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Abstract

I derive the general relativistic metric in terms of Newtonian potentials. The result 
simplifies addition of metrics. Metric operations are derived. I further hypothesize that the 
symmetric metric could represent an electromagnetic field as well as a gravitational field. I unify 
the two fields of electromagnetism and gravity into one symmetric metric.

In the second part of this thesis, I derive a novel relativistic quantum equation. The 
operators are derived, and the uncertainty relations are found. Solutions are analyzed for the flat-
space metric. The relativistic harmonic oscillator and 1/r potentials are also presented. The 1/r 
potential is useful for studying the motion of a particle orbiting a hydrogen atom or a black hole.
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Chapter 1

Introduction

Many physics hobbyists wonder whether gravitational waves a¤ect the time calculated by

atomic clocks. Gravitational waves are produced by accelerating masses. These masses produce

gravitational waves travelling at a �nite speed-the speed of light. As they travel, gravitational

waves carry energy as shown by Sir Hermann Bondi�s �sticky-bead argument.� This energy

may be absorbed by the atom and disturb its atomic energy levels. The theory behind the

atomic clock relies on the fact that electromagnetic laser radiation evolves the con�guration

of energy levels in a precise way according to a quantum equation of motion known as the

Schrödinger equation. Unfortunately, the Schrödinger equation accepts only classical potentials

and not relativistic metrics. I will be exploring Newtonian mechanics, Schrödinger mechanics,

Einstienian relativity, and relativistic quantum mechanics. This could get confusing with the

word classical referring to anything that is not relativistic quantum mechanics, so I shall use "not

quantum" to refer to both Newtonian mechanics and Einstein�s relativity and "not relativistic"

to refer to Newtonian mechanics and Schrödinger mechanics.

This thesis, "A Novel Derivation of the Metric from the Newtonian Potential and of the

Relativistic Quantum Equation", will derive a relativistic formulation of particle quantum me-

chanics with potentials whose information travels at the speed of light. More speci�cally, the

goal is to create a framework to study the e¤ect of gravitational waves on a relativistic, quantum

mechanical electron orbiting a classical, stationary proton. The theory can be applied in the

context of gravitational waves on atomic clock atoms. A quantum particle orbiting a classical

point particle is hard to visualize even for quantum mechanists. Instead let us consider a more
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intuitive example.

There is a mass or charge moving along a straight line and above it is a particle with

either similar or opposite charge. The mass that is moving along the straight line emits force

information to the particle above. When the mass is closest to the particle, it emits a stronger

force on that mass. As it moves away, the signal gets weaker. These signals are represented

by forces, potentials, or metrics. These signal representations are the input into equations of

motion in classical (not quantum) mechanics.

The theory developed in the �rst part of this thesis provides a theory for the representation

of Newtonian classical potentials as metrics of Einstein�s classical general relativity. The force

is the negative derivative of the potential. Newtonian mechanics assumes that information can

travel in�nitely fast but with Einstein�s theory of relativity Einstein adds to Newton�s mechanics

by stating the particle and force information can only travel at the speed of light.

Einstein�s classical general relativity theory provides the most accurate description of large

particles traveling at high speeds close to the speed of light. The theory provides solutions

for black holes and prior inexplicable deviations from the Newtonian gravitational motion of

planets about the sun. The Pound-Rebka gravitational blue-shift experiment proved that light

rays are a¤ected by gravity[1]. The Reasenberg-Shapiro Viking Relativity Experiment collected

radio signal data from a spacecraft and demonstrated retardation by gravity[2]. Theoretical

calculations of the time deviations of clocks on spacecraft due to gravity and relativity accurately

re�ected experimental measurements of rocket �ight times in the Vessot-Levine experiment[3].

Lunar laser ranging tests put stringent limits on the equivalence principle[4]. The Gravity

Probe-B experiment are testing theoretical predictions of the geodesic e¤ect and the frame-

dragging e¤ect[5]. Properties of black holes are commonly measured such as the spectrum

of the accretion discs[6,7,8]. Finally, experiment and theory show deviations from the fairly

accurate Newtonian gravitation theory[9,10]. All experiments so far have shown the accuracy

of Einstein�s theory of general relativity. I must make only slight modi�cations to general

relativity theory avoiding changes of experimentally proven results.

Mathematicians and physicists found Einstein�s metric interpretation of gravity very di¢ cult

to �nd tangible solutions for because the �eld equations are nonlinear, and di¤erential geometry

was just beginning its life. Schwarzchild gave the �rst solution by considering the weak-�eld
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limit of a point mass and comparing geodesic solutions (straightest lines possible) of a general

metric to the force of gravity[11]. In the �rst part of this paper, I will reconsider the metric

generated by the gravitational �eld of a point mass (or any other potential) using the metric-

potential formulation. I will give a general formula for a metric in terms of any potential as

quantum mechanics is usually in terms of potentials, furthermore no calculus or computation

is required in getting a metric from a potential (once the general formula is derived). My

metric-potential formulation is a formidable mathematical tool to use on otherwise di¢ cult

mass distributions, but what is a metric which evidently is related to both Newtonian forces of

weak �elds and Newtonian potentials?

A metric of a curved surface represents coe¢ cients of the dot product in that surface. The

metric description of a surface allows you to compute geometric quantities on a curved surface

in an e¢ cient manner. From Einstein�s theory, I accept the following: motion is governed by

a metric and particles cannot travel faster than a null particle (a particle with 0 mass) in the

curved space-time described by this metric.

I deviate from Einstein�s theory in that I require multiple metrics for the description of

multiple particle motion. Considering only electrically-neutral, massive particles traveling on

top of a gravitational �eld, it is easy to conjecture that only one gravitational metric is needed

to describe the motion of particles by the equivalence principle (the statement of equivalence of

the inertial and gravitational mass). Both massive particles and null particles travel atop this

gravitational �eld. With much of the interactions on the macroscopic human level being solely

electromagnetic, the observer is fooled into thinking gravity bends space and time itself instead

of human bodies and electromagnetic light rays.

