−3cτ

apart. For τ = 1 s this translates into a distance of ∼300 km.
Considering that vg ∼ vvir, vgτ/λc ∼ τ/τc. The signal primary
oscillation frequency ω′

φ also depends on the device galactic
velocity vg through the DM halo via the Doppler shift for mas-
sive particles. Since the Earth’s velocity changes seasonally,
annual velocity modulations are imprinted in the correlation
function.

In practice, one could obtain a time series of measurements
{dn} at tn = nt0 and compute the autocorrelation function Gk =
〈dndn+k〉 and see if it fits Eq. (9). A more practical approach,
especially for devices exhibiting colored noise, is to work in
the frequency space and examine the power spectral density
of dn given by the Fourier transform of Gk . This strategy is
formalized in Sec. VI.

To facilitate the frequency-space data analysis, I
define the DM-induced line shape as a Fourier transform of
the correlation function f (ω) = 1

2π

∫ ∞
−∞ dτ g(τ,d = 0)eiωτ =

1
2�2

0F (ω). Here F (ω) is normalized as
∫ ∞

0 F (ω)dω = 1/2.
With η = vg/vvir = vg/ξc and the Doppler-shifted frequency
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( ' ) c

F(
)/

c

FIG. 2. VULF dark-matter line profile for colocated linear portal-
sensitive devices or individual apparatus for η = vg/vvir = 1. Dashed
vertical line marks the position of the Doppler-shifted Compton
frequency ω′

φ = ωφ + mφv2
g/2h̄. The profile value is strictly zero

for ω < ω′
φ − η2/2τc due to the dispersion relation for massive

particles. The maximum value of F (ω) ≈ 0.18τc is attained at ω ≈
ω′

φ + 0.22/τc and the full width at half maximum is �ωφ ≈ 2.5/τc.

ω′
φ = ωφ + mφv2

g/2, the resulting dark-matter line shape reads

F (ω) = (2π )−1/2τcη
−1e−η2

e−(ω−ω′
φ )τc

× sinh[η
√

η2 + 2(ω − ω′
φ)τc]. (10)

This expression holds for detunings ω − ω′
φ > −η2/2τc;

otherwise F (ω) = 0. The profile is shown in Fig. 2. As
expected, the linewidth is ∼τ−1

c . The profile is strongly asym-
metric due to the parabolic dispersion relation for massive non-
relativistic bosons: ω ≈ mφc2/h̄ + mφv2/2h̄. The frequency is
shifted to the blue for any finite value of velocity v. For the
fiducial value of η = 1, the maximum F (ω) value of approx-
imately 0.18τc is attained at ω ≈ ω′

φ + 0.22/τc and the full
width at half maximum is �ωφ ≈ 2.5/τc. The DM line shape
is broad in the spectroscopic sense as �ωφ/ωφ = 3 × 10−6.

V. NETWORK

To start the discussion, consider two spatially separated
nodes with simultaneously taken measurements so that the
two-point correlation function (3) is evaluated at the time lag
τ = 0. Figure 3 presents the spatial dependence of such a
correlation function for two devices. The spatial dependence
is determined by two factors, the correlation length λc and the
dot product kg · d = mφvg · d/h̄. Because the galactic wave
vector is kg = η/λc ≈ 1/λc, the correlation function in Fig. 3 is
strongly attenuated, exhibiting only half of an oscillation. This
behavior is to be contrasted with the fully coherent correlation
function (5). The attenuation is maximal when the device
separation vector d is orthogonal to the galactic velocity vg

(see blue dashed curve in Fig. 3). In this case, the minor
oscillating behavior is entirely due to the phase �(τ = 0,d)
in the two-point correlation function (3).

One could use Fig. 3 as a dark-matter signature. A natural
question is how to probe various distances. In galactic coordi-
nates, the Sun moves through the halo in the (l = 90◦,b = 0◦)
direction, roughly towards the Cygnus constellation. The most

g � 0

g � �2

�

�
�

�×
�

�
�

FIG. 3. Spatial dependence of the VULF two-point correlation
function for η = vg/vvir = 1. The red solid curve illustrates the
dependence for the case when the device separation vector d is aligned
with the galactic velocity vg and the dashed blue curve when d ⊥ vg .
The galactic orientation angle is defined as θg = cos−1(kg · d).

straightforward approach is to place two satellites with, for
example, two precision clocks onboard in the vicinity of a
Lagrange point, orient their relative position vector d towards
Cygnus constellation [see Fig. 1(b)], and carry out a series of
measurements at various distances. This would map out the
spatial part of the correlation function.

A more practical approach is to carry out terrestrial experi-
ments [see Fig. 1(c)] with fixed positions of network nodes and
rely on the angular dependence of the kg · d = cos θgmφvgd/h̄

of the phase. The galactic orientation angle θg would change
due to the Earth’s rotation. The inclination angle of the Cygnus
constellation (i.e., the direction of motion through the halo) as
seen from the Earth is about 45◦. As an illustration, consider
two geographically remote laboratories located along the 45th
parallel [see Fig. 1(c)]. Their two-node correlation function
would sample kg · d in the range from zero to kgd/

√
2 over the

course of one day. It is worth emphasizing that the coherence
length λc ∼ k−1

g ; thereby two sites have the most sensitivity
for d < λc.

The geographic arrangement in Fig. 1(c) serves as an
illustrative example as simply time-synchronized measure-
ments in existing laboratories [12] [Fig. 1(a)] should be
sufficient for the proposed global data analysis. The GNOME
network [31] infrastructure can serve as a natural host for
the VULF DM observatory. One could also use clocks on
numerous navigational satellites, such as GPS, to search for
correlation patterns [14,32]; these have an advantage of half-
a-day orbits (GPS) and a large d ∼ 50 000 km aperture. The
eLISA gravitational wave mission [33] (a network of three
satellites) can also be used for VULF detection. Another point
is that the network does not need to be homogenous and various
precision-measurement tools can be included in the network.
Indeed, as long as the DM portal is linear [Eq. (1)], such a global
observatory can consider a variety of options on possible DM
couplings.

