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Abstract 

 

One of the most prevalent mysteries in astrophysics is that most of the matter in the 

universe is not luminous. The GPS.DM Observatory is committed to probing the universe for 

exotic dark matter (DM) physics using the Global Positioning System (GPS) satellite 

constellation. The current strategy for achieving this involves utilizing a search through GPS 

time series data for signatures of DM in the form of topological defects (TDs) passing through 

the Earth. Models predict that DM interactions with the satellite’s atomic clocks may produce a 

difference in the relative atomic clock timekeeping between two satellites. TD thin walls can 

then be shown to create a predictable signal in the GPS time series data. Using expressions for 

the orbits of the satellites, and a derivation of the direction from which we expect to find these 

DM events, a search was conducted for the signatures left by these walls. This paper describes 

how the initial search for TD thin walls was conducted. Though we found no concrete evidence 

for TD thin walls with timing differences higher than 0.5ns, several candidate events were found 

that may correspond to other types of TDs. 
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1 Introduction 
 

The GPS satellite constellation consists of 32 satellites in medium Earth orbit. Each 

satellite carries on board an atomic clock that keeps time extremely accurately, which can be 

monitored using data acquired by a network of ground receivers, that is used primarily for global 

positioning. The best data from the constellation has been taken since May 2001, when the U.S. 

military turned off selective availability (intentional dithering of the satellite signals). NASA’s 

Jet Propulsion Laboratory (JPL) provides data on the precise timekeeping of each satellite for 

most of this time. Atomic clocks are well suited for detecting minute physical effects because the 

best atomic clocks can keep a fractional inaccuracy of 10−18 [1]. If DM interacts with these 

clocks, the constellation can potentially serve as a 50,000-km aperture DM detector. The goal of 

the GPS.DM Observatory is to search the GPS time series data for signatures of DM using 

models of TDs. TDs come in a few different dimensional forms, monopoles (0D), strings (1D), 

and domain walls (2D) [1]. One specific model of TDs is the “thin wall” model, which is the 

model being tested in this paper. Thin walls are domain walls which are assumed to be large in 

comparison to the Earth and have a thickness that is not resolvable with the GPS constellation. 

DM may come in the form of these thin walls, which will affect the time data in a predictable 

way. Before we can search for this signature however, there are several important steps to 

complete first.  

To better understand and predict the positions of the GPS satellites in the GPS.DM 

Observatory, we decompose the orbits into Keplerian elements that can be used to find the 

approximate position and velocity of the satellites at any time. The six Keplerian elements 

describe any ellipse in 3D space, with the assumption that the orbit ellipse is “Keplerian”, with 

no forces acting on the satellite other than gravity from a point source. For the intents and 

purposes of the GPS.DM Observatory, the GPS satellites are approximately Keplerian and can 

be modeled as such for our analyses. These approximate orbits of the satellites will be used to 

help derive velocity distributions, and help with the future Bayesian analysis of the data. 

Another important step is knowing to which direction in the Earth Centered Inertial (ECI) 

frame the Earth’s overall galactic velocity vector is pointing with respect to the galactic reference 

frame. The Earth, the solar system, and even the galaxy is in constant motion, which can be 

difficult to model completely. This paper shows our mathematical approach to finding the unit 

vector of the Earth’s galactic velocity in the ECI frame, and how it changes annually due to the 

Earth’s orbit. 

It is in the interest of our group to find signatures of DM using models of how it might 

interact with atomic clock timekeeping. Using these models, there are many unknown parameters 

that must be considered, such as the magnitude of a signal, the exact time a signal occurs, the 

velocity of the DM associated with that signal, and the direction from which a signal might 

come. A complete Bayesian search method over these parameters would involve lengthy 

integrals that would demand substantial computing power. My objective was to run a search for 

possible events that would require less computing power and would search for events without 

complete Bayesian analysis. The results of this search found a few potential events that can now 

be analyzed for validity. 

 

 

 

 



Dailey 2 
 

 

2 Keplerian Elements 
 

To model a satellite’s Keplerian orbit in three dimensions, one first assumes that gravity 

is the only force acting on the system and that the Earth is a point source (equivalent to a 

spherically symmetric Earth). Together with Newton’s laws of motion and gravitation, the 

differential equation of orbital motion can be derived [2]. The force of gravity is 𝐹𝑔, the mass of 

the satellite is 𝑚, the mass of the Earth is 𝑀, the position vector from the center of the Earth to 

the satellite is 𝒓 and 𝑟 being the magnitude of that vector, and 𝐺 is the gravitational constant. 
 

