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Abstract 

 

Evidence shows that approximately 27% of the mass-energy budget of the universe is 

composed of dark matter1. Despite its prevalence, and the evidence supporting its existence, it has 

never been directly observed. However, the theoretical groundwork for dark matter in the form of 

a topological defect in space is believed to cause a “transient-in-time change in fundamental 

constants2”. Variation of fundamental constants would affect the atomic transition frequency of an 

atomic clock. Such a change might be detectable by cross comparing the phase data between 

atomic clocks on board GPS satellites. This data however, contains fluctuations in the form of 

noise. Thus, to confidently identify a dark matter signal, one must be sure that it can be detected 

among the inherent noise. The objective of this research is to characterize and reproduce the types 

of noise observed in atomic clocks. The two main types of quantum oscillators under consideration 

are that of Cesium and Rubidium. The types of noise prevalent in these oscillators are: White PM, 

Flicker PM, White FM, Flicker FM, and Random Walk FM (PM and FM stand for phase and 

frequency modulations). Each type of noise follows a frequency power law, as given by the Allan 

variance, and can be characterized by their respective power spectral densities. These spectra are 

used to generate random phase data that fits each type of noise with Mathematica software. This 

data can be used to build a simulation of dark matter events that can be referenced when 

considering candidate signals in real clock data.
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Chapter 1 

Introduction 

1.1 Overview 

Atomic clocks are instruments used to count a specific number of oscillations and convert 

that value into time. The problem with this principle is that counting is really all the clocks do. 

Time is calculated by multiplying some counted number of oscillations with the known period of 

oscillation. And so if the period is off, or fluctuating, so too will the time the clocks give be 

inaccurate. For this reason, data from atomic clocks on board Global Positioning System (GPS) 

satellites are compared with ground station clocks on Earth. Any discrepancy between the two is 

attributed to noise in the clock on board the satellite. These differences are what is referred to as 

the clock’s bias, meaning error from actual value. There is the possibility that there can be more 

than noise affecting the clock bias. In a paper published by Derevianko and Pospelov, a theory is 

proposed in which dark matter in the form of a topological defects will cause a “transient-in-time 

change in fundamental constants2”. Part of this effect is a change in the electron emission period 

of atoms within atomic clocks. A change in this frequency would be detectable in the form of a 

distinct clock bias. As a wall of dark matter passes through a satellite, the clock on board becomes 

desynchronized with the reference clock on Earth. Some period of time later, the wall of dark 

matter will pass through the ground station clock, and the times will once again be synchronized. 

Figure 1.1 illustrates the motion of the wall. 

 

Figure 1.1: A wall of dark matter passing through Earth. Here, the simplest case of a thin walled 

event is assumed. It can be seen that a sufficiently large event will first pass through satellites 

before reaching the Earth. 
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The duration of time that the bias exists between the satellite clock and the reference clock is equal 

to the time it takes the event to travel the distance separating the two clocks. The average velocity 

of Earth through the dark matter halo is taken to be 300 km/s. At this velocity, there should be a 

significant jump in clock bias that lasts for up to 150 seconds2. This signature will take the form 

of Figure 1.2. 

 

Figure 1.2: The signature bias between a single ground station clock and a GPS satellite 

affected by topological dark matter. 

It seems reasonable that such a distinct event should be easy to detect. But this is assuming 

that the bias at all other times outside an event are equal to zero. Unfortunately, this will never be 

the case. The data is often riddled with too many fluctuations in the form of noise. An example of 

real clock bias is graphed in Figure 1.3. 

 

Figure 1.3: Atomic Clock Bias from December 30, 2001. This type of data is made readily 

available by the Jet Propulsion Laboratories (JPL). 

The satellite data in Figure 1.3 comes from Space Vehicle Number (SVN) 22. The type of clock 

on this satellite for this date is Cesium. The data is sampled every 30 seconds. This corresponds to 

the duration of time between each GPS epoch. This means that the proposed dark matter signature 
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(lasting for 150 seconds), would only be present for 5 of the 2880 data points plotted above. 

Furthermore, this image also reveals the prevalence of noise in the clock bias. This leaves the 

following question: Can the dark matter signature be distinguished from the noise? That question 

is the motivation for this thesis. In order to confidently extract such a signature, one must place 

bounds on the types of noise seen in Figure 1.3. This can be accomplished through spectral analysis 

of generic noise types. If successfully applied to the generic noise types, the methods developed 

can then be used to extract a dark matter signature from generated clock data. Thus a library of 

event models can be built, and any dark matter candidates discovered in real clock data can be 

compared to the existing simulation. 