VI. DATA ANALYSIS CONSIDERATIONS

A. Statistical significance of the dark-matter line shape

Now I would like to establish constraints on the coupling
constants γX of the linear DM-SM portal (1). The temporal data
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stream dk = sk + nk is composed of the DM signal sk and the
device noise nk , k ∈ [0,N − 1]. I parametrize the DM signal
as sk = γXAφ(tk), where the constant A depends on the device
(see an example for atomic clocks in Sec. VII) and tk = k�t

refers to the time of the measurement k, with �t being the
sampling interval. For simplicity, I assume that the network is
fixed in the halo reference frame; otherwise the positions of the
terrestrial nodes would need to be tracked and the time series
transformed. The noise quasi-PSD is defined as ρ̃p = 〈|ñp|2〉,
where ñp stands for the discrete Fourier transformed (DFT) set
of nk , ñp = ∑N−1

k=0 exp(−i 2π
N

kp)nk . A review of the discrete
Fourier transform can be found in Appendix A 1. The DM
signal PSD can be expressed as 〈|s̃p|2〉 = A2γ 2

X〈|φ̃p|2〉, which
can be further linked to the profile (10) via

〈|φ̃p|2〉 = πN

�t

�2
0F (ωp), (11)

as long as there is no the DFT-inherent aliasing (see Sec. VI B).
Here ωp = 2π

N�t
p is the DFT angular frequency.

The probability density for the field DFT coefficients is
given by (see Appendix A 3)

p(φ̃) =
N/2∏
p=0

1

(β−1
p π〈|φ̃p|2〉)βp

exp

(
−βp

|φ̃p|2
〈|φ̃p|2〉

)
. (12)

In this expression, φ̃ is a vector composed of the field DFT
components φ̃p, and βj = 1 except for the dc and the Nyquist
components for which β0 = βN/2 = 1/2. A particular field re-
alization can be constructed by randomly drawing coefficients
φ̃p from the distribution (12) and using the inverse discrete
Fourier transform φk = N−1 ∑N−1

p=0 exp(i 2π
N

kp)φ̃p. The cause
for the field decoherence is dephasing when multiple oscilla-
tions of different frequencies are added together.

The relevant likelihood for a stochastic signal is given by
Eq. (A17). It is obtained by multiplying the DFT likelihood for
a noisy device and a DM signal with fixed (deterministic) φ̃

with the field probability distribution (12) and marginalizing
over φ̃. The resulting stochastic signal likelihood can be recast
into a posterior probability density for the coupling strength
γX. As shown in Appendix B, in the weak signal limit, the
maximum-likelihood estimator for γx reads

γ̂
(1)
X = A−1

⎧⎨
⎩

∑N/2−1
p=1

〈|φ̃p |2〉
ρ̃p

( |d̃p |2
ρ̃p

− 1
)

∑N/2−1
p=1

( 〈|φ̃p |2〉
ρ̃p

)2(
2 |d̃p |2

ρ̃p
− 1

)
⎫⎬
⎭

1/2

, (13)

with the standard deviation

σ̂ (1)
γX

≈ A−1

⎧⎨
⎩

N/2−1∑
p=1

( 〈|φ̃p|2〉
ρ̃p

)2(
2
|d̃p|2
ρ̃p

− 1

)⎫⎬
⎭

−1/4

. (14)

To streamline the notation, here I assumed that the dc (p =
0) and the Nyquist (p = N/2) components of the time series
have been removed or filtered out. Further averaging (14) over
multiple data realizations leads to an estimate

σ (1)
γX

≈ A−1

⎧⎨
⎩

N/2−1∑
p=1

( 〈|φ̃p|2〉
ρ̃p

)2
⎫⎬
⎭

−1/4

. (15)

The constraint on |γX| at the 68% confidence level is |γX| <

σ (1)
γX

. An immediate consequence of Eq. (15) is that the
constraints on |γX| scale with the number of frequency points
NF sampled inside the DM line shape (Fig. 2) as 1/N

1/4
F . This

is a qualitatively expected result, since the standard deviation
of an average of NF data points (here the measured quantity
is the VULF signal PSD) scales as 1/

√
NF . The additional

square root comes from the fact that the VULF signal PSD is
proportional to (γX)2. The number of points inside the profile
NF is on the order of (τc�f )−1, where �f = 1/N�t is the
DFT frequency step. Thus NF ∼ N�t/τc.

The constraint (15) can be simplified further for white-noise
devices (see Appendix C for details). For white noise, the PSD
is flat, ρ̃p = Nσ 2, with σ being the noise standard deviation.
For the fiducial value of η = 1,

|γX| < 2.4
σ

A�0

(
�t

Nτc

)1/4

, (16)

which formalizes the earlier qualitative observations. The
factor (�t/τc)1/4 can be substantial: For Compton frequencies
on the order of the sampling rate it is O(ξ 1/2) ≈ 3 × 10−2.
For a fixed duration of a measurement campaign, the tightest
bounds are obtained for �t ∼ τc. The constraints can be further
reexpressed in terms of boson masses and DM energy density

|γX| < 5.4 × 10−2 σ

A

mφc

h̄
√

ρDM

(
mφc2

h̄N
�t

)1/4

, (17)

revealing the m
5/4
φ scaling when the device constant A does not

depend on the Compton frequency.
Now we consider a special case of a fully coherent signal,

i.e., τc 
 N�t . Then the field φ(t) = �0 cos(ωφt + ϕ), where
ϕ is some random but fixed phase. For illustration, take ωφ

to be equal to one of the DFT angular frequencies, say, ωm,
0 < m < N/2. Then the field PSD 〈|φ̃p|2〉 = 1

4�2
0N

2δp,m and,
for white noise, Eq. (15) reduces to

|γX| < σ (1),coh
γX

≈ σ

A�0

2√
N

. (18)

Thus comparing the stochastic field (16) and the coherent
field (18) constraints, we see that the sensitivity in the stochas-
tic field case differs by a factor (N�t/τc)1/4. This is in contra-
diction to the statement made in Ref. [4] (using the notation of
this paper) that “we expect to boost the sensitivity σ of a single
measurement by a factor of [min(N,τc/�t )]1/2—the square
root of the number of coherent measurements.” The correct
statement would have included the factor of (Nτc/�t )1/4

instead of (τc/�t )1/2 [see Eqs. (16) and (18) for additional O(1)
numerical factors]. While the derived scalings are consistent
with magnetometry sensitivity estimates [7], they apply to a
broader range of experiments and include numerical factors
specific to DM velocity distributions.

Based on Eqs. (13) and (14), one could also devise the
signal-to-noise ratio (SNR) S statistic in frequency space

S ≡ γ̂
(1)
X

σ̂
(1)
γX

(19)

that can be applied to the data streams directly. This is
an application of the matched filter technique (for example,
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used by the gravitational wave community [34]). The specific
values of the VULF PSD 〈|φ̃p|2〉 template depend on the field
Compton frequency. Thus the SNR statistic needs to be scanned
against multiple templates by varying fφ and searching for S
values to exceed a certain value, e.g., S > 5.