If I consider instead the metric of an electromagnetic force, this electromagnetic �eld can

bend the paths of electrically charged particles, but not the paths of neutral particles directly

through electrical interactions. With this observation, two metrics are needed, a �at space-time

metric for a neutral particle, and another metric taking into account the charged particle�s

geodesic motion (motion due to a metric).

Adding to this theory, I consider the same situation placed on top of a gravitational �eld

which bends all of the above (including the electrical �eld thus changing the electromagnetic

metric) except the �at background metric by my theory. The gravitational and electromagnetic
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metric will be used to �nd the particle�s geodesic motion described in �at background coordi-

nates. Once I have the geodesic motion of the particle, I could use the metric for measurements

of the charged particle�s motion. I shall develop the novel theory of potential-metrics to deal

with multiple particles in both gravitational and electromagnetic �elds.

I extend Einstein�s idea that gravitational motion is described by a symmetric metric caused

by "curved space" to electromagnetic �elds. I develop a novel approach to the construction of

metrics given a Newtonian potential measured by a test particle around zero velocity (velocities

much less than the speed of light) with respect to the �at background. This theory requires

that �at-background reference-frames exist.

In part I of my thesis, I derive a relativistic theory in which all potentials acting on particles

are represented by a metric. I include electromagnetic potentials in my metric as gravity is

represented by a metric in Einstein�s general relativity. My �eld theory will then be applied

to my novel relativistic quantum theory. My metric will be applied to the relativistic quantum

equation as the classical potential energy is applied to the Schrödinger equation, the central

equation of Newtonian quantum mechanics.

All of quantum mechanics is stated in terms of potentials. Keeping in touch with quantum

mechanics, I shall derive quantum relativity in terms of potential-metrics. I have given an

explicit uni�cation of only two of the forces which have the most e¤ect on atomic clocks: the

gravitational and the electromagnetic.

In part II of my thesis adds to the theory of Einstein�s general relativity and uses the metric

as input into the quantum relativistic equation that I derive. The theory utilizes the familiar

statistical interpretation of quantum mechanics with the wave function which contains all the

information about the particle. The second part of the thesis uses knowledge of quantum

mechanics as described in the textbook of Quantum Mechanics by David J. Gri¢ ths whereas

the �rst part uses Newton�s and Einstein�s theories.

I will compare my derivation of my quantum relativistic equation to the standard equa-

tion of spin-less quantum relativistic particles called the Klein-Gordon equation[12,13]. The

Klein-Gordon equation is the relativistic version of the Schrödinger equation which could be

interpreted as the equation used to �nd the probability amplitude of a spin 0 particle. I will

derive an equation similar to the Klein-Gordon equation based on Einstein�s proper-time ex-
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tremization. This derivation allows accurate descriptions of the operators by comparison with

the Hamilton-Jacobi equation operators. I further show that rest mass itself is quantized and

it has a conjugate relationship with the proper-time of the particle. I derive the operators of

4-velocity and their uncertainty relations with position as well.

Many derivations of the Schrödinger equation exist in the literature[14,15,16,17]. Most

derivations start with the postulate that a particle is a wave by the deBroglie hypothesis. The

Klein-Gordon equation was derived from the relativistic energy relation E2=m2+p2. Given

the mass m, the momentum p and the energy E could then be replaced by their classical

Schrödinger operator analogues. This derivation uses the operators for classical momentum as

the new operators for relativistic momentum.

Instead, I derive a novel relativistic equation using the classical relativistic action. I omit

my derivation of the classical Schrödinger equation and operators which the reader can derive

in exactly the same way as my relativistic equation from the classical Lagrangian.

Both parts of my thesis are building up toward the description of gravitational waves on

the quantum system of an atom in an atomic clock.
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Part I

Classical Mechanics
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Chapter 2

Metric-Potential Formulation

A metric is a mathematical description of a curved space. The metric is used to �nd dot

products in that space. The key to my derivation of the metric in terms of potential energy is the

accuracy of Newtonian theory at velocities much less than the speed of light. No experiment on

any scale, macroscopic or microscopic, has deviated from Newton�s inverse-square law of gravity

for velocities much less than the speed of light[18,19,20,21]. I postulate that Newton�s theory

is correct for all particles near zero velocity in a Cartesian Lorentzian observer�s frame and use

this as a starting point for my derivation of the metric in terms of potentials. (Note throughout

this paper t is in units of meters with reciprocal conversion factor c; the speed of light). The

metric is expressed in the (1;�1;�1;�1) convention[22]. I require that the proper-time produce

the same variation as the classical action near zero speed
�
dx
dt

�
:

Z
small v

d� =

Z
small v

�
d�

dt

�
dt (Einstein)

=

Z �
kL+

d

dt
�
�
t; x; ::; x0; :::

��
dt (Newton with gauge).

Here L = T � V , L is the Newtonian Lagrangian per test mass, T is the kinetic energy per

test mass
�
1
2
dx
dt

2
�
, V is the potential energy per test mass, k is a constant and � is a twice

di¤erentiable function known as a pure di¤erential in variational calculus. It will have no e¤ect

on the motion at low speeds. This test mass I mention is the mass used to �nd the potential

at a speci�ed point; it cancels with the mass appearing in the Lagrangian of a gravitational

potential by the equivalence principle.
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The correctness of Newton�s equations for velocities much less than the speed of light leads

me to expand Einstein�s metric formulation in a Taylor series about velocity 0 and equate it

to the Lagrangian formulation. I will expand d�
dt to order v

2 where v = dx�

dxt . I �rst write the

function out explicitly (Notice space but not time is included in the Latin letters, e.g. a and b;

Iuse this convention throughout. Greek letters will range over space-time. ��� represents the

�at metric.):

d�

dt
=

 
gtt + 2

X
a

gtax
0a +

X
ab

gabx
0ax0b

! 1
2

:

I take the zeroth, �rst and second derivatives, respectively, with respect to Cartesian Lorentzian

background velocity (x0 = dx
dt ):

d�

dt
jx0=0 = g

1
2
tt;

@ d�dt
@x0c

jx0=0 = g
� 1
2

tt gtc;

@2 d�dt
@x0d@x0c

jx0=0 = �g�
3
2

tt gtdgtc + g
� 1
2

tt gcd:

Now, I set the Einstein formulation and the Newtonian formulation equal and compare results:

g
1
2
tt + g

� 1
2

tt

X
a

gtax
0a +

1

2

X
ab

�
�g�

3
2

tt gtagtb + g
� 1
2

tt gab

�
x0ax0b + o

�
x03
�

(Einstein near 0)

= k

�
1

2
x02 +A:x0 � V

�
+
d�

dt
(Newton with gauge)

=

�
�kV + @�

@t

�
+
X
a

�
kAa +

@�

@xa

�
x0a +

1

2
k
X
a

x0a2 (Newton).

Here I expressed the action in a general form
�
1
2x
02 +A:x0 � V

�
. A is the vector of coe¢ cients

of the Newtonian velocities similar to the magnetic potential per test mass and V being the

potential energy per test mass. Setting velocity polynomial coe¢ cients equal and solving for

the metric, I obtain the relations summarized below.
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Summary 1 General Metric-Potential Formulation

gtt =

�
�kV + @�

@t

�2
;

gta =

�
�kV + @�

@t

��
kAa +

@�

@xa

�
;

gaa = k

�
�kV + @�

@t

�
+

�
kAa +

@�

@xa

�2
;

gab =

�
kAa +

@�

@xa

��
kAb +

@�

@xb

�
:

I have thus derived the metric g�� from the Lagrangian in the form k
�
1
2x
02 +A:x0 � V

�
+ d�
dt .

Notice that � shall have no e¤ect on the motion near velocities much less than the speed of

light. � is called the gauging function.

I can obtain a standard form if I assume the metric is �at at in�nity and the potential (both

V and A) is zero at in�nity. With @�
@t = 1, and using the gauge

@�
@xa = 0 I get the desired �atness

at in�nity. The other constant k = kg is a fundamental constant which must agree with the

numerical results in the Pound-Rebka gravitational blueshift experiment [1]. It is possible that

in the case of electromagnetism the constant k = ke is di¤erent from the gravitational blueshift

constant, k = kg. The constant, k = kg, is a very small number, I will set it to �1 for the sake

of discussion and analysis of the theory. In the nonphysical case of k = �1, I shall call k the

unit blueshift constant. The unit blueshift constant shall be used throughout the rest of this

paper. In summary,

Summary 2 Flat In�nity Metric Formulation

Given the Newtonian Lagrangian of the form L = 1
2x
02 + A:x0 � V , given the nonphysical

unit blueshift constant k = �1, and assuming that the particle is free at in�nity; the metric

9



is:

gtt = (V + 1)2 ;

gta = �Aa (V + 1) ;

gaa = � (V + 1) + (Aa)2 ;

gab = AaAb;

V�!r!1 = 0:

Notice that the potential is potential energy per test mass.

I write out the metric explicitly, remembering d�2 = dx�g��dx� and L = 1
2x
02 +A:x0 � V :

g�� =

26666664
(V + 1)2 �Ax (V + 1) �Ay (V + 1) �Az (V + 1)

�Ax (V + 1) � (V + 1) + (Ax)2 AxAy AxAz

�Ay (V + 1) AxAy � (V + 1) + (Ay)2 AyAz

�Az (V + 1) AxAz AyAz � (V + 1) + (Az)2

37777775 :
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Chapter 3

Normalized Coordinates

The above formulation gave the metric g�� in terms of the Cartesian coordinates of �at

space background. In this section, I derive a formula for the transformation of one curvilinear

coordinate system to another curvilinear coordinate system; this standard result has been

obtained or presented in many texts[23]. This formula will then be used to �nd the "straight

line paths" of particles through space as envisioned by Einstein and described in any modern

general relativity textbook[23,24,25,26]. The formulation will prove fruitful, providing a method

of obtaining any metric which combines two di¤erent types of forces. Speci�cally, I shall be

concerned with the combination of gravity and electromagnetism.

3.1 Coordinate Transformation Formula

For any metric g�� on coordinates x�, my aim is to be able to transform the metric to

another set of coordinates, � . In other words, my aim is to be able to relabel the space. Let

me start with the formula of proper-time:

� =

Z q
x�0g��x�0d� :

My coordinate transformation must preserve the proper-time of the particle since it is the

particle�s own time. The path taken through space shall also remain the same regardless of the

labelling of the coordinates. Both conditions are satis�ed if I perform a calculus transformation
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of variables. Letting h� be the new metric and comparing the two formulas:

� =

Z s�
�0
@x�

@�

�
g��

�
@x�

@��
��0
�
d� =

Z q
�0h��

�0d�:

I see that,

h� =
@x�

@�
g��

@x�

@��
;

where ��0 = d��

d� .

I will now demonstrate a few examples. The �rst example will get us a general result -

the metric potential formulation in spherical coordinates. The second example will get us the

metric potential formulation in cylindrical coordinates. In the third example, I will give the

derivation of a relativistically corrected current carrying charged wire.

Example: Transform the potential metric formulation from the Cartesian coordinates x� =

(t; x; y; z) into the spherical coordinates � = (t; r; �; �) for a spherically symmetric metric

independent of the vector potential. Here � is the azimuthal angle, � is the polar angle, and r

is the radius.

First, I need to �nd @x�

@� as a function of the new coordinates, �
 . The coordinate transfor-

mation from rectangular to spherical can be found on the Mathematica website[27], for example.

I shall multiply both sides of the metric in rectangular coordinates by @x�

@� and
�
@x�

@�

�T
.

