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We analyze the prospects of employing a distributed global network of precision measurement devices
as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the global
positioning system (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with
either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ
highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By
analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of
exotic physics, such as “clumpy” dark matter and dark energy, effectively transforming the GPS
constellation into a 50 000 km aperture sensor array. Here we characterize the noise of the GPS satellite
atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated
clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass
the existing constrains by several order of magnitude for certain models. Our method is not limited in scope
to GPS or atomic clock networks, and can also be applied to other networks of precision measurement
devices.
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I. INTRODUCTION

Astrophysical observations suggest that ordinary lumi-
nous and baryonic matter contributes only about 5% to the
total energy density of the Universe, with the rest due to dark
matter (DM) at ∼25%, and dark energy (DE) at ∼70%.
Despite the overwhelming cosmological evidence for the
existence of DM, and the considerable effort of the scientific
community over several decades, there is as of yet no
definitive evidence for DM in terrestrial experiments.
Currently all the evidence for DM comes from obser-

vations carried out over distances greater than or compa-
rable to galactic scales [1]. In general, in order to perform a
direct DM detection experiment, these vast 10 kpc
(∼1013 m) distances must be extrapolated down to scales
that are accessible in laboratory settings (∼1 m). This
extrapolation leads to a variety of plausible theoretical
possibilities for DM models, ranging from elementary
particles to black holes. Considering the broad variety of
models and the associated assortment of nongravitational
interactions of DM with ordinary matter, it is important to
constrain DM models by creatively reanalyzing archival
data [2]. Compared to investments into dedicated experi-
ments, this is a relatively low-cost strategy with potential
for important discovery. Here we develop a method based
on Bayesian statistics for a time-domain DM search using
data accumulated by networks of precision measurements
devices.
The field of low-energy precision measurements has

proven to be an important area for probing fundamental

laws and searching for new physics, that is often comple-
mentary to collider experiments [3]. The idea of using a
distributed network of precision measurement devices to
search for DM and other exotic physics signatures is one
promising approach [4–7]. The particular network consid-
ered here is the global positioning system (GPS), a satellite
constellation of nominally 32 satellites in medium-Earth
orbit (altitude ∼20 000 km) housing atomic clocks, as well
as a large number of atomic clocks on ground-based
receiver stations. Following the proposal of Ref. [5], we
use the GPS constellation as a ∼50 000 km aperture sensor
array, analyzing the satellite and terrestrial atomic clock
data for transient signatures of exotic physics, such as DM
and DE. High-quality timing data from the GPS network
exists for the past 18 years, and is made freely available by,
e.g., the Jet Propulsion Laboratory (JPL), NASA [8,9]. This
data set is routinely augmented with more recent data.
The global scale of the GPS network offers a unique

opportunity to search for spatially-extended DM objects (or
“clumps”), such as topological defects (TDs) [10], which
are otherwise not detectable by most ongoing and planned
DM searches. The large number of clocks and the very
large aperture of the network increase both the chance of an
interaction and the sensitivity of the search, since we seek
the correlated propagation of new physics signals through-
out the entire network. The large network diameter also
increases the overall interaction time. Therefore, by ana-
lyzing the GPS timing data, one can perform a sensitive
search for transient signals of exotic physics, and if no
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sought signals are found, stringent limits on the relevant
interaction strengths can be placed.
Recently, our GPS.DM collaboration carried out an

initial analysis [6] of the archival GPS data, looking for
signatures of a particular type of TDs (domain walls, quasi-
2D cosmic structures). While no such signatures were
found, we placed limits on certain DM couplings to atoms
that are many orders of magnitude more stringent than the
previous constraints. Here, we present a search method
based on Bayesian statistics. We demonstrate that com-
pared to our initial search, the Bayesian approach greatly
increases the search sensitivity. This approach also broad-
ens the discovery reach to more general DM models and to
lower DM field masses.
Our approach is not limited in scope to the GPS net-

work, but applies equally to other networks of precision
measurement devices. In principle, timing data from any
other atomic clocks as well as data from other precision
measurement devices can be included in the analysis.
In particular, there are similarities to another experiment,
the Global Network of Optical Magnetometers for Exotic
physics (GNOME), which employs a geographically-
distributed Earth-based network of magnetometers to
search for transient signatures of exotic physics, including
topological defect DM [4]. Techniques described in this
work may prove useful for such experiments.
Beyond “clumpy” DM models, one can use networks to

search for other types of DM, such as nonself-interacting
virialized ultralight fields (VULFs), that lead to signals that
oscillate at the DM Compton frequency. Such a search
would rely on a multinode spatio-temporal correlation
function [11]. One may also search for both transient
and oscillating effects due to ultralight DM (and other
exotic physics) with laser interferometers and gravitational
wave detectors [12–18], by directly exploiting the scalar–
photon coupling [19–21], atomic spectroscopy [22–24] and
noise statistics [25,26], electric dipole moment searches
[27–29], and even pulsar timing [30].
The structure of this paper is as follows. Section II

reviews the background theory for topological defect DM,
the DM-induced transient variations of fundamental con-
stants, and how atomic clocks can be used to search for DM
signatures. Section III discusses aspects of the GPS net-
work relevant to our search. In Sec. IV we describe the
Bayesian statistics method for the data analysis and the
search, and in Sec. V we use this method with simulated
data to demonstrate its efficacy. Finally, in Sec. VI we
present the projected sensitivity and the discovery reach of
the search.
This paper has three Appendices, which include the

derivation of the velocity distributions for macroscopic DM
objects, a brief characterization of the noise properties of the
clock data relevant to our search, and the expected signals for
a few specific DM models. The Supplemental Material [31]
presents a detailed analysis of noise characteristics such as

Allan variance, power spectrum, and autocorrelation for
individual GPS satellite clocks. Since the intended audience
includes both atomic and particle physics communities, we
restore ℏ and c in the formulas. We use the rationalized
Heaviside-Lorentz units for electromagnetism.

II. THEORY

A. Ultralight dark matter and topological defects

Despite the extensive searches, both laboratory direct
detection and high-energy collider experiments have so far
failed to yield convincing evidence for the existence of
weakly interacting massive particles (WIMPs) with masses
∼10–104 GeV, see, e.g., Refs. [32–36]. While WIMPs are
theoretically well-motivated, they are by no means the only
DM candidate. The null WIMP searches have partially
motivated searches for ultralight bosonic DM, such as
axions [19,37–39]. While direct DM searches with particle
detectors rely on measuring energy deposition by individ-
ual DM particles, precision measurement techniques are
well suited for detecting candidates that act as coherent
entities on the scale of individual devices or their networks.
In other words, precision measurement devices can be used
for detecting ultralight DM and this approach probes the
mass region that is complementary to particle detectors.
Ultralight fields may form coherent (on certain time-

scales) oscillating fields, or they may form stable macro-
scopic-scale objects [40–46]. The formation of macroscopic
“clumpy” DM objects requires self-interactions in the dark
sector. An example of macroscopic DM are topological
defects, which may have various dimensionalities: monop-
oles (0D), strings (1D), and domain walls (2D). Depending
on their cosmological fluid equation of state, these objects
can contribute to both DM and DE.
The interactions of light scalar fields with standard model

(SM) fields can be phenomenologically parametrized as a
sum of effective interaction Lagrangians (portals) [5]

Lint ¼ LPS þ LS1 þ LS2 þ � � � ; ð1Þ

where LPS represents the pseudoscalar (axionic) portal, and
LS1 and LS2 are the linear and quadratic scalar portals,
respectively. The linear and quadratic scalar portals can lead
to changes in the effective values of certain fundamental
constants and thus cause shifts in atomic transition frequen-
cies. Atomic clocks in particular are sensitive probes of
varying fundamental constants. The axionic portal leads to
interactions thatmimic spin-dependent shifts due to fictitious
magnetic fields, and thus are well suited for magnetometry
searches [4,47].We also note that there are stringent limits on
the interaction strength for the linear scalar interaction
coming from astrophysics and gravitational experiments
(see, e.g., [48,49]). However, the constraints on the quadratic
portal are substantially weaker [50]. For concreteness, here
we will focus on the quadratic scalar portal.
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While we refer to specific models, namely topological
defect DM with quadratic scalar couplings, it is important
to note that the search technique is not limited in scope to
this possibility. Any large (on laboratory scales), “clumpy”
object that interacts with standard model particles is
detectable using this scheme. Examples of such other
models include Q-balls [51–53], solitons [54,55], axion
stars [56,57], and other stable objects formed due to self-
interactions in the DM sector.