One of the subtleties is that, while deriving formulas in this
section, the device noise PSD ρ̃p was assumed to be known.
The VULFs are, however, ever-present and cannot be turned
off or shielded out. A strategy could be to fit the data PSD
with a smooth polynomial and assign the noise PSD to the
smooth background. In addition, more sophisticated, Bayesian
logic-based approaches can be adopted; see, e.g., the mixture
model discussion in Ref. [35].

Finally, it is worth noting that Eqs. (16) and (17) were
derived under the assumption that the entire DM line shape is
sampled in the DFT frequency space, i.e., nominally for VULF
frequencies below the DFT Nyquist frequency. However, as
shown in the following section, this limitation can be substan-
tially relaxed and the sensitivity to Compton frequencies above
the Nyquist frequency can be gained due to aliasing inherent
to the discrete Fourier transform. I will demonstrate that the
sensitivity estimates (16) and (17) hold for fφ � 106/2π�t .

B. Probing high-frequency dark-matter fields through aliasing

A high-frequency (above the Nyquist frequency) DM field
still interacts with the device, but it is just sampled at an
insufficient rate to resolve individual field oscillations. The
aliasing in discrete sampling qualitatively refers to the fact
that the PSD of an oscillation of frequency ωφ and that of
the same amplitude and phase oscillations of frequencies
ωφ + (2π/�t )q, with q being an integer, are identical. In
other words, the DM oscillations with frequencies above the
Nyquist frequency are effectively shifted to the nominal DFT
range: fφ,aliased = mod (fφ,1/�t ). To explicitly demonstrate
this relation, examine the statement of the Wiener-Khinchin
theorem in DFT space relating the PSD and the time-domain
correlation function

〈|φ̃p|2〉 = N

N−1∑
k=−(N−1)

exp

(
−i

2π

N
pk

)
g(k�t ,0). (20)

It can be verified by a direct substitution in Eq. (9) thatg(k�t ,0)
is invariant under ω′

φ → ω′
φ + (2π/�t )q.

Figure 4 demonstrates the aliasing effect on the sampled
DM field PSD for various Compton frequencies. In this figure,
to generate the field PSDs, I carried out summations in the
Wiener-Khinchin theorem (20) numerically with the two-point
correlation function (9), setting vg = vvir. The coherence time
τc was varied with Compton frequency according to Eq. (7).
In this simulation, the total number of points and the sampling
interval were N = 2 × 106 and �t = 0.1 s, respectively. The
corresponding Nyquist frequency is fNyquist = 1/2�t = 5 Hz.
Several observations can be made based on this simulation.

(i) While the high-frequency fields are aliased to the
nominal DFT frequency range, the original coherence time
is retained by the aliased copy. Therefore, an experimentalist
should search for aliased VULF lines that may be broader than
the ones expected from the VULF oscillations in the nominal
0 � fφ � fNyquist frequency range.

�

�

� � � × �

� � �

� �

� �

� �
� � �

FIG. 4. Effects of DFT aliasing on the observable power spectral
density of dark-matter field. Reduced PSD is defined as 〈|φ̃p|2〉/N�2

0

and is shown as a function of DFT frequency detuning from 4 Hz.
The aliased Doppler-shifted Compton frequency for all curves is 4 Hz.
The Nyquist frequency in the simulation is 5 Hz. See the text for other
simulation parameters. The top panel is for low-frequency Doppler-
shifted Compton frequencies and the bottom panel shows PSDs for
high-frequency fields. The data sampling rate is the same for all shown
curves.

(ii) The shape of the DM line is preserved as long as
the bulk of the aliased profile fits inside the nominal DFT
frequency range 0 � f � fNyquist . If τc � �t , the shape is
distorted by the aliasing and the background-signal separation
becomes challenging. An example of such a distortion is for
the f ′

φ = 1 MHz + 4 Hz curve in Fig. 4. This observation, in
particular, means that the sensitivity estimates (16) and (17)
hold for fφ � 106/2π�t .

(iii) The nondistortion condition τc � �t means that the
VULF field must remain coherent over a duration of a sampling
period.

Suppose that the total observation time T = N�t is smaller
than the coherence time for a Compton frequency that is
below fNyquist . Then this oscillation behaves as a deterministic
coherent signal on the timescale T . As we start searching
for higher Compton frequencies via aliasing, the DM signal
becomes increasingly stochastic in nature, with coherence time
on the order of the sampling time �t for the highest probed
frequencies. Then the stochastic field approach developed in
this paper, while being valid for deterministic signals, becomes
especially relevant. Statistical estimators (13)–(15) explicitly
refer to the DM field PSD 〈|φ̃p|2〉. In practice, these quantities
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should be estimated using DFT sampling (20) of the correlation
function to properly reflect aliasing and the accompanying dis-
tortions. Notice that the use of Doppler-shifted frequencies for
high-frequency fields is important, because aliased frequencies
are mapped as mod (f ′

φ,1/�t ), and 1/�t may be comparable
to the Doppler shift mφv2

g/4πh̄.
Aliasing effects extend the DM searches to higher Compton

frequencies, as long as the frequencies of VULF oscilla-
tions are within the device bandwidth. This idea was pre-
viously employed in Ref. [11] to establish projected high-
frequency constraints on VULF coupling strengths in atom
interferometry.

C. Statistical significance of the correlation function for a
network

Section VI A established constraints on the coupling
strength γX for a single device. The derivation for a multinode
network is similar, starting from the network likelihood (A22)
(see Appendix A 4 for details). I label the devices with the
letters at the beginning of the alphabet a,b,c, . . . and operate
withNd -dimensional quasi-PSD matricesρp and Sp, where the
index p, as previously, refers to the DFT frequency. The noise
and the DM signal PSD matrices ρp and Sp have elements in
the node space ρa,b

p = 〈ña
p(ñb

p)∗〉 and Sa,b
p = γ 2

XA2〈φ̃a
p(φ̃b

p)∗〉,
respectively. Here ña

p is the DFT component of the ath device
noise and φ̃a

p is the DFT component of the field at the location ra

of the ath device. If the devices are independent, i.e., their noise
is mutually uncorrelated and the devices are identical, ρa,b

p =
δa,bρ̃p. The quantities Φa,b

p ≡ 〈φ̃a
p(φ̃b

p)∗〉 are related through
the Fourier transform (the Wiener-Khinchin theorem) to the
derived two-point correlation function g(τ,da,b = ra − rb).