26666664
dt

dx

dy

dz

37777775 =

26666664
1 0 0 0

0 cos� sin � �r sin� sin � r cos� cos �

0 sin� sin � r cos� sin � r cos � sin�

0 cos � 0 �r sin �

37777775

26666664
dt

dr

d�

d�

37777775 :

h� =

26666664
(V + 1)2 0 0 0

0 � (V + 1) 0 0

0 0 �r2 sin2 � (V + 1) 0

0 0 0 �r2 (V + 1)

37777775 :

Here V is now described in spherical coordinates, V (r; �; �). From here, I arrive at the following:

Summary 3 Spherical Metric
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The metric of a spherically symmetric time-independent potential V (r; �; �) described by

spherical coordinates � = (t; r; �; �) is,

gtt = (V + 1)2 ;

grr = � (V + 1) ;

g�� = �r2 sin2 � (V + 1) ;

g�� = �r2 (V + 1) :

Example: Derive the coordinate transformation from rectangular x� = (t; x; y; z) to cylin-

drical coordinates � = (t; r; �; z).

I �rst write the usual coordinate transformation:26666664
dt

dx

dy

dz

37777775 =
26666664
1 0 0 0

0 cos � �r sin � 0

0 sin � r cos � 0

0 0 0 1

37777775

26666664
dt

dr

d�

dz

37777775 :

Now, using the metric in rectangular coordinates with A = 0 and multiplying on both sides

by the above transformation, I arrive at the following general result:

Summary 4 Cylindrical Metric

The metric of a cylindrical time-independent potential, V (r; �; z) described by cylindrical

coordinates � = (t; r; �; z) is,

gtt = (V + 1)2 ;

grr = � (V + 1) ;

g�� = �r2 (V + 1) ;

gzz = � (V + 1) :

Example: Use the cylindrical coordinates x� = (t; r; �; z) above and the Lorentz boost

transformation formula to derive the magnetic �eld around a charged wire travelling at speed

v. The wire is along the z axis and travelling in the +z direction.
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The Lorentz transformation in the +z direction for cylindrical coordinates is:

@x�

@��
=

26666664
 0 0 v

0 1 0 0

0 0 1 0

v 0 0 

37777775 :

Here  = 1p
1�v2 ; and v is the velocity of the observer with respect to the �at background in

which the potential was initially described. Then I arrive at:

h� =

26666664
2 (V + 1)

�
�v2 + V + 1

�
0 0 V v2 (V + 1)

0 � (V + 1) 0 0

0 0 �r2 (V + 1) 0

V v2 (V + 1) 0 0 2 (V + 1)
�
V v2 � 1 + v2

�

37777775 :

Consider the metric of a uniformly electrically charged wire. The electric �eld of the wire

is E = 1
4�"0

2�
r ; where � is the charge density of wire, r is the distance from the wire and "0 is

the permittivity of free space[28]. The potential (potential energy per test mass) is therefore

V = � 1
4�"0

2�
� q
m

�
ln r. Here q

m is the particle�s ratio of rest charge q per rest mass m; the

equivalence ratio of the electromagnetic theory.

Then,

gtt = 2
�
� 1

4�"0
2�
� q
m

�
ln r + 1

��
�v2 � 1

4�"0
2�
� q
m

�
ln r + 1

�
;

gtz = � 1

4�"0
2�
� q
m

�
ln r � v2

�
� 1

4�"0
2�
� q
m

�
ln r + 1

�
:

Now, this metric is also described by background inertial frame coordinates since it is at

constant velocity from the �rst background inertial frame coordinates. I set equal the general

metric-potential gtz and the gtz above to �nd the coe¢ cient Az. I use the rectangular metric

gtt and gtz since it is the same as the cylindrical metric in the t and z directions.
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Inverting the function gtt(V ) I get:

V =
p
gtt � 1:

Now comparing with the rectangular metric, �Az (V + 1) = gtz therefore:

�Az (
p
gtt) = gtz:

Solving for the Az of the charged travelling wire:

Az = � gtzp
gtt
= �

� 1
4�"0

2�
� q
m

�
v2

�
� 1
4�"0

2�
� q
m

�
ln r + 1

�
ln rr

2
�
� 1
4�"0

2�
� q
m

�
ln r + 1

��
�v2 � 1

4�"0
2�
� q
m

�
ln r + 1

�

= � �

2�"0

q

m
(ln r)

0B@v
vuuut �

2�"0
q
m ln r � 1�

v2 + �
2�"0

q
m ln r � 1

�
1CA :

(Note that the magnetic �eld is B = r �
�
m
q A
�
and not B = r � A. Remember that I

have de�ned L = 1
2
dx
dt

2
+A:dxdt � V; whereas the usual de�nition is L =

1
2m

dx
dt

2 � qV + qA:dxdt :)

Notice that for v = 0, I get Az = 0 as expected. For � = 0, I get Az = 0 as expected.

This is a relativistic correction to the current through a charged current-carrying wire. The

magnetization is a result of the change of reference frame.

If I add a stationary wire of equal but opposite charge as the �rst charged wire, I get the

metric for a neutral wire with a current travelling through it.

3.2 Normalized Coordinates

The coordinate transformation derived from above can be used to transform between curvi-

linear coordinates or reference coordinates labeling the space. In this section, I shall �nd a very

special set of coordinates associated with a given metric g�� . This set of coordinates shall

simplify the calculations of the paths of particles. In fact, all null particle paths in this metric

are straight lines. The normalized coordinates are given by the following formula:

Summary 5 The Normalized Coordinates Formula
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@x�

@� g��
@x�

@��
= ��.

The �� is the �at metric associated with the x
� Cartesian, spherical, or other coordinates

systems but replaced one for one by the � . In some sense, I have "�attened" the space. I shall

call these coordinates, � ; the normalized coordinates of the metric g�� .

Example: Find the normalized coordinates of the spherically symmetric time-independent

metric using spherical coordinates (t; r; �; �).

