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Occasionally we have to carry out calculations with some effective Lagrangians
supplied by our particle physics friends (possibly related to new physics beyond
the standard model). For example, we could be given a Lagrangian density

L′ = g φψ̄ψ ,

where φ is some scalar field, ψ is the Dirac field (electrons) and g is a coupling
constant. The Dirac equation that is conventionally used in atomic physics
reads

HD = cα · p + βmec
2 + V ′ , (1)

i~
∂

∂t
ψ = HDψ .

(Here and below I suppress interactions of electrons with each other and with
the nucleus). Given L′ what is that extra operator V ′ that I would have to add
to my Dirac Hamiltonian? The answer depends on particle physics conventions
and I will consistently derive V ′ below.

First of all, since in classical mechanics L = T − V , it is tempting to write
V ′ = −L′, which is certainly incorrect. So let’s track what happens to L′ as I
derive Eq.(1) from the lagrangian formulation. For the impatient, the result is

V ′ψ = −γ0

(
∂L′

∂ψ̄
− ∂µ

(
∂L′

∂
(
∂µψ̄

))) . (2)

We start by writing out the total Lagrangian density

L = LD+Lφ+L′. (3)

Here LD and Lφ are Lagrangians for uncoupled fields.

LD = i (~c) ψ̄γµ∂µψ −
(
mec

2
)
ψ̄ψ (4)
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is the Dirac (spin 1/2) Lagrangian that I would need and I am going to keep Lφ
unspecified. I use the Bjorken and Drell conventions for the Dirac matrices γ.

The field equations are derived from the Eurler-Lagrange formula

∂µ

(
∂L

∂ (∂µΦ)

)
=
∂L
∂Φ

, (5)

where Φ spans all quantum fields in the problem. Since the Dirac field ψ is
complex valued, I can treat ψ and ψ̄ as independent quantities.

The Eurler-Lagrange formula applied to the Dirac Lagrangian yields

∂LD
∂ψ̄

= i (~c) γµ∂µψ −
(
mec

2
)
ψ, (6)

∂LD
∂
(
∂µψ̄

) = 0. (7)

Then the free-particle Dirac equation with extra juice coming from the L′ con-
tribution

i (~c) γµ∂µψ −
(
mec

2
)
ψ +

(
∂L′

∂ψ̄
− ∂µ

(
∂L′

∂
(
∂µψ̄

))) = 0. (8)

Notice that this differs from Eq.(1) used in atomic physics and quantum chem-
istry. For example, the rest-energy term does not contain β and we need to add
an extra step: since β = γ0, I multiply through with γ0 (I will only keep the
first term for L′ and recover the second term later on).

γ0
∂L
∂ψ̄

= i (~c) γ0γ
µ∂µψ − γ0

(
mec

2
)
ψ + γ0

∂L′

∂ψ̄
= 0 (9)

γ0γ
µ∂µψ = γ0γ

0∂0ψ + γ0γ
i∂iψ = (10)

=
(
γ0
)2
∂0ψ + γ0γ

i∂iψ =
(
γ0
)2 1

c

∂

∂t
ψ + γ0γ

i ∂

∂xi
ψ (11)

(
γ0
)2

= 1

γ0γ
i =

(
1 0
0 −1

)(
0 σi
−σi 0

)
=

(
0 σi
σi 0

)
= αi (12)

The matrices αi are the same as the ones in Eq.(1). Then, since i~ ∂
∂xi = pi

i (~c) γ0γ
i ∂

∂xi
ψ = c

∑
i

αi
(
i~

∂

∂xi

)
= c

∑
i

αipi = −c (α · p) . (13)

Finally,

0 = i (~c) γ0γ
µ∂µψ − γ0

(
mec

2
)
ψ + γ0

∂L′

∂ψ̄
=

= i~
∂

∂t
ψ − cα · pψ − β

(
mec

2
)
ψ + γ0

∂L′

∂ψ̄
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Or

i~
∂

∂t
ψ = cα · pψ + β

(
mec

2
)
ψ − γ0

∂L′

∂ψ̄

i.e., we indeed recover Eq.(1).
Now we can easily identify that extra term in the Dirac Hamiltonian due to

L′,

V ′ψ = −γ0

(
∂L′

∂ψ̄
− ∂µ

(
∂L′

∂
(
∂µψ̄

))) . (14)

Let’s consider several examples.

1 Examples

1.1 Coupling to electromagnetic fields

L′ = −1

c
JµAµ = −qψ̄γµψAµ , (15)

where A is the four-vector potential Aµ = (φ,A) and J is the conventional
electromagnetic current density,Jµ = cqψ̄γµψ.

From Eq.(14)

V ′ψ = −γ0

(
∂

∂ψ̄

(
−qψ̄γµψAµ

)
− 0

)
= qγ0γ

µAµψ,

or
V ′ = qγ0γ

µAµ .

Explicitly,
V ′ = qγ0γ

0φ+ qγ0γ
iAi = qφ− q (α ·A)

which is, of course, the familiar coupling to EM fields.

1.2 “Higgs portal”

L′ = g φψ̄ψ (16)

V ′ = −gφγ0 = −gφβ (17)

Compare L′ to the rest-energy term in the Dirac Lagrangian, −mec
2ψ̄ψ. V ′

has the same structure as the rest mass term in the Dirac Hamiltonian, as it
should. Effecttively the mass of the electron is modified

meffc
2 = mec

2 − gφ
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1.3 Axion fields

Here are two equivalent expressions for the Lagrangian describing coupling of
pseudoscalar axions to electrons

L′ = 2
me

fa
a ψiγ5ψ, (18)

L′′ = − 1

fa
(∂µa) ψγµγ5ψ. (19)

Here a is the axion field and fa is a coupling constant.
Then

V ′ = −2
me

fa
a iγ0γ5

V ′′ =
1

fa
(∂µa) γ0γ

µγ5.

Explicitly V ′′

V ′′ =
1

fa
(∂0a) γ0γ

0γ5 +
1

fa
(∂ia) γ0γ

iγ5 =

1

cfa

(
∂a

∂t

)
γ5 +

1

fa

∑
i

∂a

∂xi
Σi,

where

Σi = γ0γ
iγ5 =

(
σi 0
0 σi

)
.
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