1.2   Dark Matter 

Observations made by the Hubble Space Telescope have shown that the universe is 

expanding at an accelerated rate. The cause of this is generally attributed to dark energy whose 

source is unknown. This energy is believed to comprise roughly 68% of the universe’s total mass-

energy budget. Another 5% goes to all of the ordinary matter astronomers can account for, such as 

planets, stars, and nebulae. Astronomical observations indicate that the remaining 27% of the 

known universe is made up of matter which has not yet been detected1.The most well-known 

observational evidence for dark matter comes from galactic rotation curves. Kepler’s third law 

formulates the relationship between the orbital speed of a mass relative to its radial distance from 

the object it encircles. Gravity is the force that acts as a tether between the two objects, and its 

strength is diminished with distance. As a result, the circular speed of the orbiting mass decreases 

with distance as well. This principal can be applied to the motion of stars orbiting about the center 

of galaxies. Because galaxies are denser toward their centers, it is expected that the orbital speed 

of masses within the galaxy should be inversely proportional to their distance from the galactic 

center. However, it is often found that this is not the case. In fact, orbital speed has even been seen 

to increase with radial distance. The discrepancy is believed to be caused by the gravitational pull 

of the aforementioned 27% of undetected matter. Because it does not emit radiation in any range 

of the electromagnetic spectrum, it has been aptly named dark matter3. 

 A recent theory has been proposed in which dark matter is not a particle (which has been 

the common view), but rather a collection of topological defects in space. The fundamental 

constants belonging to regular matter passing through this defect will temporarily shift as a result 

of interaction. The frequency of light emitted through electron transitions is sensitive to this type 

of change. This is why atomic clocks on board GPS satellites would form a 50,000 km aperture 

for detecting topological dark matter2. There are, on average, 24 GPS satellites in operation at any 

given time4.  

1.3   Atomic Clocks 

Atomic clocks are like other time keeping devices, in that they count some number of 

oscillations to tell time. They are special; however, because they can tell time with greater 



Rollings  4 

 

  

precision and accuracy than any type of instrument ever built. An often quoted statement is that it 

would take over a million years for the time held by a modern Cesium clock to drift by one second5. 

To understand the fundamental principles of clocks, atomic or not, one must first understand how 

to measure time. 

1.3.1   Basic Principles of a Clock 

Time is a quantity defined by people. It is relative. The universe does not know what time 

it is, people do. The notion of the second has changed over time, but has always been measured by 

counting periodic cycles. A physical system that undergoes periodic cycles is often called an 

oscillator. A pendulum is an example of an oscillator. It begins in one state and retraces a given 

path only to return to that initial state. Consider a basic periodic function such as the one shown in 

Figure 1.4. It is a sine wave, and takes the following form: 

 𝑌(𝑡) = 𝑌0 ∙ sin[2𝜋𝜈0𝑡] . (1.1) 

   

Here, Y0 is the amplitude of the signal. It corresponds to the maximum height of the sine wave. 

The duration of time that the wave is analyzed is measured in t seconds. The distance that the wave 

travels before repeating is denoted by the wavelength λ. Finally, the wave propagates with a 

frequency of ν0, which has units 1/s. The entire argument of the sine function gives the phase, 

which is how far into a given cycle the signal is. In the corresponding figure below, Y0 and ν0 have 

both been assigned a value of 1. 

 

Figure 1.4: A sine wave. 

The physical interpretation of frequency defines how many full cycles, or revolutions, a 

periodic function can complete in one second. Conversely, the time it takes the function to 

complete one full cycle is simply the inverse of the frequency. This is known as the period of 

oscillation, T, and is written as 
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𝑇 =

1

𝜈0
 . (1.2) 

   

The periodic functions in question take the form of sines and cosines. Since both of these 

functions complete one full cycle in 2π radians, it is useful then to express their frequencies in 

terms of radians. This is known as the angular frequency, and it is defined as 

 
𝜔0 = 2𝜋𝜈0 =

2𝜋

𝑇
 , (1.3) 

   

which has units of radians/second. Counting the time elapsed then becomes trivial. All one has to 

do is count the number of completed cycles, and either multiply this number by the oscillation 

period, or divide by the known frequency:  

 
𝑇𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 ∙ 𝑇 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

𝜈0
 . (1.4) 

   

1.3.2   The Quantum Oscillator 

Electrons that are bound to atoms can only exist in discrete energy levels. Each level has 

the potential to split into further divisions in the presence of a magnetic field. This is known as the 

Zeeman effect, and it results in the hyperfine structure of the atom due interaction between the 

electron spin and the nuclear spin. When an electron transitions from a higher energy state to a 

lower one, it emits a photon. The frequency of the electromagnetic wave emitted corresponds 

directly to the energy difference between the two levels. Likewise, an electron can absorb a photon 

of the same frequency, allowing it to transition to a higher energy state6. This principle forms the 

foundation of how an atomic clock works.  