Setting @x�

@� g��
@x�

@��
= �� I have:

(V + 1)2
�
@t

@�0

�2
= 1;

� (V + 1)
�
@r

@�1

�2
= �1;

�r2 sin2 � (V + 1)
�
@�

@�2

�2
= �

�
�1
�2
sin2

�
�3
�
;

�r2 (V + 1)
�
@�

@�3

�2
= �

�
�1
�2
:

Solving this system of four di¤erential equations, I arrive at:

Summary 6 Spherical Normalized Coordinates

The normalized coordinates of the spherically symmetric time-independent metric are:

�0 = (V + 1) t;

�1 =

Z rp
(V + 1)dr;

�2 =
r (sin �)�

p
(V + 1)�R rp

(V + 1)dr
�
sin

�
r�
p
(V+1)R rp(V+1)dr

� ;
�3 =

r�
p
(V + 1)R rp
(V + 1)dr

:

Example: Find the normalized coordinates of the metric of a point mass outside its black

hole radius. Notice that the normalized coordinates do not span the entire space. Metric

singularities, especially black hole surfaces, make it necessary to calculate di¤erent metrics for

di¤erent parts of the space.
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The potential of the point mass due to gravity is V = �GM
r . Using the integral:

Z r

GM

s�
1� GM

r

�
dr = GM

�r
r

GM
(
r

GM
� 1)� 1

2
ln

�
2
r

GM
� 1 + 2

r
r

GM

� r

GM
� 1
���

;

I can �nd the normalized coordinates of a point mass.

Summary 7 Normalized Coordinates of a Point Mass, M

�0 =

�
1� GM

r

�
t;

�1 = GM

�r
r

GM
(
r

GM
� 1)� 1

2
ln

�
2
r

GM
� 1 + 2

r
r

GM

� r

GM
� 1
���

;

�2 =
r (sin �)�

q�
1� GM

r

�
GM

�p
r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

���
� sin

 
r�
q
(1�GM

r )

GM
�p

r
GM

( r
GM

�1)� 1
2
ln
�
2 r
GM

�1+2
q

r
GM (

r
GM

�1)
��
!

;

�3 =
r�
q�
1� GM

r

�
GM

�p
r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

��� :
Notice that the black hole surface has shrunk to a point, the origin. As long as a particle

produces a point singularity in the metric, this transformation makes sense mathematically.

I will �nd some particle path solutions to the point mass metric using the normalized

coordinates. The path of a particle falling straight towards the point mass is given by:

� =

Z �

0

q�
�00
�2 � ��01�2d�:

�0 = a�1 + b for a; b constants:

Finding the �� from above:

�0 =

�
1� GM

r

�
t;

�1 = GM

�r
r

GM
(
r

GM
� 1)� 1

2
ln

�
2
r

GM
� 1 + 2

r
r

GM

� r

GM
� 1
���

:
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The general solution along this direction is:

t =
aGM

�p
r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

���
+ b�

1� GM
r

� :
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Chapter 4

Metric Operations

Now that I have a metric in terms of a general potential, a change of variables formula and

a normalized coordinate formula. Let me give the operations that can be performed on metrics.

Summary 8 Metric Operations

(1) A change of coordinates is permitted by the usual change of coordinates,

h� =
@x�

@�
g��

@x�

@��
:

The metric-potential form will be conserved for Lorentz invariant transformations from back-

ground reference frames.

(2) Metric binary addition between force �elds of the same type (gravity, electromagnetic) is

de�ned so that the net potential of the two metrics is the sum of the two individual Newtonian

potentials,

g��(V1; A1)� h��(V2; A2) = (g � h)�� (V1 + V2; A1 +A2) :

(3) Metric binary addition between force �elds of di¤erent types is de�ned by the following:

Let the force(s) associated with h�� metric be the force whose null particle paths are

bent by the force(s) associated with g�� (e.g. photons are bent by gravitons). Let �� be the

normalized coordinates of metric g�� and let x� be the natural coordinates used to describe g��

above a �at reference,

(g � h)�� =
@��

@x�
h�

�
�� (x")

� @�
@x�

:
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Rule (1) is common in the literature. Rule (2) is from the addition of Newtonian potentials.

Rule (3) is from the fact that paths of null particles are bent just as particles are bent by the

underlying metric.

I will now demonstrate some examples to �nd the normalized coordinates of a massive

particle.

Example: Use (3) to �nd the metric of a charged massive particle.

I have already found the metric and normalized coordinates of a spherically symmetric

potential with a potential proportional to 1
r (Note: The correctness of the electric �eld metric

potential formulation lies in the fact that all particles of the same q
m ratio fall with the same

acceleration.):

V =
1

4�"0

qQ

r
;

g00 =

�
Q

4�"0

� q
m

� 1
�1
+ 1

�2
;

g11 = �
�
Q

4�"0

� q
m

� 1
�1
+ 1

�
;

g22 =
1

2

�
�1
�2 �

cos 2�3 � 1
�� Q

4�"0

� q
m

� 1
�1
+ 1

�
;

g33 = �
�
�1
�2� Q

4�"0

� q
m

� 1
�1
+ 1

�
:

Now placing this metric atop the gravitational metric of a point particle, I obtain the metric

of a charged point mass using metric operation (3) above:

g�� � h�� =
@��

@x�
h�

�
�� (x�)

� @�
@x�

:

26666664

d�0

dt

d�1

dr

d�2

d�

d�3

d�

37777775 =

26666666664

�
1� GM

r

�q�
1� GM

r

�
r
q

1
2
(1�cos 2�)(1�GM

r )�
GM

�p
r

GM
( r
GM

�1)� 1
2
ln
�
2 r
GM

�1+2
q

r
GM (

r
GM

�1)
���

sin(�3)

r
q
(1�GM

r )

GM
�p

r
GM

( r
GM

�1)� 1
2
ln
�
2 r
GM

�1+2
q

r
GM (

r
GM

�1)
��

37777777775
:
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h00

�
�� (x�)

�
=

0B@ Q

4�"0

� q
m

� 1

GM
�p

r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

��� + 1
1CA
2

h11

�
�� (x�)