B. Searching for dark matter with atomic clocks

Since the microscopic nature of DM is unknown, we
take a phenomenological approach for the nongravitational
interactions with ordinary matter (see, e.g., [5]). Explicitly
for the quadratic scalar portal, we have

−LS2 ¼ ϕ2

�
Γfmfc2ψ̄fψf þ Γα

F2
μν

4
þ � � �

�
; ð2Þ

where ϕ is the scalar DM field (measured in units of
energy),mf are the fermion masses, ψf and Fμν are the SM
fermion fields and the electromagnetic Faraday tensor,
respectively, and Γ are coupling constants that quantify
the strength of the DM–SM interaction. There is an implicit
sum over the SM fermions f in the above equation. The
above Lagrangian leads to the effective redefinition of
fundamental masses and coupling constants,

αeffðr; tÞ ¼ ½1þ Γαϕ
2ðr; tÞ�α; ð3Þ

meff
f ðr; tÞ ¼ ½1þ Γfϕ

2ðr; tÞ�mf; ð4Þ

where α ≈ 1=137 is the electromagnetic fine-structure
constant and mf are the fermion (electron me and light
quark mq ≡ ½mu þmd�=2) masses. The coupling constants
Γ have units of ½Energy�−2 and to aid the comparison with
previous literature we also define the effective energy scales
ΛX ≡ 1=

ffiffiffiffiffiffiffiffijΓXj
p

with X ¼ α; me;mq.
Considering TDs, the DM field ϕ2 → 0 outside the

defect, hence the effective couplings are only realized
inside the defect.1 The field amplitude inside the defect,
A, can be linked to the average energy density inside the
defect as ρinside ¼ A2=ðℏcd2Þ, where d is the spatial extent
or width of the defect. In TD models, the width d is set
naturally by the field Compton wavelength, d ¼ ℏ=ðmϕcÞ,
where mϕ is the mass of the DM field particles; in general,
we treat d as a free observational parameter. Further, in the
assumption that these objects saturate the local DM energy
density, one can link A and d to the local DM energy
density ρDM,

A2 ¼ ðℏcÞρDMvgT d; ð5Þ

where T is the average time between close encounters
of the DM objects with a pointlike device, and the
galactic velocity vg ¼ hvi ∼ 300 km s−1 ∼ 10−3c is the
average relative velocity of DM objects that cross paths
with the Earth.
From Eqs. (3)—(4), we may relate the observable

DM-induced atomic frequency shift to the transient varia-
tion of fundamental constants (and thus to the DM field
parameters). The fractional shift in the frequency ω0 of a
particular clock transition can be expressed as

δωðr; tÞ
ω0

¼
X
X

κXΓXϕ
2ðr; tÞ≡ Γeffϕ

2ðr; tÞ; ð6Þ

where X runs over relevant fundamental constants, and κX
are dimensionless sensitivity coefficients. For convenience,
we introduced the effective constant, Γeff ≡P

XκXΓX,
which depends on the specific clock.
The dimensionless sensitivity coefficients κX are known

from atomic and nuclear structure calculations. For exam-
ple, considering only the variation in the fine-structure
constant α and ignoring relativistic effects, the optical
and microwave transitions frequencies scale as ωopt

c ∝ α2,
and ωmw

c ∝ α4, respectively. Relativistic atomic-structure
effects add small corrections to these scalings [58]. For the
microwave Rb, Cs, and H clocks of the GPS network, the
effective coupling constants read (using computations
[58,59])

Γeffð87RbÞ ¼ 4.34Γα − 0.069Γmq
þ 2Γme

; ð7Þ

Γeffð133CsÞ ¼ 4.83Γα − 0.048Γmq
þ 2Γme

; ð8Þ

Γeffð1HÞ ¼ 4Γα − 0.150Γmq
þ 2Γme

: ð9Þ

The values of κmq
come from a combination of shifts in the

nuclear magnetic moment and in the nuclear size [60,61],
and from the variation in the proton mass with δmp=mp ¼
0.05 δmq=mq [62].
Although each clock type is sensitive to a combination of

three coupling constants, by combining results for three
types of clocks within the network one can unfold
individual coupling constants ΓX or, equivalently, individ-
ual energy scalesΛX. Until recently, the existing constraints
came from observations of supernova emission [50]:
Λme;α ≳ 3 TeV, and Λmp

≳ 15 TeV. More stringent con-
straints for certain regions of the ðd; T Þ parameter space
have recently been placed on Λα using a laboratory optical
Sr clock by the Toruń group [63]. Using 16 years of
archival GPS data, our GPS.DM collaboration constrained
Λα;Λme

, and Λmq
[6]; that initial search focused on

domain walls. These newly established constraints reach
1Strictly speaking, this condition requires an auxiliary DM

field, see Ref. [5] for the mechanism.
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the ∼107 TeV level depending on the size of the objects
and the frequency of their encounters with the Earth.
With the model-specific theoretical background estab-

lished, now we proceed to developing a method for a
sensitive search for macroscopic DM objects. We will
demonstrate that compared to our initial search [6], the
developed method improves the sensitivity by several
orders of magnitude, and also substantially increases the
range of probed DM field masses. It is also sufficiently
general to enable mining for signatures of all the proto-
typical topological defects: monopoles, strings, and walls.
The method is Bayesian in nature and we start with
describing known DM halo properties, velocity distribution
and directionality, that serve as priors to the search.

C. Priors on velocity distribution and event rate

We form our search priors based on the standard halo
model (SHM), see, e.g., Ref. [64]. Within the SHM frame-
work, the velocity distribution of DM objects in the galactic
rest frame is isotropic and quasi-Maxwellian; further details
are given in Appendix A. TheMilkyWay rotates through the
DM halo, with the Sun moving at v ≃ 220 km s−1 in the
direction towards the Cygnus constellation. This defines the
most probable incident direction for a collision with a DM
object; in fact, more than 90%of events are expected to come
from the forward-facing hemisphere, as shown below. We
define the unit-vector, n̂g, that points from the Earth center
along this direction. Further, as shown in Fig. 1, we define the
incident direction of the DM object, n̂, to be pointing away
from the Earth center, so that n̂ ¼ −v=jvj, where v is the
velocity vector of the DMobject. The angle of incidence ψ is
defined as n̂ · n̂g ¼ − cosψ . According to this definition, the
forward-facing angle ψ ¼ π points in the direction of the
galactic motion of the Solar system, towards the Cygnus
constellation.
We consider three topological defect “templates”: domain

walls, strings, and monopoles. We assume that over the
length scales of the GPS constellation a string/wall can be
modeled to be straight/flat. A domain wall that crosses the

GPS constellation incident with a velocity v that is at an
angle η to the vector normal to the wall, would be
indistinguishable from a wall (of the same width) incident
with a (slower) velocity

v⊥ ¼ v cos η ð10Þ

that is normal to the wall, see Fig. 1. We will refer to the v⊥
component of the relative velocity v as the “perpendicular”
velocity, and define n̂⊥ ≡ −v⊥=jv⊥j. The same argument
applies to strings (for strings, v⊥ is defined to lie in the plane
containing v and the string symmetry axis). Therefore, in
these cases, the more relevant quantity is the distribution of
the perpendicular velocities, fv⊥ ; this distribution is derived
in Appendix A.
Since we are focusing on macroscopic DM objects, it is

also instructive to consider the distribution of transit
durations. The transit duration, τ ¼ d=v, is defined as
the time it takes a DM object of width d to sweep through
a point in space (or a single device). Similarly we can
consider τGPS ¼ DGPS=v, the time for the center of the DM
object to pass the entire GPS constellation. Our derived
speed, incident angle, and transit duration distributions are
shown for monopole- and wall-like objects in Fig. 2.
We treat the expected event rate, 1=T [see Eq. (5)], as a

free parameter. This parameter can be linked to the number
density of DM objects in the galaxy. For monopole-like
objects (including non-topological solitons, Q-balls, bub-
bles etc.), the relevant quantity is the volume number
density, while for strings and domain walls it is the areal
and linear number densities, respectively. Thereby, T can
be related to the energy density inside the DM object as

T ¼ ρinside
ρTDM

d
vg

; ð11Þ

where ρTDM is the galactic energy density of the considered
DM objects. In the assumption that these objects saturate the
local DM density, we have ρTDM ¼ ρDM. Direct measure-
ments of the local DM density give 0.3� 0.1 GeV cm−3

[64]; we take ρDM ≈ 0.4 GeV cm−3 for definitiveness and
to be consistent with recent literature. Note that Eq. (11) is
model independent and applies to any DM object of
characteristic size d.