 𝐹𝑔 = 𝑚�̈� = −
𝐺𝑀𝑚

𝑟3
𝒓 (2.1) 

 

Attempting to solve this differential equation leads to elliptic integrals, which are very 

difficult to solve in closed form, so instead a model of the orbit can be used that already takes the 

elliptic properties into account. Instead of using position (𝑥, 𝑦, 𝑧) and velocity (�̇�, �̇�, �̇�), the six 

Keplerian Elements are used: 

 
 

Orbital Parameter Symbol 

Semi-Major Axis 𝑎 

Eccentricity 𝑒 

Inclination 𝑖 

Longitude of the Ascending Node   Ω 

Argument of Periapsis 𝜔 

Mean Anomaly  𝑀 

 

Table 2.1: Names of the orbital elements. 

The semi-major axis sets the scale factor of the ellipse and is defined as half of the largest 

diameter of the ellipse. The eccentricity defines how elliptical the shape is, zero being perfectly 

circular, one being parabolic, and anywhere in between being elliptic. Most satellite 

eccentricities are very near zero, corresponding to nearly circular orbits. The inclination is the 

angle from the equatorial plane to the plane of the ellipse. The longitude of the ascending node is 

the angle from the ECI x-axis to the ascending node, which is the point the satellite will cross the 

equatorial plane and be traveling in the positive z direction (where z is normal to the equatorial 

plane, pointing toward the north pole). The argument of periapsis is the angle from the ascending 

node to the lowest point in the orbit. Finally, the true anomaly is an angle that describes where in 

the orbit the satellite is at any given time, and is the only element that changes in time ideally [2]. 
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These elements are visually defined by Figure 2.1. The true anomaly can be computed by 

knowing the mean anomaly, which is the true anomaly for a circular orbit of the same Semi-

Major Axis. 

 
 

 
Figure 2.1: Definition of angles used in Keplerian Elements. The plane of reference of the Earth is the equatorial 

plane, and the Reference Direction is the ECI x-axis. Image from [3]. 

 

If the initial velocity and position of a satellite in 3D space are given, then the six 

Keplerian Elements that define an orbital ellipse can be found using algorithms produced from 

Newtonian dynamics and trigonometry. Then the mean anomaly can be time-stepped a desired 

amount to find the new Keplerian Elements in a different time, then converted back to find the 

position and velocity once more. All the equations for these conversions are given in Appendix 

A.  

 

 (𝑥0, 𝑦0, 𝑧0), (�̇�0, �̇�0, �̇�0) → (𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑀) → (𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑀′) → (𝑥, 𝑦, 𝑧), (�̇�, �̇�, �̇�) (2.2) 

 

Using this method, just from a set of initial conditions, an expression for a satellite’s orbit 

can be produced, allowing for the ability to find its position and velocity at any time increment 

desired. However, due to the small non-Keplerian nature of the satellites, these calculated 

positions and velocities will get increasingly inaccurate as the time step gets large, though this 

inaccuracy is not significant for our purposes. 

 

3 Velocity of the Earth Through the Galaxy 
 

It is an important preliminary step in this research to determine where precisely, from the 

Earth’s perspective, the velocity of our total motion in the galaxy is pointed. This direction will 
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be the most probable for a DM event as explained in Section 5.2, as we can think of a “wind” of 

DM constituents from this direction. There are several velocities to consider for finding this wind 

direction. The first is the galactic orbital velocity, or the tangential velocity of our solar system’s 

orbit around the galactic center, which is ~200km/s. The second is the “peculiar motion” or the 

velocity that accounts for our solar system’s apparent oscillatory motion above and below the 

galactic disk. These oscillations happen with a period of about 70 million years [4]. The 

measured current magnitude of this peculiar motion is ~10km/s. The third part is the Earth’s 

orbital motion around the sun, which is ~30km/s on average, but the direction of this motion 

rotates 360° throughout the year. The last thing to consider is the orbital motion of the GPS 

satellites themselves around the Earth. This motion is only ~4km/s, which can be considered 

negligible compared to the other velocity contributions. 