�
= �

0B@ Q

4�"0

� q
m

� 1

GM
�p

r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

��� + 1
1CA

h22

�
�� (x�)

�
=

1

2

�
GM

�r
r

GM
(
r

GM
� 1)� 1

2
ln

�
2
r

GM
� 1 + 2

r
r

GM

� r

GM
� 1
����2

�

�

0B@cos
0B@2
0B@ r�

q�
1� GM

r

�
GM

�p
r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

���
1CA
1CA� 1

1CA �
�

0B@ Q

4�"0

� q
m

� 1

GM
�p

r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

��� + 1
1CA :

h33

�
��
�
x��

��
= �

�
GM

�r
r

GM
(
r

GM
� 1)� 1

2
ln

�
2
r

GM
� 1 + 2

r
r

GM

� r

GM
� 1
����2

�

�

0B@ Q

4�"0

� q
m

� 1

GM
�p

r
GM (

r
GM � 1)� 1

2 ln
�
2 r
GM � 1 + 2

q
r
GM

�
r
GM � 1

��� + 1
1CA

Finally, multiplying the three matrices @��

@x�h�
�
�� (x�)

� @�
@x�
; I have the metric of a point

charge and mass, which is a nice model for a proton. After multiplying by the coordinate

transformation expressed in the x� on both sides, the �nal metric formula becomes very complex

and will not aid in intuition, so I omit it.
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Part II

Quantum Mechanics
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Chapter 5

Relativistic Equation

I shall derive my relativistic quantum equation from the proper-time action of Einstein. In

this section, I again use the conventions, c = 1 and g�� = (+;�;�;�).

The formula for proper-time is:

� =

Z b

a

q
g��x�0x�0d�:

Here � is the proper-time, g�� is the metric, and the x�0 = dx�

d� are the derivatives of the space-

time coordinates (x; y; z; t) with respect to proper-time. I need to �nd the Hamilton form of

this action before I can cast this into the Hamilton-Jacobi form, but the square root in this

equation is not very easy to manipulate into the Hamilton form. I shall cast this action into an

alternative form presented in [23]. The action to be maximized is:

L =

Z
1

2
g�x

�0x0d� :

Here g�� is the metric assumed to be proper-time independent, the x�0 = dx�

d� are the derivatives

of the space-time coordinates with respect to proper-time, and L is no longer the proper-time,

� . After �nding the Hamilton-Jacobi form of this action, I then multiply by the probability

j	j2 and integrate over all points of background Cartesian Lorentzian �at space-time including
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time t, i.e. (x; y; z; t) to force adherence to these equations of motion. The equation is then:

E	 = �1
2
K2 (��)�

1
2
@

@x�

 
@x

@x�q

@x�

@x�q
g��q

p
�� @	
@x

!
:

Here 	(t; x; y; z) is the stationary (in proper-time) wave function corresponding to eigenvalue

E, K is related to a fundamental constant ~,
p�� = @(x�)

@
�
x�q

� is the determinant transformation
from the �at background metric, g��q is the previous �at background metric inverse, labeled

with Cartesian Lorentzian background coordinates, x�q are the coordinates of the �at Cartesian

background, x are the coordinates of the background metric you wish to use and E = �1
2�

2

where � is the quantized rest mass ratio, i.e. the mass of the particle is given by �mr with mr

the rest mass (� will be 0 for a massless particle such as a photon or graviton and nonzero for

a massive particle). Notice that @x


@x�q
@x�

@x�q
g��q = g� where g� is the metric of the x .

By the relation S = K ln	, I am able to derive the proper-time dependent quantum equa-

tion:

�K @

@�
	 = H	 = �1

2
K2 (��)�

1
2
@

@x�

 
@x�

@x�q
g��q

@x

@x�q

p
�� @	
@x

!
:

Here 	
�
x�; �

�
is now the proper-time dependent wave function, H is the Hamiltonian operator

represented on the right, � is the proper-time of the particle. This derivation of the proper-time

dependent equation is explained further in the next section in which I derive the operators. This

form of the proper-time dependent equation shows the Lorentz invariance of the equation. A

Lorentz boost is absorbed by the change of coordinates formula sandwiched in the middle.

If I further use the fact that @x
�

@x�q
g��q

@x

@x�q
is a transformation of a metric into the metric g� ,

I obtain the following:

Summary 9 General Quantum Equation

�K @
@�	 = �

1
2K

2 (��)�
1
2 @
@x�

�
g�
p�� @	@x

�
,

x�q (x
�) are the rectangular coordinates of �at space,

x� are the coordinates with Jacobian from �at Cartesian background
p�� = @(x�)

@(x�q )

g�� is the inverse of the metric with Jacobian
p�� from the background rectangular metric.
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For �at Cartesian background coordinates, I have:

�K @

@�
	 = �1

2
K2 @

@x�q

�
g��q

@	

@x�q

�
:
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Chapter 6

Operators

The above equation provides 	(x�; �) which I normalize across space-time according to

the requirement: Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
j	j2 dtqdxqdyqdzq = 1:

Here again the symbol q represents the �at Cartesian Lorentzian coordinate reference frame.

By the relation, S = K ln	; I will �nd relations for velocities(in proper-time). The classical

Hamilton-Jacobi theory tells me how to �nd momenta from S (S is the solution of the di¤erential

equations):

dS

d�
= �H;

@S

@xq
= pxq ;

x�0q = g��p�;

p� = x0q�:

In the statistical interpretation, derivatives of S which where exact momenta quantities in

the Hamilton-Jacobi theory now become conditional expectation values:

E
�
pq�jxq

�
=
@S

@x�q
= K	�1

@	

@x�q
:

Here E
�
pq�jxq

�
is the conditional expectation value of pq� = g��x�0 given the point x


q . Mul-
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tiplying this by the probability density
��	 �xq���2, I now obtain the expectation value:

E (pq�) =

Z
K	�1

@	

@x�q
j	j2 dtqdxqdyqdzq;

=

Z
	�K

@	

@x�q
dtqdxqdyqdzq:

Clearly, cpq� = K @
@x�q
, and K is imaginary for Hermicity of the observable cpq�. I set K = �i ~m ,

with m the rest mass of the particle. To �nd the operator for the proper-time velocity, I take

half the anticommutator of the two Hermitian operators g��q and cpq�:
cp�q =

1

2

n
g��q ; cpq�o

=
1

2

�
g��q cpq� + cpq�g��q � :

Here gq�� is the Cartesian metric and cp�q is the proper-time velocity �dx�qd� � operator. With the
value K = �i ~m , I get the general background coordinate equation:

i
~
m

@

@�
	 =

1

2

�
~
m

�2
(��)�

1
2
@

@x�

�
g�
p
�� @	
@x

�
:

Summarizing the �at Cartesian background result,

Summary 10 Cartesian Quantum Equation with Operators

In Cartesian Lorentzian background coordinates, the operator form of the relativistic equa-

tion is:

i
~
m

@

@�
	 = bp�	 = �1

2
cpq�g��q cpq�	:

The associated operators are:bp� = i ~m @
@� is interpreted as �

�2

2 or �1
2x
�0
q gq��x

�0
q :cpq� = �i ~m @

@x�q
is interpreted as gq��x

�0
q :cx�q = x�q is interpreted as the background coordinate x�q :

� is the evolution parameter called the proper-time.
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Chapter 7

Uncertainty Relations

I shall derive the uncertainty relations between the momentum operators and space op-

erators. The generalized uncertainty principle derived from the Cauchy-Schwartz inequality

is:

�2A�
2
B �

�
1

2i

Dh bA; bBiE�2 :
Remembering that cpq� is interpreted as gq��x�0q , and with hcx�q ; cpq�i = i ~m then:

�xq�pq �
~
2m
:

In �at space, this reduces to the usual uncertainties between position and momentum, or time

and energy.

Another uncertainty relation is �����2

2

� ~
2m . This uncertainty relation is not truly an

uncertainty relation since � is an exact evolution parameter. This makes sense in analogy with

the energy-time uncertainty relation from Schrödinger theory. The self energy and the self time

have a conjugate relationship, though they are not directly conjugate.
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Chapter 8

Flat Space

In this section, I shall �nd and describe solutions to the �at space metric g�� = �q�� in

Cartesian background coordinates. The relativistic equation requires the inverse of the �at

metric:

g�� =

26666664
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

37777775 :

Plugging this inverse metric into the �at metric relativistic equation I obtain the partial di¤er-

ential equation:

�
i
~
m

@

@�

�
	 = �1

2

�
�i ~
m

@

@x�

��
g��

�
�i ~
m

@

@x�

��
	:
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Here ~ is Planck�s constant and m is the rest mass of the particle. A solution of this equation

can be obtained by separation of variables:

\
�1
2
p�g��p� =

~
m
i
@

@�
= ��

2

2
;

bpt = � ~
m
i
@

@xt
= Pt;

bpa = � ~
m
i
@

@xa
= Pa;

bpt =

�
pt; g

tt
	

2
= � ~

m
i
@

@xa
= Pt �

@xt

@�
;

bpa =
fpa; gaag

2
=
~
m
i
@

@xa
= �Pa = P a �

@xa

@�
:

Here the relation ~means "interpreted as". The eigenvalue equation becomes,
�
��2

2 = �
1
2

�
P 2t � P 2a

��
	P�;�.

In �at space, this can be rearranged into a statement of the fact that E2 = m2 + p2. E is the

energy, m is the rest mass and p is the momentum.

An eigenfunction is thus,

	P�;� (x; y; z; t; �) = e
im~

�
P�x�+

M2

2
�
�
= e

im~

�
�Paxa+Ptt+�2

2
�

�

with P 2t = �
2 + P 2a :

Example: Discuss the solution for a particle of known mass at rest.

For � = 1 and Pt = 1, then Pa = 0. The particle is at zero speed at a known mass, and the

solution becomes:

	�=1;Pt=1;Pa=0 (x; y; z; t; �) = e
im~ (t+

1
2
�):

The particle has equal probability of being anywhere in space because its momentum is exactly

0 and anywhere in time because its energy is exactly the rest energy. Instead of starting to

spread out, it is spread out over all space-time and I know nothing of its space-time point.

The expectation of the proper-Lagrangian is found to be:



m2 bp�� = �m2 ~

m
i
@

@�

�
= �m

2

2
:
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The expectation of the energy of the particle is:

hEnergyi =
D
mbptE = �m�� ~

m
i
@

@t

��
= m:

Since the energy is known exactly, I could easily �nd mdxx

dxt :�
m
dx

dt

�
=

�
m bpx 1

P t

�
= 0:

Example: Discuss the solution for a quantum particle travelling upwards (+z) at velocity 3
5

with energy P t = 5
4 .

I can write the rest mass ratio immediately:

� =
q
P 2t � P 2z = 1:

	P z= 3
4
;P t= 5

4
;�=1 (x; y; z; t; �) = ei

m
~ (�

3
4
z+ 5

4
t+ 1

2
�):	P z= 3

4
;P t= 5

4
;�=1

2 = 1:

This particle yet again has no well de�ned space-time position. The particle is uniformly

distributed over all space-time. The momentum is:

�
m
dx

dt

�
=

�
m bpx 1

P t

�
=

�
m

�
~
m
i
@

@x

�
4

5

�
=
3

5
m:
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Chapter 9

Harmonic Oscillator

As another example, I solve the harmonic oscillator in one dimension. The potential energy

of the harmonic oscillator is:

V =
1

2
mt!

2x2:

Here mt is the test mass, ! is the classical frequency, x is the space coordinate, and V (x) is

the potential energy function.

Putting this into the metric-potential formulation I obtain,

g�� =

24�12!2x2 + 1�2 0

0 �
�
1
2!

2x2 + 1
�
35 ;

where the metric g�� = gq�� is the harmonic oscillator metric described in Cartesian background

reference-frame coordinates.