The resulting standard deviation for the coupling strength
γX in the weak DM signal limit reads

σ (network)
γX

= A−1

⎧⎨
⎩

N/2−1∑
p=1

tr(ΦpΦ
p

)

(ρ̃p)2

⎫⎬
⎭

−1/4

. (21)

The major difference from the single device formula (15) is
the presence of the trace tr(ΦpΦ

p
) = ∑

a,b Φa,b
p Φb,a

p . If all
Nd nodes are separated by distances larger than the coherence
length λc, only the diagonal elements contribute to the trace
and σ (network)

γX
= σ (1)

γX
/N

1/4
d , where σ (1)

γX
is the standard deviation

for a single device (15).
In the opposite limit of the node separations being much

smaller than λc, σ (network)
γX

= σ (1)
γX

/
√

Nd . Thus, compared to an
individual device, the statistical sensitivity of a fully coherent
network is improved by the factor

√
Nd , where Nd is the

number of nodes. The qualitative reason for this scaling is
that at each DFT frequency, the network samples (Nd )2 DM
quantities Sa,b

p . Due to the conventional 1/
√
N (where N

denotes the number of data points) averaging dependence,
this leads to σ (network)

γX
∝ 1/

√
Nd . An additional square root

comes from the fact that each of the measured quantities Sa,b
p

is proportional to (γX)2.
The best bounds are attained for colocated devices or the

fully coherent network, i.e., when da,b � λc. Indeed, in this
case in Eq. (21) all cross-node correlators are equal to a
single-node correlator:Φa,b

p = Φa,a
p . For a distributed network,

however, Φa,b
p � Φa,a

p and the statistical sensitivity is reduced
and is bounded by the case when da,b 
 λc for all the network
links:

σ (1)
γX

/(Nd )1/2 � σ (network)
γX

� σ (1)
γX

/(Nd )1/4.

An experiment operating at a hertz sampling rate probes
subhertz Compton frequencies (see, however, Sec. VI B for
the possibility of probing higher frequencies), which translate
into coherence lengths [Eq. (8)] λc � 5 × 107 km. Thus even
a global terrestrial network (da,b � 104 km) of such devices
would operate in the fully coherent regime, gaining the most in
sensitivity from the correlated analysis: σ (network)

γX
= σ (1)

γX
/
√

Nd .
This condition, however, can change for higher-frequency
fields with shorter coherence times probed through the aliasing
technique. For example, for a megahertz field, the coherence
length is ∼10 km.

VII. ATOMIC CLOCKS

In this section, I qualitatively discuss an application of the
presented formalism to atomic clocks and their networks.

In our preceding discussion we assumed that the mea-
surements were instantaneous; in practice, there is always a
finite interrogation time t0 for a single measurement. I assume
that the next measurement is taken right after the previous
one was completed (no dead times), with the DFT sampling
time interval of Sec. VI �t = t0. We form a time series of
fractional frequency excursions s(a)

n ≡ (ωn − ωc)/ωc taken at
tn = nt0; n = 1,N for a fixed internode distance d, with a

labeling the node and ωc being the nominal clock frequency.
The VULF contribution to s(a)

n can be expressed in terms of
the single-measurement accumulated clock phase and sensitiv-
ity coefficients KX = ∂ ln ωc/∂ ln X − ∂ ln ωLO/∂ ln X, where
ωLO is the resonance frequency of the local oscillator (reference
cavity):

s(a)
n =

(√
h̄c

∑
X

γXKX

)∫ tn

tn−t0

φ(ra,t ′)
dt ′

t0
. (22)

Notice the integral of the VULF field time evolution history
over the interrogation duration. In this section, X runs over
fundamental constants that affect the atomic or the local
oscillator resonance frequencies. The constants may include
the electromagnetic fine-structure constant α, the mass of the
electron me, and so on (see, e.g., the discussion in [32] for both
optical and microwave clocks). To streamline the notation, we
combine

∑
X γXKX = γeff , and γX is to be replaced with γeff

in the previous sections.
The reference to the dependence of the local cavity reso-

nance frequency ωLO on fundamental constants in the sensi-
tivity coefficients KX is due to the fact that in the Ramsey
interrogation scheme, the accumulated atomic phase and thus
the detected quantum probability of a resonant transition is
determined by a time integral of the difference in frequencies
between the clock atom and the local oscillator. The local
oscillator (reference cavity) itself is subject to the DM field
influence during the interrogation. An example of such an
effect is the DM-induced variation in the Bohr radius a0 =
αh̄/mec affecting the cavity length L ∝ a0 and thus the cavity
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resonance frequencies [9]. I refer the reader to further clock-
specific discussions in [32,36].

Equation (22) is an approximation as it assumes instanta-
neous responses of the atom and the local oscillator to the
time-varying fundamental constants. In particular, the cavity
response is not instantaneous, for example, due to the laser
pulse intracavity round-trip time 2L/c being finite. Moreover,
the macroscopic adjustment of the macroscopic cavity length
to the microscopic variations of fundamental constants requires
propagation of sound waves in the cavity spacer material [10]
and therefore the cavity dynamic response can exhibit a
frequency cutoff above the characteristic frequency vs/L ∼
105 Hz, where vs is the speed of sound in the cavity spacer.
The dynamic response of an atom is much faster, with an ex-
pected qualitative change in the otherwise nearly instantaneous
response behavior above typical atomic frequencies, which
are comparable to the upper limit on the plausible values of
Compton frequencies (see Table I). Thereby, in general, the
sensitivity coefficients KX also depend on time and, strictly
speaking, should include the delayed cavity response. Another
subtlety is an operation of the atomic clock servoloop that
locks the cavity resonance to the atomic frequency and requires
several measurement cycles (see Ref. [32]).

It is worth mentioning that it is hardly necessary to
make frequency ratio comparisons between clocks of different
sensitivities to the variation of fundamental constants as in
the original proposal [4] and the follow-up experimental
work [37,38]. The frequency comparison of a local oscillator
and the clock atoms is naturally carried out per the conventional
operation of a single atomic clock and it is sufficient. Another
advantage of using a single clock is a larger sensitivity to the
variation of fundamental constants (see also Ref. [11]). For
both microwave and optical clocks ∂ ln ωc/∂ ln α ≈ 2 due to
the Rydberg constant being α2mec

2. In the frequency-ratio
technique, however, this dominant contribution cancels out and
the sensitivity is attributed entirely to the small difference in
α-dependent relativistic corrections to atomic structure.