 

3.1 Solar System Barycentric Velocity 

 

To find the direction of our galactic orbital motion, the motion vectors given in galactic 

coordinates must be converted to the ECI frame. The galactic reference frame is defined as a 

right-handed coordinate system, with the vector that is parallel to our galactic orbital velocity in 

the direction of the galactic y-axis and the galactic center is the direction of the x-axis. The 

rotation matrix from the ECI frame to the galactic frame is given by [5]: 

 

 𝑀𝐸𝐶𝐼→𝐺𝐴𝐿 = (
−0.05465 −0.87284 −0.48492

0.49405 −0.44567 0.74651
−0.86771 −0.19877 0.45559

) (3.1) 

 

Taking the inverse of this matrix: 

 

 𝑀𝐺𝐴𝐿→𝐸𝐶𝐼 = (
−0.05465 0.49405 −0.86771
−0.87284 −0.44567 −0.19877
−0.48492 0.74651 0.45559

) (3.2) 

 

The total galactic orbital velocity direction of the solar system is the result of the 

tangential orbit motion, and the peculiar motion, both vectors in the galactic coordinate system 

are given by [6]. Normalizing the final product gives the unit vector. 

 

 (

0 km/s
220 km/s

0 km/s
) + (

10.00 km/s
5.23 km/s
7.17 km/s

) = (

10.00 km/s
225.23 km/s

7.17 km/s
) → (

0.04433
0.99851
0.03179

) (3.3) 

 

Thus, the conversion of galactic velocity direction to ECI direction is: 

 

 

(
−0.05465 0.49405 −0.86771
−0.87284 −0.44567 −0.19877
−0.48492 0.74651 0.45559

) (
0.04433
0.99851
0.03179

) 

 

= (
0.46332

−0.49003
0.73838

) 

(3.4) 
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Converting this unit vector into right ascension and declination: 

 

 𝛼 = 313.40° 𝛿 = 47.594°    (3.5) 

 

This direction represents the velocity direction of the solar system barycenter through the 

galaxy. The Earth moves this vector around slightly due to its orbit around the sun. The Earth’s 

orbit is inclined by sixty degrees to the galactic plane, so its solar system orbital velocity vector 

has a significant perpendicular component relative to the velocity vector of the solar system most 

of the year. 

 

3.2 Annual Variation of the Earth’s Velocity 

 

To see how this direction changes over the year, the average Keplerian elements of the 

Earth in the solar system frame can generate average velocity vectors for the whole year. The 

elements can be found from the JPL Horizons web interface [7]. Then the mean anomaly can be 

found at different times during the year to estimate the velocity vector. 

 

 (𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑀 ) → (1.49 ∗ 1011 𝑚, 0.017, 0°, 349°, 103°, 𝑀(𝑡)) → (�̇�(𝑡), �̇�(𝑡), �̇�(𝑡)) (3.6) 

 

 The velocity found in this conversion will be in the solar system ecliptic frame, so we 

need to convert it from this frame to the ECI frame, which is just a rotation along the x-axis by 

the 23.5 degree obliquity of the Earth’s equator to the ecliptic plane, defined by Equation 3.7. 

Then we can convert from ECI to the galactic frame using the conversion matrix from Equation 

3.1 and add it to the galactic orbital vector and peculiar motion. 

 

 𝑅1(𝜃) = (
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

) (3.7) 

 

 

 (

�̇�𝑒(𝑡)

�̇�𝑒(𝑡)

�̇�𝑒(𝑡)
)

𝐺𝑎𝑙𝑎𝑐𝑡𝑖𝑐

= 𝑀𝐸𝐶𝐼→𝐺𝐴𝐿 ∙  𝑅1(23.5°) ∙ (

�̇�𝑒(𝑡)

�̇�𝑒(𝑡)

�̇�𝑒(𝑡)
)

𝐸𝑐𝑙𝑖𝑝𝑡𝑖𝑐

 (3.8) 

   

 

 (
0 𝑘𝑚 𝑠−1

220. 𝑘𝑚 𝑠−1

0 𝑘𝑚 𝑠−1

) + (
10.00 𝑘𝑚 𝑠−1

5.23 𝑘𝑚 𝑠−1

7.17 𝑘𝑚 𝑠−1

) + (

�̇�𝑒(𝑡)