III. GPS ARCHITECTURE AND
CLOCK SOLUTIONS

A detailed description of modern GPS data acquisition
and processing techniques and their application in precision
geodesy can be found in Ref. [65]. Details relevant to DM
searches with GPS constellation are given in Ref. [6]. Here,
we briefly review the main aspects of GPS and introduce
relevant concepts and terminology.
GPS works by broadcasting microwave signals from

nominally 32 satellites in medium-Earth orbit (altitude

FIG. 1. Geometry of a domain wall encounter with the Earth.
Here, d is the domain wall width, v is the relative velocity of the
encounter with component v⊥ perpendicular to the wall surface,
and η is the angle between v and v⊥. The incident direction of the
wall, n̂, is defined as pointing away from the Earth center, so that
n̂ ¼ −v=jvj and n̂⊥ ≡ −v⊥=jv⊥j.
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∼20; 000 km). The transmissions are driven by an atomic
clock (either based on Rb or Cs atoms) on board each
satellite. It is namely the carrier phase of these microwave
signals that is measured by the specialized GPS receivers
and is used in deriving the GPS clock solutions. Typically,
each satellite houses four atomic clocks, only one of which
is broadcasting at any given time. Clock swaps are marked
in databases supporting the archival GPS data set. There are
also a large number of ground-based receiver stations,
several of which employ highly-stable H-maser clocks. The
more recent satellites predominantly employ Rb clocks as it
has become clear that unpredictable variations in clock
phases for the Cs-clock satellites are significantly worse
than for Rb. As of early September 2017, there were 30 Rb
satellites and only two Cs satellites in orbit.
The GPS satellites are grouped into several generations,

called blocks: II, IIA, IIR, and IIF [66], and each satellite is
assigned a unique identifier known as the Space Vehicle
Number (SVN). Each subsequent block was built with
significant improvements, and the effect of these improve-
ments can be seen in the noise characteristics of the satellite
clocks, as discussed below. Block III satellites are currently
under development, and are to be launched from mid-2018.
Table I presents a summary, including the number of
days worth of data that is available for each satellite block
in the archival data set. Further, the network can be
extended to incorporate the network of Earth-based receiver
clocks, as well as clocks from other Global Navigation
Satellite Systems, such as the European Galileo, Russian
GLONASS, and Chinese BeiDou, and networks of labo-
ratory clocks [7,23,63,67].
Here we analyze data generated by the Jet Propulsion

Laboratory (JPL) [8], in which clock time-series are
given at τ0 ¼ 30 s intervals (epochs). The data are clock
biases, that is the difference in the time readings (clock
phases) between the given clock and a reference clock.
The same reference clock is used for the entire GPS
network for each day. The biases are generated using data
from a global network of ∼100 GPS station receivers [68]
by a mature analysis system that is used routinely for
purposes of centimeter-level satellite orbit determination,

and millimeter-level positioning for scientific purposes,
such as plate tectonics, Earth rotation, and geodynamics.
We also note that while the currently available clock

time-series are sampled every 30 seconds, the raw GPS data
is sampled every second for some stations. It is therefore
possible to reprocess the GPS data to generate higher-rate
1 s clock solutions. This work is currently underway in our
group. Notice that a fiducial DM object sweep through the
entire constellation takes about 170 seconds, thereby it lasts
for just 6 epochs for the currently available 30 s sampling
intervals. Clearly, the resolution would improve for the
1 s data.
In the initial GPS data processing (performed by JPL

[9]), there is effectively no restriction on the allowed
behavior of the clocks from one epoch to the next.
Crucially, if a clock were to have a real transient that far
exceeded engineering expectations, the data over that time
window would not have been removed as outliers.
The clock biases from JPL [8] also come with a “formal

error”, σF. The formal error, typically on the order of
σF ∼ 0.02–0.03 ns, quantifies uncertainty in the determi-
nation of the clock bias, and does not directly incorporate
the intrinsic clock noise or slowly varying biases due to
correlated orbit errors and higher-order general relativistic
effects (∼0.1 ns). Only the most recent satellite clocks (Rb
clocks on board the block IIF satellites) have observed
temporal variations from one epoch to the next that are at a

FIG. 2. Probability densities for the DM scalar velocity (left), incident angles (middle), and transit time for the GPS constellation
(right). The forward-facing angle ψ ¼ π points in the direction of the galactic motion of the Solar system, towards the Cygnus
constellation. The blue curves show the standard halo model distributions (relevant for monopole-like DM objects), and the red curves
show the distributions for velocities perpendicular to the wall (relevant for domain walls and strings).

TABLE I. Summary of GPS satellite clocks. The currently
employed data set, ranging from 5 May 2000 to 2 September
2017, consists of a total of 186, 700 clock-days.

Block Years active

Days in data

Cs Rb In orbita

I 1978–1995 0 0 0
II 1989–2007 5304 1181 0
IIA 1990–2017 39 557 33 319 1
IIR 1997– 0 92 287 19
IIF 2010– 2541 12 511 12

aAs of September 2017. Also as of that date, only two satellites
(both block IIF) use Cs clocks.
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similar level as the formal error, indicating that temporal
variations in older clocks are actually due to clock behavior
rather than estimation error. In fact, the observed variances
in the data from the most modern Rb IIF satellite clocks are
significantly better than suggested by the formal error, see
Appendix B.
Due to frequency drifts and other long time-scale

(∼hours) effects, it is typical for a second-order polynomial
(y2) to be subtracted from the raw GPS time series data
before the analysis [65]. One may form y2ðjÞ for each
clock, for each individual day, using a weighted least-
squares approach, taking the weights as the inverse of the
formal error. Then the polynomial-reduced data (residuals)

are defined dð0Þj ¼ xj − y2ðjÞ, where fxjg are the raw time-
series data, and j denotes the same-time (epoch). This
procedure is useful for visualizing the data, however, it is
not necessary for our analysis. Unless noted otherwise, we

take dð0Þj ≡ xj in this paper.
The relative phase of an atomic clock (bias) dð0Þj is a

nonstationary time series, dominated by random walk
noise. To perform the analysis, we must first “whiten”
the data. To this end, we employ (depending on the clock
type, as discussed below) either a first- or second-order
differencing, and define

dð1Þj ≡ dð0Þj − dð0Þj−1; ð12Þ

dð2Þj ≡ dð0Þj − 2dð0Þj−1 þ dð0Þj−2: ð13Þ

In general, first-order differencing is sufficient for Rb clocks,
while second-order differencing is required for Cs clocks.

Since dð1Þj is proportional to the discreet derivative of the
clock biases, we refer to it as a pseudo-frequency. Further
discussion of the clock noise characteristics is presented in
Appendix B; see also the Supplemental Material [31], where
we quantify the noise characteristics of each satellite clock
individually.

IV. BAYESIAN SEARCH FOR DM EVENTS

A. Likelihoods and odds ratio

A DM-induced perturbation in the device data would be
indistinguishable from a perturbation caused by other
external non-DM factors or random statistical processes.
The key then, is to rely on the correlated propagation of
clock “glitches” across a network caused by the sweep
of a DM object through the network. Based on the standard
halo model (see Sec. II C), DM objects are expected to
travel relative to the Earth with galactic-scale speeds,
vg ∼ 300 km s−1, incident from a certain direction. Thus
the speed and the directionality of the sweeps serve as DM
signatures. There are similarities between the method we
describe and those employed in gravitational wave detec-
tion by the LIGO collaboration, see, e.g., Refs. [69,70].

Consider a candidate model, denoted M, that predicts a
DM signal across the network (for example, the passing of
a domain wall). In order to determine whether such a model
is supported by the data D, we employ a Bayesian
technique, see, e.g., Ref. [71]. In Bayesian statistics, model
selection is based on forming the odds ratio of two
probabilities (likelihoods)

OM;Mðj0Þ ¼
pðDj0 jM; IÞ
pðDj0 jM; IÞ : ð14Þ

Here,M denotes the proposition that no signal is present in
the data, i.e. the data is purely random, and I encodes the
knowledge of the SHM priors discussed in Sec. II C. The
data stream D is sampled at intervals of τ0 (τ0 ¼ 30 s for
our current GPS data set). Since we search for transient
events of finite duration, the odds ratio is tested in a time
window of length JW points, centered at epoch j0. The
value of JW is determined by the maximum duration of the
transient signals to be tested. In the analysis, we scan over
j0 for a fixed value of JW , so the odds ratio is an explicit
function of j0.
The likelihoods pðDj0 jM; IÞ entering Eq. (14) are

described by the Gaussian multivariate distributions mar-
ginalized over model parameters,

pðDj0 jM; IÞ ¼ K
Z

d3vpðvjM; IÞ
Z

dhpðhjMÞ

×
Z

dxpðxjMÞ
Z

j0τ0

ðj0−1Þτ0

1

τ0
dt0

× exp

�
−
1

2
χ2ðsÞ

�
: ð15Þ

Here, v is the velocity of the incident DM object in
the Earth-centered inertial (ECI) frame, h quantifies the
amplitude of the DM signal, x stands for the remaining
model-specific parameters of the DM object, and K is a
normalization factor. Further, t0 is the moment of time at
which the DM object passes by the center of the Earth. It is
assumed to occur in the time interval ððj0 − 1Þτ0; j0τ0�, and
we marginalize over t0 in the last integral (15). Note that
compared to our initial search [6], the single-device sweep
time (d=v) may last longer than τ0.
The data and the model-prescribed DM signal are

combined in the argument of the exponential,

χ2ðsÞ ¼
XNclk

ab

XJW
jl

½daj − saj �ðE−1Þabjl ½dbl − sbl �; ð16Þ

where E is the covariance matrix discussed in the following
section. Here and below we use the “upstairs” indices to
label devices, and the “downstairs” indices to denote
epochs (sampling times). The indices a and b run over
all Nclk devices in the network, and the indices j and l run
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over the JW data points in the time window. The device data
d notation is generic and it can stand for the singly– or
doubly–differenced clock bias data, Eq. (12). Finally, saj ¼
saj ðM; t0; v; h; xÞ is the model-prescribed DM signal in
device a at epoch j, discussed in Sec. IV C.
Continuing with the discussion of factors entering

the likelihood, pðvjM; IÞ is the (normalized) probability
density for the velocity distribution of DM objects in the
ECI frame. In the case of monopoles, for example, it is
reasonable to take this to be given by the SHM. Likewise,
the function pðhjMÞ is the normalized probability density
for the DM signal amplitude in the time series, and is
described by a flat prior.2 To calculate the likelihoods, we
perform the integral over h analytically (possible because s
is linear in h, see below), and use a randomized Monte-
Carlo integration for the other parameters.
Finally, the likelihood that no signal is present in the data

is given simply by

pðDj0 jM; IÞ ¼ K exp

�
−
1

2
χ2ð0Þ

�
; ð17Þ

where the DM signal is set to zero. The window size JW is
kept the same as in the pðDj0 jM; IÞ computations.
The likelihood functions (15) and (17) are calculated for

every available epoch j0, and the odds ratios (14) are
formed. Large spikes in the odds ratio as a function of j0
can indicate potential DM events.