Now, assuming the validity of Eq. (22), consider a mea-
surement with a single clock. If the DM field remains coherent
over a duration of a single measurement t0 � τc, the field
behaves as φ(ra,t) ≈ �0 cos(ω′

φt + ϕa) over t0, where the
phase ϕa = ϕ − k · ra , with ϕ being a fixed phase common
to all nodes. Then the VULF signal [Eq. (22)] is explicitly

s(a)
n =

√
h̄cγeff

sin(ω′
φt0/2)

ωφt0/2
φ(ra,tn−1 + t0/2), (23)

leading to the identification of the device constant A of Sec. VI
as A = √

h̄cW(ω′
φt0), where the filter function is

W(ω′
φt0) = sin(ω′

φt0/2)

ω′
φt0/2

. (24)

This function emphasizes the dependence on the ratio of
the interrogation time to the period of VULF oscillation. If
VULF oscillations are slow compared to t0, then W(ω′

φt0 �
1) ≈ 1, and if they are fast, the effect tends to average out,
|W(ω′

φt0 
 1)| < 2(ω′
φt0)−1. For a typical [39] t0 ∼ 1 s for

optical lattice clocks, the separation between the two regimes
occurs at fφ ≈ 1 Hz (mφ ∼ 10−14 eV). For the nominally
probed Compton frequencies fφ < 1/2t0, the influence of

the window function is minimal, W(ω′
φt0) ≈ 1. However,

the bandwidth-limiting effect of the filter function becomes
important for higher frequencies probed through the aliasing
technique (Sec. VI B). The condition t0 � τc employed in
deriving Eq. (23) is consistent with the limits on applicability
of the aliasing technique, fφ � 106/2πt0. For our illustrative
optical lattice clock example with t0 = 1 s, fφ � 0.2 MHz
(mφ � 8 × 10−10 eV).

The search in the indicated VULF frequency parameter
space can be carried out by directly employing the frequency-
space SNR statistic of Sec. VI A. If the S < 1 for the entire
probed frequency space, one could rigorously constrain the
coupling constant γeff through Eq. (15) for the measured clock
noise PSD.

An estimate of the sensitivity can be made by assuming that
the measurement noise is dominated by the white frequency
noise, i.e., Allan variance scales as σy(τ ) ∝ 1/

√
τ . The asso-

ciated noise PSD is flat. Then σ in Eq. (17) can be replaced
by the Allan variance σy(t0), leading to the constraint on the
effective coupling strength

|γeff | < 5.4 × 10−2 σy(t0)

|W(ωφt0)|
mφc1/2

h̄3/2√ρDM

(
mφc2

h̄N
t0

)1/4

.

(25)

This estimate holds for t0 � τc and τc � Nt0. For low fre-
quencies τc 
 Nt0, one needs to employ the properly adopted
Eq. (18).

The projected constraints on the electromagnetic gauge
modulus de are shown in Fig. 5. I used the value of σy(1 s) =
10−16, characteristic of modern optical cavities [40]. I set Kα =
3 and suppressed sensitivity to the electron mass variation
dme

≡ 0. Then γeff = 3γα = 3
√

2πde/EP, where the last rela-
tion is for the electromagnetic gauge modulus de (see Sec. II A).
For high (f ′

φ > 1/t0) frequencies I set |W(ω′
φt0)| = 2(ω′

φt0)−1

as one could simply repeat the experiment with a slightly

�

�

� �

FIG. 5. Projected constraints on the electromagnetic gauge mod-
ulus de for high Compton frequencies. The excluded parameter space
from the equivalence principle (EP) tests [10] is shown as a shaded
region. The solid orange line is the projected limit from Eq. (25)
for an optical clock compared to the state-of-the-art cavity [40] (see
the text for details). The dashed green line is drawn neglecting the
bandwidth-limiting effect of the filter function (24).
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adjusted t0 to maximize sensitivity for a given ω′
φ . The single

measurement time t0 was set to 1 s and one year of integration
time was assumed. In Fig. 5 there is a region of parameter space
where the clocks can explore yet-unconstrained parameter
space. The existing equivalence principle constraints on the
modulus dme

are about an order of magnitude worse than
those for de [10], somewhat improving the discovery reach
of atomic clocks. To improve the sensitivity, one needs to
improve the short-term clock stability. While in the region
of high frequencies, resonant mass detectors may be more
competitive [10], but are narrow band.

The constraints can be improved further by employing a
network of clocks. The global clock networks include the
global positioning system and other navigational satellite
constellations and a trans-European network of laboratory
clocks [41,42]. Navigational satellites house microwave clocks
on board and the navigational systems also include clocks on
terrestrial stations. Several local clock networks are available at
national metrology institutes around the world, mostly used for
clock comparisons. It is clear from the discussion in Sec. VI C
that compared to an individual clock, the statistical sensitivity
of a network is improved by a factor of up to

√
Nd , where Nd is

the number of clocks. The best limits on γX are attained when
the clocks are colocated (or within the field coherence length),
but, in the event of a positive observation, the confidence is
improved for a distributed network.

VIII. CONCLUSION

Examination of the VULF parameter space in Table I
raises the question of when the DM signal can be considered
deterministic and when it is stochastic in nature. If the total
measurement time is below the coherence time, then the VULF
behaves as a deterministic oscillating signal. While the phase,
the amplitude, and the frequency of the oscillations are ran-
domly drawn from the probability distribution (12), their values
persist over the entire measurement duration. If, however, the
duration of the measurement campaign is much longer than
the VULF coherence time, then multiple field realizations are
sampled and one needs to apply the stochastic field techniques
discussed in this paper. The stochastic approach becomes
even more valuable when the high-frequency fields are probed
through the aliasing effect inherent to discrete sampling, as the
coherence time becomes shorter for such fields. The presented
formalism is applicable to both cases and can serve as a starting
point for statistical analysis.

This paper established a theoretical formalism for analyzing
stochastic properties of ultralight dark-matter fields through an
explicit evaluation of the DM field N -point correlation func-
tion. The correlation function encodes all so-far-established
DM priors. For a single device, I derived a DM line-shape
profile than can be directly compared to the experimental data
through the developed SNR statistic. The paper also addressed
the DM sensitivity of a distributed (or colocated) network of
precision-measurement tools.
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APPENDIX A: DISCRETE FOURIER TRANSFORM AND
FREQUENCY-SPACE PROBABILITY DISTRIBUTIONS
FOR DETERMINISTIC AND STOCHASTIC SIGNALS

1. Review of the discrete Fourier transform

Introductions to the discrete Fourier transform can be found,
for example, in Refs. [34,43]. Here we review key definitions
and relevant results and also introduce the notation used
through the main text of the paper.

Consider a time series {xk} with values tabulated at times
tk = k�t , k = 0,N − 1. The total observation time is T =
N�t , where N is the total number of individual measurements
and �t is the time step. We will assume that N is an even
number and xk are real valued. The discretized time series is
continued periodically outside the observation time interval.

The DFT components x̃p are defined via the discretized
Fourier transformation of the time series

x̃p =
N−1∑
k=0

exp

(
−i

2π

N
pk

)
xk. (A1)

The index p refers to the DFT frequencies fp = p/N�t or,
equivalently, to the DFT angular frequencies ωp = 2πfp. The
frequency steps are �f ≡ 1/N�t and �ω ≡ 2π/N�t .