�̇�𝑒(𝑡)

�̇�𝑒(𝑡)
)

𝐺𝑎𝑙𝑎𝑐𝑡𝑖𝑐

= (

�̇�𝑔(𝑡)

�̇�𝑔(𝑡)

�̇�𝑔(𝑡)

) = 𝑣𝑔(𝑡)𝐺𝑎𝑙𝑎𝑐𝑡𝑖𝑐  (3.9) 

   

 

 𝑣𝑔(𝑡)𝐸𝐶𝐼 = 𝑀𝐺𝐴𝐿→𝐸𝐶𝐼 ∙ 𝑣𝑔(𝑡)𝐺𝑎𝑙𝑎𝑐𝑡𝑖𝑐 (3.10) 

  

Once 𝑣𝑔(𝑡)𝐸𝐶𝐼 has been normalized and converted into right ascension and declination, it 

is straight-forward to plot this over time. Figure 3.1 represents this plot with day intervals 
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between the plotted points. The dot in the middle of the graph represents the solar system 

barycentric velocity direction derived earlier. The velocity of the Earth through the galaxy on 

average is approximately the velocity of the solar system, but at any given time is ~8 degrees of 

arc away from it. Figure 3.2 represents the annual variation projected on the sky.  
 

 
 

Figure 3.1: Plot of the direction of the Earth’s velocity vector in the ECI frame over one year. 
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Figure 3.2: Path of the Earth’s velocity vector on the sky, the average represented by the red crosshairs. 

Constellation image from [8]. 

 

The exact direction of our velocity through the galaxy is where we expect to have the 

highest probability of a DM event. Since this direction changes noticeably throughout the year, if 

we see DM events frequently enough to resolve the velocity probability distribution, we can 

check to see if the directional changes match that of the distribution of events. This could aid in 

the validity of DM event discovery and helps exclude false positives. 

 

4 Atomic Clocks and DM Interactions 
 

 GPS satellites have become an ever-present part of daily life, from cell phone positioning 

to continental movement measurements. They work by keeping precise time using atomic clocks, 

which are onboard every satellite. They are designed to enable positioning of a user on the Earth 

by timing accurately how long it takes a signal to reach a user, and with four or more of these 

time measurements a unique position estimate can be found. For the purposes of this research 

however, we are not primarily interested in positioning, but rather in the precise time 

measurements kept by the satellites themselves.  
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 Rubidium atoms are used in the most accurate GPS atomic clocks and are the most 

common in today’s satellites. In an atomic clock, Rubidium atoms are used to stabilize a crystal 

oscillator which “ticks the clock.” The precise time-keeping of atomic clocks is performed by the 

continual observation of a ground state hyperfine transition in 87Rb. This hyperfine spitting is 

due to the coupling of the magnetic dipole of the outermost valence electron with the nucleus. 

This specific transition is chosen because it is unaffected by external magnetic fields and is very 

stable. The clocks work on a feedback loop, where a crystal oscillator has an initial frequency 

that is used to keep the time, but this frequency may drift over time due to environmental 

conditions to which crystal oscillators are very sensitive. The microwave frequency that 

corresponds to the hyperfine transition energy in Rubidium is radiated on a vapor of the atoms. 

The frequency of the light radiated on the atoms is then adjusted for maximum absorption and 

minimum transmission, to keep the frequency as accurate to the hyperfine transition as possible. 

This frequency is used to correct the frequency of the crystal oscillator, which has a known ratio 

with the Rb frequency [9]. Rubidium atomic clocks are the most common on the GPS satellites, 

and are the most stable over our period of interest (up to several minutes), which is why we look 

exclusively at these satellites in our analyses. The accuracy behind this time-keeping method 

implies extreme sensitivity to changes in fundamental constants such as the fine structure 

constant and the electron and proton masses.  

 The theory behind this experiment hypothesizes a Standard Model interaction between 

TDs and matter. For TDs to be macroscopic in comparison to the GPS constellation, the TDs 

must be composed of ultralight fields. TDs are the result of rapid cooling in the early universe, 

where these ultralight fields experienced symmetry-breaking. The Standard Model TD 

interaction predicts that small changes can be seen in fundamental constants [1]. 