B. Correlations and covariance

The covariance matrix entering Eq. (16) is defined as

Eab
jl ≡ hdajdbl i; ð18Þ

where h� � �i denotes averaging. To compute its elements,
one requires a stationary time series, for which (depending
on the clock type) we use either the first- or second-order
differenced data (12). Note that for pure uncorrelated white
noise, the covariance matrix is completely diagonal, with
elements given by the variances. In this case, the matrix
inversion required for computing χ2ðsÞ (16) is trivial.
Realistic device noise is, however, correlated. Specific to
the GPS clocks, additional short-range anticorrelation for
individual clocks is introduced by the propagation of the
formal error (which is roughly white noise in dð0Þ) through
the differencing procedure (12). Moreover, the underlying
clock biases dð0Þ are the differences between the phases of
the given clock and a reference clock. Since the reference

clock is common to all clocks, biases and the differenced
data dð1Þ and dð2Þ are correlated between different clocks.
It is convenient to split the covariance matrix into two

contributions, E ¼ Aþ B, where

Aab
jl ≡ Eab

jl δ
ab; ð19Þ

Bab
jl ≡ Eab

jl ð1 − δabÞ: ð20Þ

The first term, A, represents the correlation between data
points for a single clock, i.e., auto-correlation. The B
contribution describes the correlations between different
clocks, and is referred to herein as the cross-correlation.
The autocorrelation part of the covariance matrix is block
diagonal, built from Nclk independent symmetric JW × JW
matrices. The elements of A depend only on the distance
from the diagonal, and can be related to the autocorrelation
function AaðΔtÞ as Aaa

jl ¼ ðσaÞ2AaðΔtjlÞ, where Δtjl ¼
jj − ljτ0 is the lag and σa is the standard deviation (see
Appendix B).
Each clock in the network is referenced against a

common reference clock. This adds a common noise
component to all the data streams, and is main source of
cross-correlations. Therefore, the time series for each clock
can be decomposed as

daj ¼ eaj þ cj; ð21Þ

where cj is the component due to the shared reference
clock, and eaj is the component unique to clock a
(heaj ebl i ¼ 0 for a ≠ b). Then, it is clear that B depends
only on the reference clock, and is independent of a, b:

Ba;b≠a
jl ¼ hdajdbl i ¼ hcjcli≡ bjl: ð22Þ

To calculate the likelihoods, we need to invert the
covariance matrix. First, we note that the Earth-based
H-maser clocks used as reference in the JPL data process-
ing are typically much quieter than the satellite clocks.
Therefore, the cross-correlation contribution B is typically
smaller than A, so B can be treated perturbatively. Further,
we may neglect the even smaller terms Bab

jl with j ≠ l,
defining b0 ≡ Bab

jj .
Thus, we express the inverse of the covariance matrix as

E−1 ¼ H þW, where

Haa
jl ¼ ðA−1Þaajl ; ð23Þ

Wab
jj ≈

−b0
ðσaσbÞ2 ð1 − δabÞ: ð24Þ

Then, Eq. (16) can be expressed (with η≡ d − s) as

2We note that the normalization for the h prior is arbitrary. For
our purposes it is not important, since we do not rely on the actual
value of the likelihoods function but rather define some threshold,
above which false-positives are sufficiently rare, as discussed in
the following sections.
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χ2ðsÞ ¼
XNclk

a

XJW
jl

ηajH
aa
jl η

a
l −

XNclk

b;a≠b

XJW
j

b0ηajη
b
j

ðσaσbÞ2 : ð25Þ

The described approximation holds when the clock
noises far exceed that of the reference clock. This approxi-
mation breaks down if the network includes clocks with
noise levels similar to that of the reference clock. For
example, when including multiple station, Rb-IIF, or
laboratory clocks, Eq. (24) is no longer valid. In this case,
we define the weighted mean of all (other) clocks

d̄āj ¼
P

b≠ad
b
j ðσbÞ−2P

b≠aðσbÞ−2
≈ cj � σ=

ffiffiffiffiffiffiffiffi
Nclk

p
;

which is subtracted from each time series [Eq. (21)]:

daj − d̄āj ≈ eaj � σ=
ffiffiffiffiffiffiffiffi
Nclk

p
: ð26Þ

Here, σ is the typical standard deviation of the clock data.
Each new data stream still contains a common component,
∼σ=

ffiffiffiffiffiffiffiffi
Nclk

p
, however this is small enough so that the above

approximation (24) holds true. In these cases, the same
procedure must be applied also to the expected signals
saj → saj − s̄āj .

C. Transient dark matter signals

The likelihood function in Eq. (15) requires a model-
prescribed DM signal, saj , for the data streams to be
compared against. The DM signal depends on the assumed
coupling strength to the device, and on the kinematics and
spatial structure of the DM object (monopole, domain wall,
etc.). To quantify the transient signal we need to specify the
collision geometry. We work in the ECI (Earth-centered
inertial) J2000 frame, which has its origin (denoted ECI0)
at the center of mass of the Earth, and z-axis aligned with
Earth’s spin axis. The x-axis is aligned with the mean
equinox at 12∶00 Terrestrial Time on 1 January 2000. The
important aspect is that the ECI frame orientation remains
fixed in the galactic rest frame, i.e., it does not rotate with
the Earth.
Here, we consider three generic and geometrically

unique templates: walls, strings, and monopoles. Albeit
more complex geometries are plausible, such as walls
closing on themselves forming cosmic bubbles, the pre-
sentation below is sufficient for extending the formalism to
such more complex object geometries. While the field
profile inside the DM object can be arbitrary, we focus on
Gaussian profiles. Beyond qualitative arguments, the rea-
sons for Gaussian-profiled objects can be also supported by
Bayesian logic. Indeed, application of the maximum
entropy principle to a distribution with the mean and
variance (determined by the defect size d in our case) as
the only given information yields the Gaussian distribution

[71]. In any case, the presented formalism can be applied to
arbitrarily-shaped DM object profiles.
We assume that the linear trajectory and velocity of the

DM object are not affected by the gravitational pull of the
Earth or the portal couplings to the Earth constituents, and
that the shape of the DM object is preserved through the
encounter. Another assumption is that the DM encounters
are well separated, i.e. DM objects do not overlap and at
most one of them interacts with the entire network at any
given time. Finally, we assume that objects lacking spheri-
cal symmetry do not rotate.
Consider an event in which the center of a DM object

moving with velocity v crosses the plane that is
perpendicular to v and contains ECI0 at time t0, as shown
in Fig. 3. The accumulated time bias between a clock thats
frequency is perturbed by δω and an unaffected clock (ω0)

is given by
R
t
−∞

δωðt0Þ
ω0

dt0. Therefore, at time t, the DM-
induced clock phase bias in clock a reads

sað0ÞðtÞ¼
Z

t

−∞
½haφ2

Mðta;ρa; t0Þ−hRφ2
MðtR;ρR;t0Þ�dt0; ð27Þ

where φ2
M is the normalized profile3 of the DM object (for

specific modelM), ρa is the impact parameter, h ∝ A2Γeff is
a clock-specific constant that determines the magnitude of
the signal in the data (see Appendix C), and ta (tR) is the
time of encounter for clock a (reference clock). The time of
encounter is defined as the moment the DM object passes
by clock a. More precisely, it is the time at which the center
of the DM object (central plane for walls, or central axis for
strings) crosses the plane that is perpendicular to v and
contains the given clock:

ta ¼ t0 −
ra · n̂
v

; ð28Þ

where n̂ is the unit vector that points from ECI0 parallel to
the incident direction of the DM object (v ¼ −vn̂, see
Fig. 3), and ra is coordinate of clock a in the ECI frame.
The satellite and ground station positions ra are a part of the

FIG. 3. Example geometry for a monopole crossing.