Introducing vectors x = {x0,x1, . . . ,xN−1}T and x̃ =
{x̃0,x̃1, . . . ,x̃N−1}T , the discrete Fourier transform can be
interpreted as a linear transformation (basis rotation)

x̃ =
√

NU x, (A2)

where the elements of the matrix U are Upk =
1√
N

exp(−i 2π
N

pk). The transformation matrix U is symmetric,

UT = U , and unitary, U−1 = U †. Using unitarity, Eq. (A2)
can be inverted to yield the inverse discrete Fourier transform

x = (
√

N )−1U† x̃. (A3)

Discrete Fourier transformed values are periodic, x̃N+p =
x̃p, as can be verified directly from Eq. (A1). Thereby, we limit
p to the nominal range 0,N − 1 with frequencies fp ranging
from 0 to (N − 1)/N�t . Since x are real valued

x̃p = x̃∗
−p = x̃∗

N−p. (A4)

Clearly, the information contained in coefficients x̃p at frequen-
cies above the Nyquist frequency fNyquist = fN/2 = 1/2�t is
redundant as these coefficients can be recovered by complex
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conjugating coefficients of frequencies below fNyquist . Another
consequence of Eq. (A4) is that the dc x̃0 and the Nyquist x̃N/2

DFT components are strictly real valued: x̃0 = ∑N−1
k=0 xk =

N〈x〉 and x̃N/2 = ∑N−1
k=0 (−1)kxk .

If x is a stochastic time series, we may define the autocorre-
lation matrix C with elements Ckk′ = 〈xkxk′ 〉. For stationary
processes, the autocorrelation depends only on the lag l =
k′ − k, so Cl ≡ Ck,k+l = 〈xkxk+l〉. Then the autocorrelation
function has the following properties: C0 = 〈xkxk〉 = σ 2, Cl =
C−l , and |Cl| � C0 = σ 2, where σ is the standard deviation.

We define the (two-sided) PSD matrix C̃ with elements
C̃pp′ ≡ 〈x̃p(x̃p′ )∗〉, which by using (A2) can be related to the
autocorrelation matrix C as

C̃ = NUCU†, (A5)

C = N−1U†C̃U. (A6)

For stationary processes, the PSD matrix is diagonal: C̃pp′ =
δpp′ 〈|x̃p|2〉. We will simply refer to the diagonal matrix ele-
ments as C̃p ≡ 〈|x̃p|2〉. In particular,

C̃p = N
∑
kk′

UpkCkk′U ∗
pk′

=
N−1∑

k,k′=0

Ckk′ exp

(
i
2π

N
p(k − k′)

)

=
N−1∑

l=−(N−1)

(N − |l|)Cl exp

(
−i

2π

N
pl

)

≈ N

N−1∑
l=−(N−1)

Cl exp

(
−i

2π

N
pl

)
. (A7)

This is the statement of the Wiener-Khinchin theorem.
As an illustration of the Wiener-Khinchin theorem, consider

a white-noise process for which CWN
l = σ 2δl,0. Then Eq. (A7)

yields PSD C̃WN
p = Nσ 2 regardless of the DFT frequency. This

white-noise relation can be also derived directly:

C̃WN
p = 〈|x̃p|2〉 = N

∑
k

∑
k′

UpkC
WN
kk′ U ∗

pk′

= Nσ 2
∑

k

∑
k′

Upkδkk′U ∗
pk′ = Nσ 2(UU†︸︷︷︸)pp

=I

= Nσ 2.

We will need another property of PSDs: C̃p = C̃N−p. This
relation immediately follows from Eq. (A4).

2. Probability distribution in frequency space
for the deterministic signal

The derivation in this section essentially follows Ref. [34]. It
corrects errors in that work related to the dc component and, in
addition, includes the contribution from the Nyquist frequency.

Consider a data time series d, which can contain both the
sought signal s and noise n: dk = sk + nk , k = 0,N − 1. The
signal is prescribed by some model M . We assume that the
noise is Gaussian with 〈nk〉 = 0, but not necessarily white.
Then the likelihood is given by the multivariate Gaussian

distribution for residuals n = d − s,

p(d|M,I ) = 1√
det(2πC)

exp

(
−1

2
n†C−1n

)
, (A8)

where I stands for the prior information proposition and the au-
tocorrelation matrix has elements Ckk′ = 〈nknk′ 〉. Now we ro-
tate the argument of the exponential to the DFT basis by insert-
ing the identity U†U = I: n†C−1n = n†(U†U)C−1(U†U)n =
(Un)†(UCU†)−1(Un). The indicated groups can be expressed
in terms of DFT quantities Un = ñ/

√
N and UCU† = N−1C̃

[see Eqs. (A2) and (A5)]. Further, we use the fact that the
PSD matrix is diagonal, C̃ = diag(C̃p), to invert the matrix:
C̃−1 = diag(C̃−1

p ). Thus, the argument of the exponential is
transformed into

−1

2
n†C−1n = −1

2

N−1∑
p=0

|ñp|2
C̃p

, (A9)

leading to the likelihood (we will recover the normalization
factor below)

pdet(d̃|M,I ) ∝
N−1∏
p=0

exp

(
−1

2

|ñp|2
C̃p

)
. (A10)

Here we used the label det to emphasize the deterministic (as
opposed to stochastic) nature of the signal. Apparently, the
spectral contributions become uncorrelated as a result of the
basis rotation. As the data are real valued, we further use the
redundancies |ñN−p|2 = |ñp|2 and C̃N−p = C̃p and combine
identical spectral contributions (notice that the p = 0 and p =
N/2 contributions are treated as special cases as they do not
have matching quantities)

pdet(d̃|M,I ) ∝ exp

[
−1

2

( |ñ0|2
C̃0

+ |ñN/2|2
C̃N/2

)]

×
N/2−1∏
p=1

exp

(
−|ñp|2

C̃p

)
. (A11)

The volume element associated with this probability distribu-
tion reads

d Re(ñ0)d Re(ñN/2)
N/2−1∏
p=1

d Re(ñp)d Im(ñp), (A12)

where we took into account that the dc and the Nyquist values
are strictly real. The total number of random DFT variables is
N and it remains equal to the number of sampled data points. To
recover the normalization factor we can compute the Jacobian
J of the transformation so that p(D̃|M,I ) = J × p(D|M,I ).
Alternatively, as the transformation U is linear, we can sim-
ply normalize the distribution. With

∫ +∞
−∞ exp[− 1

2x2/ρ2]dx =√
2πρ and

∫ +∞
−∞ exp[−(x2 + y2)/ρ2]dx dy = πρ, we arrive at

the frequency-domain likelihood

pdet(d̃|M,I ) =
N/2∏
p=0

1(
β−1

p πC̃p

)βp
e−βp |ñp |2/C̃p . (A13)

Here βj = 1 except for the dc and the Nyquist components
for which β0 = βN/2 = 1/2. It is worth emphasizing that we
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treated the sought signal s as deterministic. In the above
likelihood ñp ≡ d̃p − s̃p.