 

 𝑚𝑒,𝑝
eff = 𝑚𝑒,𝑝 (1 +

𝜙2

Λ𝑒,𝑝
2

) ;     𝛼eff =
𝛼

1 − 𝜙2/Λ𝛾
2
 (4.1) 

 

 Equation 4.1 [1] describes how these changes to three fundamental constants, the electron 

and proton masses and the fine structure constant, change due to these interactions. The dark 

matter field is denoted by 𝜙 and the effective energy scale is Λ (which is equivalent to 1/√Γ 

where Γ is the coupling strength). Since we do not know how DM TDs interact with other fields, 

we do not know whether they will slow down atomic clocks, or speed them up, so we must allow 

for both possibilities. As these defects pass through the GPS constellation, a signal 

corresponding to differences in the satellite timekeeping can be predicted. 

 

5 Expected Signals from a DM Event 
 

To form a model of the signal we expect to find from a DM event, we must first find a way to 

be able to see differences in satellite timekeeping. The GPS data is given at a specific instance 

for each satellite as a clock bias, that is the difference between the satellite clock time and a 

chosen reference clock. The data we have from JPL is generated every 30-s, or one epoch, with 

JPL’s reference clock typically being the US Naval Observatory’s H-maser master clock. We 

take these clock bias data, then select the newest satellite as a new reference clock. By 

transforming the reference clock, we ensure the data are all related to the Rb frequency standard, 

thus avoiding the problem that different frequency standards may interact differently with DM. It 
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is then easy to see differences accumulate as satellites are affected by this altered timekeeping of 

Rb clocks caused by DM. 

 

5.1 The Thin Wall Model 

 

We assume a TD model of “thin walls” as a starting point in this research. This means that 

the domain wall is so thin as to affect each satellite in less than the 30-s resolution we have, and 

each clock that lies in the plane of the wall is affected simultaneously. The DM wall signal we 

then expect is a sequence of clock bias step functions that happen in a predictable order, 

demonstrated by Figure 5.1. If a DM event first passes through some satellite, that satellite’s 

clock would change to a certain bias relative to the reference clock, until it then passes through 

the reference clock and then bias between them would return to zero. If the reference clock is hit 

first, it will appear that the satellite bias would suddenly change in the opposite direction until 

the satellite is hit.  If we pick a reference clock that is on the Earth, and a DM Wall comes from 

some directional vector, then the satellites that have a positive projection on that vector would be 

affected first and jump to a bias until the wall had then passed through the reference clock. Then 

the wall would affect the satellites with a negative projection in the opposite direction. This 

succession of affected satellites is visualized by Figure 5.1, 5.2 and 5.3. Due to the 30 second 

resolution of the data that is given for the GPS time series, the signal we are searching for has a 

discrete matrix of points described by Figure 5.4. 

 
 

 
Figure 5.1: Plot of the step functions expected from time bias differences seen in DM wall interactions with atomic 

clocks. The first clock is a random satellite clock, while then second one is the reference clock. There is about 20 of 

these step functions to keep track of as there is about 20 Rubidium satellites. [1] 
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Figure 5.2: Plot of a 30-satellite constellation bias signal ordered by the time the satellite is first crossed by the 

wall, where 𝑡𝑟 is the time the reference clock is crossed. 

 
Figure 5.3: Representation of a DM Wall event with the thin wall model. 
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Figure 5.4: Discrete signal corresponding to Figure 5.2. A positive bias is shown in orange, while a negative bias is 

shown in blue. 

The functional form of Figure 5.4 is given in Equation 5.1. This depends on quite a few 

different parameters.  

 

 𝐹𝑖(𝑡, 𝑡𝑖, 𝑡𝑟 , ℎ) = {

ℎ 𝑡𝑖 ≤ 𝑡 < 𝑡𝑟

−ℎ 𝑡𝑖 > 𝑡 ≥ 𝑡𝑟

0 𝑡 < 𝑡𝑖  and 𝑡 < 𝑡𝑟

0 𝑡 ≥ 𝑡𝑖  and 𝑡 ≥ 𝑡𝑟

 (5.1) 

 

The function 𝐹𝑖 is the step function over time expected for the 𝑖𝑡ℎ satellite. The time 

component is measured in epochs, and is represented by 𝑡. The variable 𝑡𝑖 is the time in epochs 

that the 𝑖𝑡ℎ satellite is crossed by the wall, that is shown by Equation 5.2. The time that the 

reference clock is crossed by the wall is 𝑡𝑟. The variable ℎ is the height of the signal bias 

between the reference clock and the 𝑖𝑡ℎ satellite, which for simplicity is set to one.  