3The DM “profile” φ differs from the field ϕ [Eq. (2)] only by
normalization, and is defined for convenience; see Appendix C.
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JPL GPS dataset, and are known with ∼cm and ∼mm
accuracies, respectively. Note that the impact parameters
are zero for domain walls, but are, in general, non-zero for
strings and monopoles; see Appendix C.
For domain walls and strings, we use v⊥ and n̂⊥, see

Fig. 1 and the discussion around Eq. (10). The discreet
matrix saj is generated by integrating to the specific values
of t that correspond to the GPS epochs (data sampling
times). Then we form either the first- or second-order
differenced DM signals as in Eq. (12), with d → s.
The particular form of φ2

M depends on the spatial
structure and the kinematics of the DM object. In
Appendix C, we present explicit signals for domain walls,
monopoles, and strings, and link φM and ha to the field
parameters for these templates.
In our discussion of DM signals, we neglected the Earth

orbital motion about the Sun at ∼30 km=s, orbital veloc-
ities of satellites about the Earth (∼4 km=s), and the
ground station rotational velocities (∼0.5 km=s). While
these velocities are much smaller than the galactic veloc-
ities, the motional effects can become important for large-
scale or slowly-moving objects. For example, the motional
effects become relevant if the overall duration of an
encounter is comparable to the 12-hour satellite orbit.
The modification of the DM signal templates to account
for clock motion is straightforward, as the satellite and
ground station positions are known. We leave this gener-
alization for future work.

D. Mixed networks

There are several different clock types (Cs, Rb, H-maser)
in the GPS network. As our search is expanded to include
other laboratory clocks (and other high-precisions sensors)
the diversity will increase further. Each clock species may
respond differently to the interaction with the DM field, see
Eq. (6). Therefore, we cannot assume h to be uniform
across the network.
There are several approaches for inhomogeneous

networks. One approach, as per Ref. [6], is to consider
separately the homogeneous sub-networks (e.g., consider
only the Rb clocks). The major drawbacks of this approach
is that we lose the benefit of the highly-stable H-maser
reference clocks (none of the GPS satellite clocks have
H-masers), and that we also limit the total number of clocks
that are considered at any given time.
The simplest approach is to assume that one of the

couplings in Eq. (6) dominates, and carry out the analysis
separately for each case. For example, we may assume
that jΓαj ≫ jΓme

j; jΓmq
j in Eq. (2). The drawback of this

approach is that it does not account for the possibility that
several couplings may produce effects that are of a similar
magnitude.
Furthermore, a Bayesian-like approach is to introduce

additional marginalization parameters for each extra free
parameter in place of h. The number of such free

parameters is equal to the smaller of either the number
of distinct clock species in the network, or the number of
distinct couplings we consider. For example, considering a
network of Rb, Cs, and H clocks (as per GPS), we can
substitute

R
dh →

R
dhRb

R
dhCs

R
dhH in Eq. (15).

E. Directional signatures

A possible scenario is that a large number of small events
are flagged by the Bayesian search (by “small”wemean the
magnitude of the signal in the data compared to the clock
noise, or the small magnitude of the spikes in the odds
ratio). Of course, such events may be simply due to random
statistical fluctuations, or other conventional-physics non-
DM perturbations. Here we consider signatures unique
to DM (or other galactic sources) allowing us to exclude
non-DM signals. While these signatures are included in
the Bayesian approach through the priors (e.g., the like-
lihood are suppressed for velocities outside the SHM range
through the prescribed velocity distribution prior), we
could also examine inferred values of collision geometry
parameters through the Bayesian parameter estimation, as
discussed in Sec. V D. Being able to resolve the event
velocity magnitude and directionality is a powerful feature
of geographically distributed networks.
First of all, the distributed nature of the network offers

the direct sensitivity to the magnitude of DM object
velocities. If the observed incident velocity falls too far
outside of the bounds allowed by the standard halo model,
then a DM origin can be excluded. There is also sensitivity
to the directionality of the DM object velocity. The most
probable incident direction is from the average forward
direction of the Sun’s motion through the galaxy (roughly
from the direction of the Cygnus constellation), see Fig. 2.
We are only aware of one external systematic effect that has
propagation speeds comparable to vg, which is the solar
wind [72]. This effect, however, can be vetoed out on the
basis of distinct directionality from the Sun, and by the fact
that the solar wind does not affect the satellites in the
Earth’s shadow.
In addition to individual event signatures, one can also

focus on the overall event statistics, provided the event rates
are sufficiently high on the yearly basis [25]. For example,
due to the ∼10% annual variation in the relative velocities
of the Earth and Sun in the galaxy [73], one would expect to
observe the annual modulation in the event rate. This
approach parallels the method employed in WIMP
searches, e.g., Refs. [74,75]. Unlike WIMP searches, where
the event rate may depend strongly on the DM velocity [76]
(due to energy dependence of the cross section), here the
rate is linear in v. Also unlike (most) WIMP searches,
the distributed network approach is additionally sensitive to
the annual modulation in the average incident velocity
direction, which varies by ∼20°, as shown in Fig. 4.
(A WIMP-detection scheme that does have directional
sensitivity is presented in Ref. [77].)
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V. BENCHMARKING THE BAYESIAN METHOD

A. Simulating realistic clock time series

We generate simulated time series data that have the
same noise characteristics as the real clock data for each
individual GPS satellite. This is achieved by “coloring”
pseudorandom white noise with the known power spectral

densities for each clock [78]. We calculate the power
spectral densities for each specific SVN using the clock
data provided by JPL, as the clock performance may
degrade over time, and the clocks can perform differently
when in orbit than when tested in a laboratory environment.
We also simulate cross-correlations (correlations between
different clocks). This is achieved by simulating a reference
clock, which adds a common noise stream to all the clocks
in the network.
In Fig. 5, we plot several arbitrarily selected real JPL

clock solutions, dð0Þ, alongside the simulated clock sol-
utions for the corresponding SVNs (denoted zð0Þ) to
demonstrate the quality of simulated data. The standard
deviations of the simulated data (after first- or second-order
differencing) match exactly those of the real data for the
given SVNs. Further, the longer-scale noise characteristics
also match–in Fig. 6, we plot the autocorrelation functions
and Allan variances for both the simulated and real data for
the same clocks. These figures demonstrate that the simu-
lated clock data do indeed have the same noise characteristics
as the real data.
Having generated simulated time series, we can test our

Bayesian search code in a number of distinct ways:

FIG. 4. Annual variation in the direction of the Earth’s galactic
motion (ECI frame, θ ∈ ½0; π� is the polar angle), which is the
most probable incident DM direction. The central point, n̂g, is the
average direction, corresponding to the direction of the Sun’s
velocity through the galaxy.

FIG. 6. Comparison of the autocorrelation functions (left) and Allan variances (right) for the real data to those for the simulated data.
Clocks are the same as in Fig. 5. The solid lines are from the real data, and the dotted lines are from the simulated data; they are
practically indistinguishable.

FIG. 5. Comparison of (polynomial-reduced) real GPS clock data for a few satellites from 21 June 2015 UTC (left) with simulated
data for the corresponding SVNs (right). Each time-series is shifted by a constant offset for clarity. The curve labels encode the clock
type, GPS block, and SVN.
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(1) To gauge the prevalence of statistical false-positives,
we run the code for the event-free simulated data.

(2) We inject DM event signals into the simulated data
streams to gauge the efficacy of our technique to
pick out true-positive events.

(3) We inject “bad” events (i.e., signals that are not
properly correlated) into the simulated data as a test
of the robustness of the search technique.

(4) We use parameter estimation to extract the observed
parameters of the injected DM event, and compare
the results to those used to generate the injected DM
signal as a test of the method accuracy and efficacy.

B. Prevalence of statistical false-positives

We wish to define a threshold for the odds ratio,
OM;Mðj0Þ, Eq. (14). If the spike in the odds ratio is larger
than this threshold, such an event can be investigated as a
potential DM event. In order to do this, we need to calibrate
the rate of statistical false positives. To this end, we ran
multiple simulations of various GPS clock network configu-
rations, and computed the odds ratio (14) for each epoch. For
each combination of clocks, we considered 2048 realizations
of 2048 30 s-epochs, amounting to approximately 4 years of
simulated data for each simulation. A plot of the rate of false
positives as a function of the threshold is presented in Fig. 7.
This plot is for the specific DM model of “thin”
(d ≪ 104 km, see Appendix C) domain walls.
Note that for this exercise, a false positive is counted

whenever an epoch has a value for the odds ratio above the
given threshold. This is a conservative definition, since the
“width” of the odds-ratio spike (due to the imperfect

resolution) may lead to the same false-positive event
appearing in more than one neighboring epoch. By our
definition, this will be counted several times.
We can also drastically reduce the number of false

positives that occur by introducing a minimum value
(magnitude), hmin, for the integral over signal magnitudes
(15). Of course, this also means we can only detect positive
events with h > hmin. We can then perform the analysis in
several sweeps, systematically reducing hmin each time
until signals of a given magnitude can no longer be
excluded.