Each clock contains atoms with a well-defined transition frequency between a given energy 

level. The most common type is Cesium. It has a 4.14 × 10−5 𝑒𝑉 energy gap between two 

hyperfine ground states. The frequency of light associated with this transition is 9,192,631,770 

Hz7. The remarkable thing is that this number is the same for all Cesium atoms. It is so precise, 

that the SI unit of the second is defined as 9,192,631,770 periods of radiation corresponding to this 

transition8. There are methods by which a clock can operate. In a particular example, atoms within 

an atomic clock are driven by a microwave source whose frequency is fine-tuned by a feedback 

mechanism within the clock. The frequency of the microwaves is matched to the transition 

frequency described above. The atoms travel down a chamber where they are deflected by a 

magnetic field. Within the magnetic field, atoms in a higher energy state will deviate from their 

path more so than atoms in the ground state. A detector is placed in way of the excited atom’s path. 

This detector is what provides the feedback to the microwave source. The goal is to maximize the 

number of excited atoms reaching the detector by changing the frequency of the microwave source 

accordingly. The phase of the source is sampled and compared with ground station clocks on Earth. 
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A brief fluctuation in the optimal transition frequency, and thus, the phase of the oscillator, will 

result in a clock bias that resembles the one portrayed in Figure 1.2. 

1.4   Types of Signals 

The output of an atomic clock is transmitted back to Earth via a carrier signal. Thus, it 

becomes important to delineate between two main types of signals. They are classified as being 

either discrete or continuous. A continuous signal is one that is defined over all points in time. 

When plotted as a function of time, there are no breaks in the data. A discrete signal is the result 

of sampling a continuous process at different times. If the sampling interval is constant, then the 

plotted data will be evenly spaced by the time period between measurements. In this paper, the 

interval of time between samples is denoted by 𝜏0. The importance of each classification will 

become more apparent, as later mathematical development will depend on which case is examined. 

See Figure 2.2 for an example of each type of signal. 

Whether discrete or continuous, signals can also be described as stochastic or deterministic. 

A deterministic signal is one whose future value can be determined based off of current trends. An 

example of this is the sine wave described by Equation (1.1). The value of this wave can be readily 

calculated at any point in time. In opposition to this are signals that are stochastic. These types 

encompass data sets composed of random values. An example of a stochastic process would be 

the noise produced in an atomic clock’s signal. It would not be possible to guess the exact value 

of the noise at a given future time. The best that can be done in this situation is to estimate the 

value by examining the statistical properties of the noise. 

1.5   Statistical Development 

 In order to ascertain the properties of the noise introduced into a signal, it will be necessary 

to develop some of the statistics used to characterize a given set of data. The terms listed below 

can be used to describe both continuous and discrete systems. However, the data analyzed in this 

research is discrete, and so only the discrete mathematical formulations have been given. 

1.5.1   Expectation Value 

The expectation value of a given function is the weighted probabilistic average of a 

function. This term does not necessarily imply that it is the most probable value. In general, the 

expected value of a discrete function 𝑓(𝑥) is given by: 

 𝐸{𝑓(𝑥)} = ∑ 𝑓(𝑥) ∙ 𝑃(𝑥)

𝑥

, (1.5) 

   

where 𝑃(𝑥) is the probability distribution. In the limit as 𝑥 → ∞, the expectation value approaches 

the mean of the data9. Specifically, the arithmetic mean refers to a number that can replace all 
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values in a list without changing the sum of the list. For a list that is N terms long and has the 

values X = {x1, x2 … xn}, the mean can be found the following way: 

 

𝑋̅ =
1

𝑁
∑ 𝑥𝑛 .

𝑁

𝑛

 (1.6) 

 

1.5.2   Variance 

Though useful in their own regards, the mean, median, and most probable value are not 

sufficient for complete statistical interpretation of a given set of data. For example, two different 

sets of data might share the same mean, median, and most probable value; however, the data might 

be distributed differently across a range of values, as is the case in Figure 1.5. 

 

Figure 1.5: Two histograms outlining the differences in how data is distributed. The mean, 

median, and most probable value are the same for both distributions. Despite this, the plots are 

not identical. 

The histograms above reveals that the “spread” of the data is yet another measurable quantity. One 

might think that this can be estimated by taking the average distance from the mean value. 

However, due to cancelation of negative and positive terms, this will ultimately lead to zero. 