 

 𝑡𝑖(𝑣𝑥, 𝑡𝑟 , 𝑟𝑖, 𝑟𝑟𝑒𝑓) = 𝑡𝑟 +
𝑟𝑖 − 𝑟𝑟𝑒𝑓

𝑣𝑥
 (5.2) 
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The time the 𝑖𝑡ℎ satellite is crossed by the wall can be measure from 𝑡𝑟 if the exact 

positions along the direction of the wall velocity are known (𝑟𝑖, 𝑟𝑟𝑒𝑓), and the magnitude of the 

velocity of the wall is known (𝑣𝑥). This reduces the only unknown time parameter to 𝑡𝑟. The 

positions (𝑟𝑖, 𝑟𝑟𝑒𝑓) are given from the dot product of the ECI position vector and the direction of 

wall propagation, which is a function of the two angular parameters (𝜃, 𝜙) in Equation 5.3. 

 

 𝑟𝑖,𝑟𝑒𝑓(𝜃, 𝜙) = (

𝑥𝑖,𝑟𝑒𝑓

𝑦𝑖,𝑟𝑒𝑓

𝑧𝑖,𝑟𝑒𝑓

) ∙ (

sin(𝜃) cos(𝜙)

sin(𝜃) sin(𝜙)
cos(𝜃)

) (5.3) 

  

The position vectors of all the satellites are given from JPL’s GPS data files, which are 

open to public access. The problem is now reduced to four unknown parameters (𝑣𝑥, 𝑡𝑟 , 𝜃, 𝜙). 

Clock bias data generally has a random walk component, and thus is non-stationary, 

which poses problems for the application of statistical methods. It is convenient in this case to 

look at the differenced signal between neighboring epochs, which can be thought of as taking a 

discrete derivative. After differencing, the signal only has values at the epochs where the 

satellites were affected by the wall. This makes the signal look simpler, makes it easier to 

analyze, and makes the noise in the data approximately white. Such a signal is plotted in Figure 

5.4 that has a functional form from Equation 5.4, using 𝑖 and 𝑗 to denote the 𝑖𝑡ℎ satellite and the 

𝑗𝑡ℎ epoch. 

 

 𝑠𝑖𝑗 = 𝐹𝑖(𝑗, 𝑡𝑖, 𝑡𝑟 , ℎ) − 𝐹𝑖(𝑗 − 1, 𝑡𝑖, 𝑡𝑟 , ℎ) (5.4) 
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Figure 5.5: Differenced signal corresponding to Figure 5.3. 

5.2 Unknown Thin Wall Parameters 

 

Each signal will look different depending on the unknown parameters (𝑣𝑥, 𝑡𝑟 , 𝜃, 𝜙) 

involved with the wall. The first parameter is the magnitude of the velocity of the wall with 

respect to the Earth. The wall can be oriented in any way in space and the velocity vector of the 

wall can be pointing at an angle with respect to the normal vector of the wall as shown in Figure 

5.5. From our perspective, however, a randomly oriented wall with a random velocity vector will 

look the same as wall traveling with a velocity perpendicular to the wall, so we are only sensitive 

to the perpendicular component of the velocity vector. From the Standard Halo Model of DM in 

our galaxy, one can infer the probability distribution of velocities one would expect from walls 

passing through our solar system. The range of the magnitude of these velocities is 

approximately 10-700 km/s with respect to the Earth, as seen from Figure 5.6. 
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Figure 5.6: Example of a thin TD wall crossing the Earth. 

 

 
Figure 5.7: Probability density function of velocities and normal velocities of thin walls [10]. 

The next parameter that will affect the signal is the exact time the reference clock is 

crossed by the wall, denoted as 𝑡𝑟. If this variable is changed slightly, other jump measurements 

might be picked up in different epoch slots, which will change the signal depending on the exact 

times the rest of the satellites were affected. GPS data is collected and reported accumulatively, 

so that all the data collected in the thirty seconds before the epoch ends is reported in that epoch 

slot.  