C. Detecting injected DM events

To determine the sensitivity of the method, we must
know the probability of positively detecting DM events of a
given magnitude. To this end, we generate clock data per
Sec. VA, inject randomized DM signals into the data
streams and compute the odds ratios. In Fig. 8, we present
one such simulation as an example. Here we show the first
8 (of 30) simulated time series’ for a 1.5 hr window. In this
example, for simplicity, the clock noise was taken to be
white (in dð1Þ). Then we injected a single “thick” domain-
wall event for a wall of size d ¼ 104 km; the velocity and
incident direction were chosen randomly. The odds ratio
was calculated for each epoch. The spike in the odds ratio at
the event is apparent, while the event is not discernible by
eye in the data streams. Note that the search routine is
isolated from the simulation—it is not made aware of the

FIG. 7. Rate of statistical false positives as a function of the
odds ratio threshold, Othresh, for thin domain walls. The rate of
false positives from simulated GPS networks typical for the given
years: 2000 (1 Rb-II, 7 Rb-IIA, 3 Rb-IIR, 5 Cs-II, 11 Cs-IIA),
2005 (1 Rb-II, 8 Rb-IIA, 12 Rb-IIR, 1 Cs-II, 8 Cs-IIA), 2010
(5 Rb-IIA, 19 Rb-IIR, 2 Rb-IIF, 5 Cs-IIA, 2 Earth-based H-
masers), 2017 (19 Rb-IIR, 10 Rb-IIF, 5 Earth-based H-masers),
and a possible future network (30 Rb-IIF–style satellites, 20
Earth-based H-masers). Each curve corresponds to 4 years of 30 s
sampled simulated data.

FIG. 8. Bayesian detection of an injected thick domain wall
(d ¼ 104 km) signal. The wall sweeps the GPS network of 32
satellite clocks (with σ ¼ 0.01 ns) at time t0 ¼ 0. For this
simulation, h ¼ 0.02 ns. Bottom panel: simulated clock biases
shown for the first 8 clocks (including the injected thin-wall
signal). Each time-series is shifted by a constant offset for
clarity. Top panel: the corresponding odds ratio using the same
time scale.
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event time, speed, direction, magnitude, wall width (or if
there was an event at all).
Figure 9 shows the fraction of injected thin domain wall

events that are correctly identified, as a function of the
signal magnitude. The velocity and incident direction for
each wall was chosen randomly (according to the SHM
distributions, Fig. 2), and we assumed all clocks were
affected by the DM in the sameway (i.e., all clocks have the
same Γeff ). For this analysis, the odds threshold was set to
allow fewer than 10 false positive events per year
(Othresh ∼ 103, see Fig. 7). Note, for 30 s data, there are
over 106 epochs in a year. We count an event as “found” if
there was a spike in the odds ratio above the determined
threshold that appears within �1 epoch from the injected
incident time t0. (Of course, occurrences where a single
event leads to an odds-ratio spike for more than one epoch
are not double-counted, only one event is injected per trial,
and it is either found or not.) Also shown in Fig. 9 is the
average of the log odds ratio for each of these simulated
networks as a function of the magnitude of the injected
domain wall signal. The large “gap” in the sensitivity that
occurs around 2010 is due to the introduction of the Rb-IIF
satellite clocks, which are substantially more stable than the
older generation satellite clocks; see Appendix B.
In Fig. 10, we show the same true- and false-positive

test results, but for networks of a varying number of
identical pure white frequency noise devices (dð1Þ equiv-
alent). This is to demonstrate the general efficacy of the

method, without specific reference to the properties of the
GPS data.
Note that the ground receiver clocks contribute only

minimally, even though they are significantly more precise
than the GPS satellite clocks. That is because our current
data is sampled only every 30 s, which is about the time it
would take for a DM object to cross the Earth, meaning
many of the Earth-bound clocks will be affected by the DM
during the same data acquisition interval. As discussed in
Sec. III, it is possible to reprocess the existing raw GPS data
to produce 1 s sampled time series. In addition to the
statistical improvement from the larger data set, this would
also further allow us to take full advantage of the highly-
stable Earth-based receiver and laboratory clocks. Of
course, this advantage comes at the cost of significantly
increased computation time, which scales (roughly) quad-
ratically with the number of data points JW due to the
correlations, see Eq. (16).
We also check the “robustness” of the method, to ensure

incorrectly correlated events (that may exist in the data due
to Earth-sourced or other nongalactic perturbations) are not
flagged as potential events. To do this, we inject a single
perturbation of a specified magnitude into each satellite
data stream at a random epoch, all within the same 5 minute
time window. This simulates a domain wall crossing,
except in the important fact that the network perturbations
are not correctly correlated between different satellites.
Injecting a large 2σ perturbation of this kind (σ is the

FIG. 9. Efficacy of the method for detecting injected thin-wall
DM signals, for the same simulated networks as in Fig. 7. Each
point represents 128 trials, each curve has ∼60 points. Top panel
shows the fraction of injected thin-wall events that were correctly
identified, as a function of the event magnitude h. The odds
threshold was set to allow fewer than 10 false positives per year
(see Fig. 7). Bottom panel shows the average log-odds ratio as a
function of h on the same scale.

FIG. 10. Monte-Carlo simulations for thin domain walls, using
a network of pure white-noise (in dð1Þ) devices. The green, red,
and blue curves are for a network of 20, 30, and 50 identical
devices, respectively. Top panel shows the fraction of events that
were correctly identified, as a function of the injected event
magnitude h (scaled by σ, the standard deviation of the data
noise). This is done requiring an odds threshold such that there
are fewer than 10 false positives per year (solid lines), or 1 false
positive per day (dotted lines). Bottom left panel shows the
average log-odds ratio as a function of h=σ on the same scale.
Bottom right panel shows the yearly rate of false positives as a
function of the odds threshold, Othresh.
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typical standard deviation of the clock noise) into the
simulated data streams for a 30-clock network, fewer than
1% present odds ratios anywhere within the 5 minute
window that are above the threshold.

D. Parameter estimation

When a spike in the odds ratio is above the predeter-
mined threshold value, we can investigate this region of
data as a potential event. For example, by finding the set of
“best-fit” parameters that maximize the unmarginalized
likelihood, we can estimate the properties of the possible
event (e.g., the time of arrival, size of the object, coupling
strength etc.). In Fig. 11, we show histograms of the
parameter estimation for a number of simulated trials
where event signals were randomly injected into simulated
data. Shown in the plots is the difference between the
injected value and the extracted best-fit value for the
crossing time t0, speed v, and incident polar angle θ, for
simulated domain wall crossings. These parameters are
representative of the spatial and temporal resolution of the
method. Note that Fig. 11 was generated for 30 s sampled
data—using the reprocessed 1 s data (as discussed above)

will lead to a substantially improved resolution in the
arrival time and velocity.
We also perform the parameter estimation for the false

positive trials, where the analysis is performed on simulated
event-free data. The resultant histograms are presented in
Fig. 12. In this case, when neglecting the priors, the
histograms are flat, with a slight bias of more false-
positives towards higher velocities. When including the
priors, the distribution of extracted parameters from the
false-positives match the priors, as expected.
This means that there is a potential to search for events

even below the “false positive floor.” Reducing the odds
ratio threshold will allow us to detect much smaller DM
events, but will also lead to a larger number of false
positives. The true positive results, however, are expected
to follow the distribution of velocities and incident direc-
tions predicted by the standard halo model. This is relevant
for the part of the parameter space with T ≪ 1 year. There
would also be expected annual modulations in the event
rate, average event speed, and most-common incident
direction, see Sec. IV E. In this case, the analysis would
need to be performed without the priors (i.e., assuming flat
priors) to avoid biasing the false positives.

FIG. 11. Example normalized histograms for the difference between the injected event parameters and the best-fit values extracted
from the Bayesian analysis. Results for 2048 randomized simulations of a 25 satellite clock homogeneous network. Each trial has a
single ∼1σ thin wall event injected with v ≃ 300 km s−1. Left: for the incident arrival time, t0, middle: for the scalar speed, v, and right:
for the incident polar angle, θ. We have resolution of better than ∼� 0.1π radians for the incident angle, and ∼� 10 s for the incident
time (note that this is with 30 s sampled data).