While we derived the DFT likelihood (A13) rigorously,
this result is expected on qualitative grounds as the DFT
components ñp are sums of Gaussian random variables nk ,
meaning that ñp is also Gaussian distributed. Moreover, the
DFT values are uncorrelated; thereby the DFT likelihood (A13)
is a product of individual Gaussians.

3. Stochastic signal probability distribution and
its likelihood in frequency space

Now let us assume that the sought signal s itself is stochastic
and Gaussian distributed, with the mean value being zero. Then
its probability distribution [cf. Eq. (A13)] reads

p(s̃|M,I ) =
N/2∏
p=0

1(
β−1

p πS̃p

)βp
exp

(
−βp

|s̃p|2
S̃p

)
, (A14)

where the signal PSD S̃p = 〈|s̃p|2〉. At the same time for a
specific realization of the signal, the likelihood is given by
Eq. (A13),

p(d̃|S̃,I ) =
N/2∏
p=0

1(
β−1

p πC̃p

)βp
e−βp |d̃p−s̃p |2/C̃p , (A15)

where C̃p = 〈|ñp|2〉 is the noise PSD. Then the likelihood for a
stochastic signal is obtained by marginalizing over realizations
of the signal

pstoch(d̃|M,I ) =
∫

d s̃ p(d̃|S̃,I )p(s̃|M,I ). (A16)

The integration can be carried out using explicitly, leading to

pstoch(d̃|M,I ) =
N/2∏
p=0

1(
β−1

p π�̃p

)βp
e−βp |d̃p |2/�̃p , (A17)

with �̃p = C̃p + S̃p. This result can also be understood with-
out explicit marginalization: Consider a random variable η̃p ≡
s̃p + ñp = d̃p. Because both s̃p and ñp are Gaussian, their
sum η̃p is Gaussian as well and it is distributed according to
Eq. (A13). The associated PSD is

〈|η̃p|2〉 = 〈(s̃p + ñp)(s̃p + ñp)∗〉
= 〈|s̃p|2〉 + 2 Re 〈s̃pñ∗

p〉︸ ︷︷ ︸
=0

+〈|ñp|2〉 = C̃p + S̃p = �̃p.

Then the application of Eq. (A13) with ñp → η̃p = d̃p and
C̃p → �̃p immediately yields Eq. (A17).

4. Likelihoods for a network

This section generalizes frequency-space likelihoods for
deterministic and stochastic signals to a network of devices.

We consider a network of Nd devices. The network nodes
can be degenerate and contain one or several devices. We
will label the devices with letters at the beginning of the
alphabet a,b, . . . and use superscripts for device labels and
subscripts for time stamps. Then the time series {xa

k } refers
to the time series of Sec. A 1 for the ath device. Each

device data time series {da
k } can contain the noise component

{na
k}, 〈na

k〉 = 0. To streamline the notation, we introduce
supervectors spanning the entire network time series: x =
((x1

1 ,x1
2 , . . . ,x1

N ), . . . ,(xNd

1 ,x
Nd

2 , . . . ,x
Nd

N ))T . Supermatrices C
are defined in a similar fashion. We will use underlined
quantities to emphasize the use of this supervector space.

The correlation matrix C for a network is defined as a matrix
with elements Cab

kk′ ≡ 〈na
kn

b
k′ 〉. If devices are uncorrelated,

Cab
kk′ ≡ δab〈na

kn
a
k′ 〉. We will however consider the general case,

when the devices may share some noise channel, introduced,
for example, by the device comparison techniques such as
the use of an internode optical fiber. The PSD matrix C̃ is

generalized to have elements C̃
ab

pp′ ≡ 〈ña
p(ñb

p′ )∗〉.
First, consider a deterministic signal {sa

k } prescribed by a
model M . We suppose each datum is composed of the noise and
the sought signal: da

k = sa
k + na

k . The time-domain likelihood
is given by the multivariate Gaussian distribution

p(d|M,I ) = 1√
det(2πC)

exp

(
−1

2
n†C−1n

)
, (A18)

with I being prior information. Explicitly,

n†C−1n =
Nd∑

a,b=1

N−1∑
k,k′=0

na
k (C−1)ab

kk′n
b
k′ . (A19)

Now we carry out the rotation to the DFT basis as in Sec.
A 2. The relevant DFT supermatrix U is block diagonal and is
composed of Nd DFT matrices U . Then

n†C−1n = 1

N
ñ†(UCU †)−1ñ = ñ†C̃

−1
ñ. (A20)

Here the DFT supervectors are ñ =
((ñ1

1,ñ
1
2, . . . ,ñ

1
N ), . . . (ñNd

1 ,ñ
Nd

2 , . . . ,ñ
Nd

N ))T , where the
lower indices enumerate DFT frequencies. To efficiently
invert C̃ , we reshuffle the components of ñ so that
ñ′ = ((ñ1

1,ñ
2
1, . . . ,ñ

ND

1 ), . . . (ñ1
N,ñ2

N, . . . ,ñ
Nd

N ))T , i.e., each
subgroup shares the same DFT frequency. Then the reshuffled
PSD matrix is block diagonal, each block C̃p corresponding
to a given DFT frequency: (C̃p)ab = 〈ña

p(ñb
p)∗〉. Indeed, for

a stationary stochastic process, the network PSD is diagonal
in frequency indices for reasons discussed in Sec. A 1:
C̃

ab

pp′ ≡ δpp′ 〈ña
p(ñb

p)∗〉. The reshuffling is useful because an
inverse of a block-diagonal matrix is itself a block-diagonal
matrix, with submatrices C̃

−1
p .