The inverse of this metric is:

g�� =

24�12!2x2 + 1��2 0

0 �
�
1
2!

2x2 + 1
��1
35 :

Plugging this into the �at background metric relativistic quantum equation, I obtain:

��
2

2
X = �1

2

 �
1

2
!2x2 + 1

��2
P 2t � bpx�1

2
!2x2 + 1

��1 bpx!X:
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Here I have made the substitutions bp�	�;Pt = ��2

2 	, and bpt	�;Pt = Pt	. Energy is going to
be quantized in the harmonic oscillator. The solution is then of the form:

	(x; t; �) = A
X
�;Pt

X (x) e
im~

�
Ptt+

�2

2
�

�
:

The energy dt
d� with respect to the background coordinates is given by:

bpt =
nbpt; �12!2x2 + 1��2o

2
=

�
1

2
!2x2 + 1

��2 bpt:
The velocity

�
dx
d�

�
operator is given by:

bpx = f bpx; gxxg
2

=

n bpx;� �12!2x2 + 1��1o
2

:
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Chapter 10

Hydrogen Atom and Black Hole

According to the metric-potential formulation, I can write the inverse metric times Jacobian

product g��
p�� of a spherical potential in spherical coordinates (t; r; �; �) with Jacobian from

Cartesian Lorentzian coordinates
p��, and general relativistic equation as:

p
�� = r2 sin �;

g��
p
�� =

26666664

r2 sin �
(U+1)2

0 0 0

0 � r2 sin �
(U+1) 0 0

0 0 � (sin � (U + 1))�1 0

0 0 0 � sin �
(U+1)

37777775 ;

i
~
mq

@

@�
	 = �1

2

�p
��
��1cp� �g��p���cp�:

Separation of variables leads me to the usual angular solution:

Y ml (�; �) = "

s
2l + 1

4�

(l � kmk)!
(l + kmk)!e

im�Pml (cos �) :

Here Pml are the associated Legendre polynomials, l is the azimuthal quantum number, m is

the magnetic quantum number, and the factor " = (�1)m for m > 0 and " = 1 for m � 0.

The radial equation for the potential U = ��
r (potential energy is �

mt�
r where mt is the
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test mass of the particle) reduces to:

 
@

@r2
=
l (l + 1)

r2
� �

r2 (r � �) +
�

r (r � �)
@

@r
�
�
mqPt
~

�2 r

r � � +
�mq�

~

�2 r � �
r

!
u (r) :

Here R = u(r)
r as in the classical treatment of the hydrogen atom, � is the �ne structure constant

o¤ by a constant factor, mq is the rest mass of the particle, and r is the radial distance in �at

spherical background coordinates.

Notice that the hydrogen radial equation is now 1
r3
dependent with a shift by the �ne

structure constant(or black hole radius in the case of gravity) in units of mass, mt. The radial

equation now depends on the radial velocity as seen in the third term. The surface of the

black hole is at distance r = � and this causes us to consider three limits in the solution of a

hydrogen atom: r = 0; r = �; and r !1. In the case of radiation from a black hole set � = 0

for massless particles.

An eigenfunction to the relativistic equation of a spin 0 hydrogen atom is:

	Pt;l;m;� (t; r; �; �; �) =
1

r
uY ml e

i
mq�

2

2~ � :

The operators should be derived from the �at Cartesian operators in the obvious manner.
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Chapter 11

Conclusion

I worked with the Einsteinian and Newtonian Lagrangians to get the relativistic metric in

terms of the Newtonian four potentials.

This thesis developed novel and very reusable theories of general relativity and relativistic

quantum mechanics. The theory of general relativity presented in this paper is derived directly

from Lagrange�s action which makes the physicist�s transition from the study of Newtonian

mechanics to general relativity more direct.

The metric is found to be an algebraic substitution function of the Newtonian vector poten-

tial. This metric is furthermore addible with other potential metrics which makes more complex

metrics immediately accessible.

Magnetism was found to be an electromagnetic as well as a gravitational e¤ect caused by a

change of reference frame. I derived the metric and potential of a magnetic �eld of an electric

current carrying wire by boosting from an electrically charged wire. This electromagnetic metric

gives a di¤erent perspective of electromagnetism for relativistic particles.

The general relativity theory developed in this paper is one of the �rst theories to unify

both the electromagnetic and gravitational �elds into a symmetric metric.

I started from Einstein�s Lagrangian to derive a Schrödinger wave function which evolves

according to proper-time and which is an eigenfunction of the self-energy (e.g. rest mass) of

the particle.

The symmetry of the metric is a very important property which enabled the derivation

of the relativistic quantum equation. The relativistic quantum equation can be used to �nd
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the space-time wave function of a quantum particle. This wave-function evolves according

to its proper-time in analogy with Schrödinger�s space wave-function of a quantum particle

that evolves according to an absolute time. The mathematical theory in this paper can be

used to solve general relativistic quantum problems using equivalent tools from the Schrödinger

equation. The established Schrödinger equation and its associated operator theory have their

analogues in my general relativistic theory. My theory now adds a rest mass operator which

gives predictions of a particle�s mass state which will prove useful in elementary particle physics.

These two separate theories come together to create a versatile theory of quantum relativity.

The metric from the general relativity theory is plugged into the quantum relativity equation.

Plugging the proton potential into the metric, I �nd the quantum radial equation of an

electron orbiting a stationary proton that has no gravitational �eld, but an electric �eld. Spin

is not considered in this thesis due to a lack of development time.

This thesis leaves room for further development, which I plan to do immediately. Inputting

a simple travelling gravitational wave potential and an electromagnetic proton potential into

my metric-potential formulation will produce an accurate model of a hydrogen atom a¤ected

by a gravitational wave. I will study the e¤ect of a gravitational wave on the hydrogen atom

using computer calculations. The calculated wavefunction can be used to study the e¤ect of

gravitational waves on atomic clock accuracy. I will also add spin to both theories.
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