 Next, although the solar system barycentric vector is the most likely direction of a DM 

event on average, one could theoretically come from any direction. To be completely sure that 

we can cover every possible signal, we must consider two more variables, the two angles in 
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spherical coordinates (𝜃, 𝜙) that can change the direction the wall comes from. 𝜃 is defined as 

the polar angle, that is measured from the ECI z-axis, and 𝜙 is defined as the equatorial angle, 

that is measured from the ECI x-axis along the equatorial plane. In effect, this only changes the 

order that the DM wall affects the satellites, but we must still take the whole sphere into account. 

 

5.3 Characteristics of the DM Search Function 

 

The time bias data streams that we intend to search through can have any value at the 𝑖𝑡ℎ 

satellite and the 𝑗𝑡ℎepoch, but our generated signals can only have values of 1, -1, or 0. Before 

we search through these data for a signal, we must first convert these data (𝑑𝑖𝑗) to a trinary form  

(𝑑𝑖𝑗
tri) using Equation 5.5, where the cutoff magnitude 𝑠𝑐𝑢𝑡 is set to one standard deviation of the 

data, which is typically 0.1-ns, as it will be difficult to resolve events if they are this close to the 

noise level. 

 

 𝑑𝑖𝑗
tri = {

1 𝑑𝑖𝑗 ≥ 𝑠𝑐𝑢𝑡

−1 𝑑𝑖𝑗 ≤ −𝑠𝑐𝑢𝑡

0 −𝑠𝑐𝑢𝑡 < 𝑑𝑖𝑗 < 𝑠𝑐𝑢𝑡

 (5.5) 

 

A complete Bayesian analysis would require a quadruple integral over the four unknown 

parameters to find an event, and be confident that it is indeed an event. 

 

 ∫ ∫ ∫ ∫  𝑑𝑣𝑥𝑑𝑡𝑟𝑑𝜃𝑑𝜙
700

10

51

50

𝜋

0

2𝜋

0

 (5.6) 

 

Instead of doing these computationally intensive integrals however, it is more practical to 

find a search method that is fast and effective for finding potential events, while this Bayesian 

method is in production. To find the best fitting signal in some data stream, we need a function 

that will give a large value for a well-fitting signal, and a small one for a poorly-fitting signal. 

Such a function should be designed such that the matrix of data points we have for a set of 

epochs can be checked against a possible signal, and give a value as to how much of that signal 

exists in the data. The function I used is derived from a Gaussian probability curve. 

 

 𝑒
− ∑ (𝑑𝑖𝑗

tri−𝑠𝑖𝑗(𝑣𝑥,𝑡𝑟,𝜃,𝜙))
2

𝑖𝑗  
(5.7) 

 

In this example of function, any deviation from a perfect signal makes the exponential 

sum smaller, so data that is nothing like the signal will be very small in comparison to data that 

has any indication of a signal. This function is a four-dimensional surface imbedded in a five-

dimensional parameter space that is unique for every data stream. One would be interested in 

where the value of this function is at a global maximum, which would correspond to the four 

signal parameters that fit the data the best. To find this global maximum, I used a numerical 

maximization function in Wolfram Mathematica and used a method called Differential Evolution 

that I found to give the best success in finding a global maximum in test data. This method also 

works well on non-differentiable functions, which in this case our function will not be 

differentiable at every point since due to the sum in the exponent, the function can only take 
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certain “quantized” values, so in high resolution and in a small region, it will look “choppy.”  

Differential Evolution will always look for a global maximum, but is not guaranteed to find one 

[11]. 

Once a maximum has been found, there needs to be a way to tell how well the signal fits 

the data, so that we can discard data that doesn’t fit the thin wall model. To do this we use the 

divide by the function value with no signal component. 

 

 𝑂 =
𝑒

− ∑ (𝑑𝑖𝑗
tri−𝑠𝑖𝑗(𝑣𝑥,𝑡𝑟,𝜃,𝜙))

2

𝑖𝑗

𝑒
− ∑ (𝑑𝑖𝑗

tri)
2

𝑖𝑗

 (5.8) 

 

I used an extensive amount of testing to make sure this algorithm worked as designed.  