FIG. 12. Normalized histograms for the distribution of the best-fit values extracted from the false positives of the Bayesian analysis,
left: for the scalar speed v, middle: for the polar angle θ, and right: the azimuthal angle ϕ. (The hump in the θ histogram is due to the
solid angle volume element sin θ.) Here, a low threshold (Othresh ¼ 10) was chosen to increase the statistics; when increasingOthresh, the
shape of the histograms remains constant (it is prohibitively computationally intensive to run enough simulations to form false positive
histograms for large Othresh, see Fig. 7). For these simulations, the priors were excluded (i.e., flat priors were assumed).
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VI. SEARCH SENSITIVITY AND
DISCOVERY REACH

Combining Eqs. (5), (6), and (27), we find the maximum
signal amplitude observable in a given clock (a, with
reference clock R) for a domain wall crossing to be

sð1Þmax ≃ ðℏcÞρDM
ffiffiffi
π

p
dτ̃vgT

�
Γa
eff − ΓR

eff exp

�
−
L2

d2

��
; ð29Þ

where the interaction duration is given τ̃ ¼ d=v for d=v <
τ0 and τ̃ ¼ τ0 otherwise (τ0 ¼ 30 s is the time period
between data sample points for GPS), and L ∼ 104 km is
the distance between the clock and the reference clock.
The subtraction of two terms in square brackets in

Eq. (29) is due to the fact that when the maximum of
DM field affects the clock, the reference clock is affected
by its exponentially-suppressed tail. When employing a
network of identical clocks, this term leads to a fast decline
in sensitivity for large d. This is because the clock and
reference clock are affected in the same way, so no bias is
built up between them. In contrast, when employing clocks
with significantly different effective couplings Γeff (par-
ticularly, combining microwave and optical clocks) this
suppression is not realized.
Statistically, the minimum detectable signal is propor-

tional to

sð1Þmin ∝
σyðτ0Þτ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NclkNpts

p ;

where Nclk is the number of affected clocks, and Npts ∼
d=vgτ0 is the number of data samples per clock for which
the DM-induced signal is appreciable, and σyðτ0Þ is the
Allan deviation. The proportionality constant depends on
the efficacy of the search technique, and onOthresh, the odds
ratio threshold required to eliminate false positives.
Therefore, we should have sensitivity to the region

ΓX ≳ ε
σyðτ0Þτ0ðκaX − κRXe

−L2=d2Þ−1
ℏcρDM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NclkNpts

p
τ̃vgdT

; ð30Þ

where the factor ε ∼Oð1Þ is the efficiency factor deter-
mined from the simulations, and depends on Othresh. From
the results presented in Fig. 9, for a 90% detection
confidence level, and when requiring fewer than ten
false-positives per year, we have ε ≈ 5 for the existing
GPS data. Future improvements in the search method
should allow us to further decrease ε.
The ε factor depends only fairly weakly on the search

parameters. For example, as shown in Figs. 7 and 10,
increasing the odds threshold by a factor of 10 decreases
the number of false positives by a factor of 10, while only
increasing smin, the smallest detectable signal magnitude,
by ∼10%. Therefore, we may estimate that for a 90%

detection confidence level, and when requiring fewer than
one false-positive every 10 years, ε ≈ 6.
The average time between consecutive encounters with a

DM object, T , is considered a free parameter in our model
(set by the number density of the DM objects). The
dependence of Eq. (30) on T comes via the DM field
amplitude (5), and the requirement to not oversaturate the
galactic DM density; the higher the number density of
objects, the lower the field amplitude must be per object to
compensate. In order to determine the maximum T that one
can have sensitivity to, we assume the sequence of DM
events can be modeled as a Poissonian process. For
example, if we expect one DM object to cross the Earth
every period of T on average, then in order to be ∼90%
confident that an event would have occurred in the
observation time Tobs, we must require Tobs ≳ 2.3T .
We present the projected sensitivity of our search in

Fig. 13, along with the existing constraints. To be consistent
with existing literature, we present the sensitivity in terms of
the effective energy scales, ΛX ≡ 1=

ffiffiffiffiffiffiffiffijΓXj
p

. Specifically, we
show the projections forΛα; the projections for Λme

andΛmq

are essentially the same, the only difference arising from the
different sensitivity coefficients κX, see Eq. (7).
The reduction in sensitivity above d ≃ 104 km for the

homogeneous clock networks is due to the fact that large
DM objects will interact with the clock and reference clock
at the same time, see Eq. (29). That is, above this value, we
are only sensitive to the gradient in the DM field when
using a homogeneous network. The limits from our
previous work [6] have a sharp cutoff above this value,
since in that work, we required that the DM signal would be
present for just a single data point (see Appendix C). The
Bayesian method presented in this work does not suffer this
constraint.
Performing the simulations for strings and monopoles is

substantially more computationally demanding, due to the
number of extra free parameters that must be marginalized
over (see Appendix C). However, the sensitivity can be
approximated by analogy with the domain wall case. For
d ≫ RGPS, the monopole and domain wall cases are
essentially the same. For d < RGPS, the sensitivity of the
search can be estimated by noting the typical number of
clocks that would be affected in a monopole crossing,
Neff ≃ ⌈Nclkd2=R2

GPS⌉. A similar equation exists for strings,
Neff ∝ Nclkd=RGPS. For strings and monopoles, we
required that at least 3 satellite clocks are affected during
the DM sweep, Neff ≥ 3, which leads to a sharp drop in
sensitivity for small d, as shown in Fig. 13.

VII. CONCLUSION

We have described a method to use data from a
distributed global network of precision measurement
devices to search for transient signals that may be asso-
ciated with sweeps by macroscopic-scale dark matter. In

ROBERTS, BLEWITT, DAILEY, and DEREVIANKO PHYS. REV. D 97, 083009 (2018)

083009-14



particular, we considered the network of microwave atomic
clocks on board the GPS satellites and ground stations, for
which nearly two decades of archival data is available. The
method was demonstrated using simulated atomic clock
data, and the prospects and discovery reach for topological
defect dark matter was presented. This approach can be
extended in a straightforward fashion to other networks of
high-precision measurement devices.
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APPENDIX A: VELOCITY DISTRIBUTION
AND EVENT RATE

Assuming the standard halo model, the velocity distribu-
tion of DM objects in the galactic rest frame is isotropic
and quasi-Maxwellian, with dispersion of 290 km s−1 and a
threshold above the galactic escape velocity of vge ≃
544 km s−1. The vector velocity distribution for DM objects
that cross paths with the Earth can be expressed in the Earth-
centered inertial (ECI) frame as

fv⃗ðvÞ ¼ Cv exp

�
−
ðvþ vgÞ2

v2c

�
ΘðveðψÞ − vÞ; ðA1Þ

where Θ is the Heaviside step function with

veðψÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ge − v2g sin2 ψ

q
− vg cosψ

being the effective escape velocity (the maximum allowable
relative DM velocity as a function of ψ), ψ is the angle
between n̂g ¼ vg=vg (the direction of Earth’s motion through
the galaxy) and n̂ ¼ −v=v (the vector of the incident DM
object, cosψ ¼ −n̂ · n̂g), vc is the speed of the Sun in the
galactic rest frame, vg is the galactic speed of the local
reference frame (ECI), andC is a normalization constant. For
the purposes of this work, we can neglect the smaller relative
velocity of the Earth in its orbit around the Sun, and take
vg ≈ vc ≈ 220 km=s. For a more detailed overview, see,
e.g., Ref. [73].
The direction of motion of the solar system through the

galaxy points towards the Cygnus constellation; in the
ECI frame n̂g ≈ ð0.46;−0.49; 0.74ÞT. The angular distri-
bution function for events is obtained by integrating over
velocities

fψðψÞ ¼ 2π

Z
∞

0

fv⃗ðv;ψÞv2 sinψ dv: ðA2Þ

In fact, more than 90% of events would be expected to
come from the forward-facing hemisphere, see Fig. 2.

FIG. 13. Projected discovery reach for topological defect dark matter, along with existing constraints for comparison. The red shaded
region are the limits (on domain walls) from the initial GPS.DM search using the Rb GPS network [6], the shaded orange regions are
limits set by optical Sr clock [63] and from astrophysics observations [50]; these apply for walls, strings, and monopoles. The curves
represent the projected sensitivities for our method, with the red, green, and blue colors for domain walls, strings, and monopolelike dark
matter, respectively. For monopoles and strings, we require that at least 3 clocks are affected in the DM crossing, which causes the sharp
cutoff for low d. The solid lines are the projections for the global network of GPS microwave clocks, and the dashed lines are the reach
for the case when a single optical clock can be incorporated into the analysis. The sensitivity is slightly lower for large T , since we rely
on the older GPS clocks.
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Similarly, the scalar velocity distribution can be found by
integrating over the angles

fvðvÞ ¼ 2π

Z
π

0

fv⃗ðv;ψÞv2 sinψ dψ

≈ Cv2
�
exp

�
−ðv − vcÞ2

v2c

�
− exp

�
−ðvþ vcÞ2

v2c

��
:

ðA3Þ
Since we are focusing on macroscopic DM objects, it is

also instructive to constructive to consider the distribution
of crossing durations. Define τ ¼ d=v to be the time it takes
a DM object of width d to pass by a point in space
(similarly we can consider τGPS ¼ DGPS=v, time to sweep
the entire GPS constellation by the DM object central
point). It is convenient to define the inverse velocity
u≡ 1=v, and its corresponding distribution function

fuðuÞ≡ dPuðuÞ
du

¼ dv
du

dPvðvÞ
dv

¼ v2fvðvÞ;

where dPuðuÞ is the infinitesimal probability for the DM
object to have inverse velocity u. Then, the distribution for
the crossing times is

fτðτÞ≡ dPτðτÞ
dτ

¼ du
dτ

dPuðuÞ
du

¼ ðd=τÞ2
d

fvðd=τÞ: ðA4Þ

In the case of domain walls, we are actually interested in
the distribution of perpendicular velocities v⊥, see Fig. 1.
Note that the Earth is more likely to cross paths with walls
that have velocities close to the normal (such objects sweep
out a greater volume per unit time). If η is the angle between
v and v⊥, see Eq. (10), then the probability of encountering
a wall with this angle is proportional to cos η, and can be
expressed as

dPηðcos ηÞ ¼ 2 cos η dðcos ηÞ ¼ 2
v⊥
v2

dv⊥: ðA5Þ

Therefore, we have fv⃗⊥ðv⊥Þdv⊥ ≡ dPv⊥ðv⊥Þ, with

dPv⊥ðv⊥Þ ¼
Z

∞

v⊥

Z
π=2

−π=2
dPηðcos ηÞdPv⃗ðvÞdv dη;

which implies

fv⃗⊥ðv⊥Þ ¼ 2

Z
∞

v⊥

Z
π=2

−π=2
fv⃗ðvÞ

v⊥
v2

dv dη: ðA6Þ

We can further find the angular, scalar, and crossing-time
distributions as above, which are also presented in Fig. 2.