The resulting frequency-domain network likelihood for a
deterministic signal

pdet(d̃|M,I ) =
N/2∏
p=0

1[
β−1

p π det(C̃p)
]βp

× exp[−βp(d̃p − s̃p)†C̃
−1
p (d̃p − s̃p)], (A21)

where data vectors d̃p ≡ (d̃1
p,d̃2

p, . . . ,d̃ND
p ), signal vectors

s̃p ≡ (s̃1
p,s̃2

p, . . . ,s̃ND
p ), and PSDs (C̃p)ab = 〈ña

p(ñb
p)∗〉. As in

Eq. (A13), βp = 1 except for the dc and the Nyquist compo-
nents for which β0 = βN/2 = 1/2.
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Following the steps of Sec. A 3, we generalize Eq. (A21) to
stochastic signals

pstoch(d̃|M,I ) =
N/2∏
p=0

1[
β−1

p π det(�̃p)
]βp

e−βp d̃
†
p�̃

−1
p d̃p , (A22)

with �̃p = C̃p + S̃p. The elements of the signal PSD matrix

are (S̃p)ab = 〈s̃a
p(s̃b

p)∗〉. This result can be obtained immedi-
ately following the arguments given just below Eq. (A17).
Alternatively, one could explicitly carry out marginalization
over signal values. In this case, the marginalization can be
aided by the convolution formula of two multivariate Gaussian
distributions∫

e−(x− y)T A−1(x− y)/2

√
det(2π A)

e− yT B−1 y/2

√
det(2π B)

d y = e−xT (A+B)−1 x/2

√
det[2π (A + B)]

.

(A23)

A more general convolution formula can be found in [44].
Equations (A21) and (A22) correct corresponding equations
in Ref. [44] for the dc and Nyquist contributions.

APPENDIX B: ESTIMATORS OF THE MEAN AND
VARIANCE OF THE COUPLING STRENGTH [EQS. (13)

AND (14)]

Here I derive the maximum-likelihood estimators of the
mean and variance of the coupling strength for stochastic sig-
nal. In the main text, the noise PSD was defined as ρ̃p = 〈|ñp|2〉
and the dark-matter signal PSD as 〈|s̃p|2〉 = A2γ 2

X〈|φ̃p|2〉,
where γX is the coupling strength to dark matter and A is
the (fixed) device constant. We will use the parametrization
〈|s̃p|2〉 = �S̃p, with � ≡ (γX)2 and S̃p ≡ A2〈|φ̃p|2〉.

The likelihood is given by Eq. (A17). For simplicity, we
assume that the dc component has been removed from the data
and the Nyquist component was filtered out. Then

pstoch(d̃|�,I ) =
N/2−1∏
p=1

1

π (ρ̃p + �S̃p)
e−|d̃p |2/(ρ̃p+�S̃p). (B1)

We would like to determine the posterior distribution p(�|d̃,I )
for the parameter � given data d̃ and prior information I . To
this end we invoke the Bayes theorem

p(d̃,�|I ) = p(d̃|I )p(�|d̃,I ) = p(�|I )p(d̃|�,I ),

leading to

p(�|d̃,I ) = p(�|I )

p(d̃|I )
pstoch(d̃|�,I ). (B2)

Here p(�|I ) gives the prior probability density for the param-
eter �. We assume that there is no prior knowledge about the
value of the parameter. For example, we could take p(�|I ) to
be a uniform distribution in the range [0,�max], where �max is
sufficiently large. Here p(d̃|I ) is a normalization constant.

Now we put the posterior distribution p(�|d̃,I ) into a
Gaussian form (strictly speaking, we are using the Laplace
approximation)

p(�|d̃,I ) ≈ C exp

(
− (� − �̂)2

2(σ̂�)2

)
, 0 < � < �max, (B3)

where �̂ and σ̂� are the maximum-likelihood estimators for
the mean and the standard deviation and are to be determined.
The proportionality factor C does not depend on �. The prob-
ability maximum is reached at � = �̂. Consider an auxiliary
construction

ln[p(�|d̃,I )] ≈ ln C − (� − �̂)2

2(σ̂�)2
. (B4)

Then the estimator values can be determined from[
d

d�
ln[p(�|d̃,I )]

]
�=�̂

= 0, (B5)

1

(σ̂�)2
= −

[
d2

d2�
ln[p(�|d̃,I )]

]
�=�̂

, (B6)

where p(�|d̃,I ) is to be replaced with pstoch(d̃|�,I )
[Eq. (A17)]. Evaluating the derivatives and linearizing the
resulting expressions for weak signals �S̃p � ρ̃p, we arrive
at

1

(σ̂�)2
=

N/2−1∑
p=1

(2|d̃p|2/ρ̃p − 1)

(
S̃p

ρ̃p

)2

, (B7)

�̂ = (σ̂�)2
N/2−1∑
p=1

(|d̃p|2/ρ̃p − 1)
S̃p

ρ̃p

. (B8)

With γ̂x =
√

�̂ and σ̂γX
= √

σ̂� , these equations lead to
Eqs. (13) and (14).

APPENDIX C: DERIVATION OF EQ. (16)

We start with the estimate for the standard deviation of the
coupling strength

σ (1)
γX

≈ A−1

⎧⎨
⎩

N/2−1∑
p=1

( 〈|φ̃p|2〉
ρ̃p

)2
⎫⎬
⎭

−1/4

. (C1)

For white noise ρ̃p = Nσ 2,

σ (1)
γX

≈ A−1σ

⎧⎨
⎩ 1

N2

N/2−1∑
p=1

〈|φ̃p|2〉2

⎫⎬
⎭

−1/4

. (C2)

Further, we use the relationship of the discretized field PSD to
the dark-matter line shape

〈|φ̃p|2〉 = πN

�t

�2
0F (ωp), (C3)

leading to

σ (1)
γX

≈ A−1σ

⎧⎨
⎩ 1

N2

N/2−1∑
p=1

π2N2

�2
t

�4
0[F (ωp)]2

⎫⎬
⎭

−1/4

= (A�0)−1σ

⎧⎨
⎩ π2

�2
t

N/2−1∑
p=1

[F (ωp)]2

⎫⎬
⎭

−1/4

. (C4)
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Now we can convert the sum to an integral by introducing the DFT frequency step �ω = 2π
N�t

:

σ (1)
γX

= (A�0)−1σ

⎧⎨
⎩πN

2�t

N/2−1∑
p=1

�ω[F (ωp)]2

⎫⎬
⎭

−1/4

= (A�0)−1σ

{
π2

�t

N

2π

∫ ∞

0
dω[F (ωp)]2

}−1/4

. (C5)

For the fiducial value of η = 1,∫ ∞

0
dω[F (ωp)]2 = τ 2

c

1

2πe2

∫ ∞

ω′
φ−(2τc)−1

e−2(ω−ω′
φ )τc sinh2[

√
1 + 2(ω − ω′

φ)τc] = τc

1

4πe2

∫ ∞

−1
e−x sinh2(

√
1 + x) = erf(1)

8
√

π
τc.

Thus,

σ (1)
γX

= (A�0)−1σ

{√
π erf(1)

16

}−1/4{
N

(
τc

�t

)}−1/4

≈ 2.4

(
�t

Nτc

)1/4
σ

A�0
, (C6)

which is Eq. (16).
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