Wyatt Williams created test data with a data simulator he designed. These test data included files 

that contained signals using randomly generated parameters, and some that did not, which were 

each overlaid with random Gaussian noise with a standard deviation σ. Three trials were 

conducted to search for the events in this test data, one with signals at a height 5σ, one with 3σ, 

and one with σ, each with thirty files generated. The results were then checked after the search 

with a key that contained the parameters the files were generated with, that were kept secret 

throughout the search.  To check whether an event had been found correctly or not, I looked at 

the result of Equation 5.8.  If its value is sufficiently large, it is very likely that an event has been 

found.  

We have noticed however, that due to the need for a reference clock to make the bias 

data, there are frequent vertical lines in the data matrix (shown in Figure 5.7), which corresponds 

to every satellite jumping within the same epoch. This happens most likely because of some 

perturbation to the reference clock, which makes the bias look approximately the same for every 

satellite in that epoch.  Since every signal includes a vertical line of this sort (the blue line in 

Figure 5.4), it has the potential to lead to many false positives, so instead of weighting the odds 

ratio with signal in the denominator, I weight it with a vertical line at the centered epoch. This 

eliminates events being found due just to this vertical line. 
 

 
Figure 5.8: Sample Data of a random day shows frequent vertical lines 
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 Correct Positives Correct Negatives False Positives False Negatives 

5σ 14 15 0 1 

3σ 13 14 0 3 

σ 1 15 0 14 

 
Table 5.1: Results of the simulator test. 

The results of Table 5.1 show that at 5σ, the program has a success of 97%, at 3σ it has 

90%, but once the signal gets close to the noise it becomes nearly impossible to find the signal. It 

is also interesting to note that even under the circumstances of σ events, I never found a false 

positive, meaning it is somewhat rare to find an event out of randomly generated noise. 

It is with this mathematical algorithm that is applied to searched for a signal in each set of 

data. It takes a lot of computing power to compute this maximum however, so many processor 

cores are used to speed up the process. 

6 Search Results 
 

The results of the search gave 14 candidate events, all given in Appendix C. These events 

do not fit the thin wall model completely. The found events have a central blue vertical line that 

corresponds to the reference clock being crossed by the wall, but this line has a much higher 

magnitude than the orange diagonal line of each satellite being crossed, demonstrated by Figure 

6.1. The top plot is the signal that corresponds to the four parameters (𝑣𝑥, 𝑡𝑟 , 𝜃, 𝜙) that the 

program chose as the best fitting values. The middle plot is the actual data from the file being 

tested. The bottom plot is the matrix that corresponds to the signal fit to the data. The difference 

between the left and right frames is the 𝑠𝑐𝑢𝑡 magnitude used. The lower cut shows a good fit, but 

the higher cut shows hardly any signal left, while the vertical line remains. This suggests some 

perturbation to the reference clock instead of an event. 

 

 
 

Figure 6.1: Demonstration of the difference in signal fit at a 𝑠𝑐𝑢𝑡  of 0.1 ns (left) and 0.2 ns (right). 
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7 Conclusion 
 

The GPS.DM observatory will remain dedicated to searching GPS atomic clock data for 

signatures of DM. There remain many different models yet to explore and DM candidate limits 

to improve upon. My research improved the limits on TD thin wall interactions with atomic 

clocks and found more than a dozen candidate events. These events do not fit the thin wall 

model; however, they may fit other models such as monopoles and thick walls. Our future work 

will be to apply these models to our search and to the found events, to be completely certain that 

we can either rule these events out, or accept them as statistically fitting a model. The GPS.DM 

observatory will also focus on a complete Bayesian search in the future to improve upon this 

work. 
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Appendix A: Orbital Elements Conversion Equations and Mathematica Code 
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Appendix B: Mathematica Code for DM Thin Wall Signal Search 
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Appendix C: Search Results with the Highest Matching Signals 

 

 This appendix contains the best fitting signals found by the search program in Appendix 

B. Each event shown contains three matrix plots. The first plot is the signal that corresponds to 

the four parameters (𝑣𝑥, 𝑡𝑟 , 𝜃, 𝜙) that the program chose as the best fitting values. The second 

plot is the actual data from the file being tested, made trinary with Equation 5.5. The third plot is 

the matrix that corresponds to every element of the previous two matrices being multiplied 

together, which effectively shows the how much of the signal matches the data. The middle plot 

contains a title at the top of it that shows the date and epoch numbers of the data that the event 

was found in, along with the satellite that was chosen as the reference clock. 
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