APPENDIX B: CLOCK NOISE PROFILES

Here we present a brief overview of the noise character-
istics of the GPS satellite clocks. For more detail, including

the analysis for each individual SVN, see the Supplemental
Material [31].
In Table II, we present the average standard deviations of

each clock and satellite combination for both first- and
second-order differenced data, averaged over all available
SVNs and reference clocks. We also form the autocorre-
lation function (ACF),

Aaðjτ0Þ ¼
XJ−j−1
l¼0

dal d
a
lþj

ðJ − jÞðσaÞ2 ; ðB1Þ

for each clock, where the time-series data fdajg is assumed to
be centered around 0, and J is the total number of data points
for each clock per day. For the 30 s sampled data, τ0 ¼ 30 s
and J ¼ 2880. (Here, σa is the standard deviation of the
clock data, not the formal error.) We calculate ACFs for the
first- and second-order differenced data (dð1Þ and dð2Þ). In
Fig. 14 we show the ACF averaged over all clocks of a
specific type between July 2004 and June 2016 for first- and
second-order differenced data. For pure white data Að0Þ ¼ 1
and AðτÞ → 0 for τ ≠ 0; other noise profiles have distinct
ACF forms (see, e.g., Ref. [79]). First-order differencing is
sufficient to ensure all the Rb and the block IIF Cs clock
time-series are sufficiently stationary, while the block II and
IIA Cs clocks require second-order differencing.
We can also compute the Allan variance for each clock

σ2yðΔtÞ ¼
XJ−2l−1
j¼0

ðdj − 2djþl þ djþ2lÞ2
2l2τ20ðJ − 2lÞ ; ðB2Þ

which is a widely utilized time-domain measure of the
frequency stability [79]. Note that the Allan variance is a
function of the averaging time, which in our case can be
written Δt ¼ lτ0. The Allan variance is shown is Fig. 15,
where we use the nondifferenced data, dð0Þ.
For a given clock, a, we can form the power spectral

density (PSD),

SaðkÞ ¼ τ0
J
jd̃aðkÞj2; ðB3Þ

TABLE II. Typical standard deviations for the first- and second-
order differenced data (30 s sampling time interval) for GPS
satellite clocks. For individual SVNs, including the daily-
variation uncertainty and how they vary over time, see the
Supplemental Material [31].

Clock Block σð1Þ=ns σð2Þ=ns

Rb IIF 0.013 0. 021
IIR 0.074 0.099
IIA 0.040 0.059
II 0.048 0.069

Cs IIF 0.087 0.121
IIA 0.089 0.090
II 0.083 0.071
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where d̃aðkÞ ¼ P
jd

a
j expð−i2πjk=JÞ is the discreet

Fourier transform of the time-series data for the clock a.
The PSD units are s2=Hz. Plots of the PSD for each of the
clock/satellite combinations are shown in Fig. 16, for which
we use the singly-differenced data, dð1Þ.
The periodic spikes that appear in the power spectrum

and autocorrelation function (particularly visible for the
Rb-IIF satellite clocks, see Figs. 14 and 16) correspond to a

5-minute period, and are technical artefacts traceable to the
partitioning method used in the initial JPL data processing.
This has been addressed in recent updates to their software.

APPENDIX C: SPECIFIC DARK-MATTER
SIGNALS

Here, we present the specific DM profiles and resultant
signals for domain walls, monopoles, and strings. We then
link the general h parameters back to the specific field
parameters for those models.
Thin walls—The simplest case to consider is thin domain

walls. By “thin”, we mean that the width of the wall is
sufficiently small such that it will pass through any clock
within the 30 s sampling period,

d ≪ ∼300 km s−1 × 30 s ≈ 104 km:

In this case, the profile can be considered to be a delta-
function φ2ðta; tÞ ¼ δðta − tÞ, so that

saj
ð0Þ ¼

8>>><
>>>:

0 t ≤ ta; tR

ha ta ≤ t < tR

−hR ta > t ≥ tR

ha − hR t ≥ ta; tR

ðC1Þ

(t ¼ jτ0). From the normalization defined in Eq. (27), in
the thin wall case, the parameter h can be linked back to the
field parameters as

h ¼ A2
X
X

κXΓX: ðC2Þ

Gaussian profile walls—For walls of finite thickness, we
assume a Gaussian density profile, with root-mean-square
width d, such that

FIG. 15. Allan variance (B2) for each GPS satellite block,
averaged over all available SVNs. See also the Supplemental
Material [31].

FIG. 16. The averaged power spectral densities (for dð1Þ) for the
various clock/satellite block combinations. Note that this includes
noise from the H-maser reference clock. See also the Supple-
mental Material [31].

FIG. 14. Averaged autocorrelation functions for first-order
(top) and second-order (bottom) differenced clock data.
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φ2ðta; t0Þ ¼ v⊥
d

ffiffiffi
π

p exp

�
−
v2⊥
d2

ðta − t0Þ2
�
: ðC3Þ

The normalization coefficient, which includes v⊥ and d, is
chosen purely for convenience so that the maximum
accumulated clock bias will be h, in order to be consistent
with the thin wall case and because it is h that is the directly
observable parameter. Then, the integral in Eq. (27) can be
expressed in terms of error functions,

saj
ð0Þ ¼ 1

2

�
ha − hR þ haerf

�
v⊥ðj − taÞ

d

�

− hRerf

�
v⊥ðj − tRÞ

d

��
: ðC4Þ

In the Gaussian-profile wall case, the parameter h relates to
the field parameters as

h ¼ A2d
ffiffiffi
π

p
v⊥

X
X

κXΓX: ðC5Þ

Monopoles—For monopoles, we assume Gaussian pro-
file spherical objects, and also have to consider the impact
parameter, ρ, the distance between the clock and the center
of the DM object in the plane perpendicular to n̂, the
incident direction of the object. In this plane, the distance of
a clock from ECI0 is given by

ra⊥2 ¼ ra2 − ðn̂ · raÞ2:

If, in this plane, the DM object enters with a perpendicular
distance of R from ECI0, and at an angle α measured from
z0, the projection of z down to the plane perpendicular to n̂
½ẑ0 ¼ ẑ − ðẑ · n̂Þn̂�,4 then the impact parameter is

ρa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra⊥2 þ R2 − 2ra⊥R cos γa

q
; ðC6Þ

where γa ¼ α − βa is the angle between R and ra⊥, and βa is
the angle that ra⊥ makes in the plane perpendicular to n̂ also
measured from the z0-axis, and is given by

tan βa ¼ ðra × ẑÞ · n̂
ra · ẑ − ðra · n̂Þðn̂ · ẑÞ ;

as shown in Fig. 17. The profile can be expressed as

φ2ðta; t0Þ ¼ v
d

ffiffiffi
π

p exp

�
−v2

d2
ðta − t0Þ2 − ρa2

d2

�
; ðC7Þ

and the parameter h is linked to the field parameters as

h ¼ A2d
ffiffiffi
π

p
v

X
X

κXΓX: ðC8Þ

Strings—The string case is similar to the monopole case,
except here the impact parameter is set by the perpendicular
distance from each clock to the string. We assume that
on the scale of the GPS network, the string can be modelled
as a straight line segment. For a string that enters from
incident direction n̂⊥ ¼ −v⊥=v⊥ (we are interested in the
velocity perpendicular to the string), with a perpendicular
distance of R from ECI0, at an angle α (measured from the
z0-axis to R as above), the impact parameter for each
satellite is

ρa ¼ R − ra⊥ cos γa; ðC9Þ

where, as above, γa ¼ α − βa is the angle between R and
ra⊥, and βa is the angle that ra⊥ makes in the plane
perpendicular to n̂⊥ also measured from the z0-axis.
Assuming a 2D Gaussian profile with radial width d, the

string profile can be expressed

φ2ðta; t0Þ ¼ v⊥
d

ffiffiffi
π

p exp

�
−v2⊥
d2

ðta − t0Þ2 − ρa2

d2

�
: ðC10Þ

The parameter h is linked back to the field parameters in the
same way as for the Gaussian-profile wall case (C5).

FIG. 17. Geometry of a monopole object crossing the GPS
constellation. The monopole (labeled χ) enters along unit vector n̂
(which points into the page), at perpendicular distance R from
ECI0 (the Earth center), and makes an angle α with respect to the
ẑ0-axis in the plane perpendicular to n̂; ρa is the impact parameter
for satellite a.

4When jẑ · n̂j ≈ 1, we instead define ẑ0 ¼ x̂ − ðx̂ · n̂Þn̂.
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