Instead, the square of each distance from the mean is calculated and the average of these values is 

used. This is known as the variance. For the set X = {x1, x2 … xn} the variance can be expressed 

mathematically as 

 

𝜎2 =
1

𝑁
∑(𝑥𝑛 − 𝑋̅)2  .

𝑁

𝑛=1

 (1.7) 
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Once again, N is the length of the data set and 𝑋̅ is 

the mean of the set. Variance is a fundamental 

statistical measurement, and it plays a large role in 

noise analysis. The reason it is defined as σ2 is 

because it is often written in terms of standard 

deviation, which is defined as: 

                               𝜎 = √𝜎2 .                    (1.8) 

A set of data whose points are more likely to be 

found close to the mean rather than farther are said 

to be normally distributed. A subsequent 

histogram of such a data set will be bell shaped, or 

Gaussian (Figure 1.6). 

1.5.3   Covariance and Correlation 

It is also useful to investigate how dependent two or more variables are on each other. To 

get a sense of this, one can define the covariance between sets of data. It shows how much one 

variable changes with another, if at all, and can be used to make predictions about trends in data. 

For two sets of discrete data X = {x1, x2 … xn} and Y = {y1, y2 … yn}, both of length N, the covariance 

function can be approximated by the sample covariance given by10: 

 

𝑐𝑜𝑣𝑋𝑌 ≈ 𝑟𝑋𝑌 =
1

𝑁
∑(𝑥𝑛 − 𝑋̅)(𝑦𝑛 − 𝑌̅)  .

𝑁

𝑛=1

 (1.9) 

The same analysis can be done on a given set of data with itself. This can be used to see if data 

entries in a list depend on previous values in the same sequence. This is referred to as the 

autocovariance of the data, and is once again approximated by10:  

 

𝑐𝑜𝑣𝑋𝑋 ≈ 𝑟(𝜏) =
1

𝑁
∑(𝑥𝑛 − 𝑋̅)(𝑥𝑛+𝜏 − 𝑋̅)  .

𝑁

𝑛=1

 (1.10) 

The iterator 𝜏 in the formula above represents the lag, or spacing, between each data point. 𝜏 can 

be expressed as sample 𝑛 multiplied with the time interval between samples, 𝜏0, so that 𝜏 = 𝑛𝜏0. 

It is possible to have a lag of 0 between points. This means that each point’s distance from the 

mean is squared and the average of these values is taken. In other words, the autocovariance at lag 

0 reduces to the variance of the data: 
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 𝑟(0) = 𝜎𝑋
2. (1.11) 

Given that it measures the dependence of values in a set of data, the autocovariance can also be 

thought of as the signal’s “memory”. For white noise, each value is independent of the previous 

entry in the set. Thus, the autocovariance at any lag time other than 0 is zero. This is expressed as: 

 𝑟(𝜏) = 𝜎𝑋
2 ∙ 𝛿𝑡𝑡′  . (1.12) 

Here, 𝛿𝑡𝑡′ is the Kronecker delta function. It is equal to 1 for time 𝑡 equal to time 𝑡′ (zero lag), and 

is equal to 0 for all times 𝑡  not equal to time 𝑡′. If there are N data points, then there exists N-1 

lags between all the points. Therefore, 𝜏 is indexed from 0 to N-1. The calculated coefficient 

associated with each covariance can be a large or small number depending on the data. Some data 

sets may have larger coefficients, yet be less correlated than others. It is; therefore, more practical 

to normalize the covariance by dividing out the standard deviation of each set of data. When this 

is done for two different variables, the result is known as the cross-correlation, or simply 

correlation. And when the data is correlated with itself, it is called auto-correlation10: 

 

𝑐𝑜𝑟𝑟𝑋𝑋 ≈ 𝑅(𝜏) =
𝑟(𝜏)

𝜎𝑋
2 =

1

𝑁𝜎𝑋
2 ∑(𝑥𝑛 − 𝑋̅)(𝑥𝑛+𝜏 − 𝑋̅)  .

𝑁

𝑛=1

 (1.13) 

1.5.4   Stationarity and Ergodicity 

 The statistical definitions given above can be used to describe any finite set of discrete 

data. When the mean, variance, and correlation functions of a given list do not change in time, then 

the process is said to be stationary. It can also be the case that the statistical properties of a single 

set of data will closely resemble the same properties of an average over an ensemble of realizations 

produced by the same process. In this case, the process is also ergodic.  
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Chapter 2 

Spectral Analysis 

Examination of the time domain can be useful for obtaining certain information about a 

signal. For instance, it might be apparent that the signal has a particular waveform. However, this 

type of analysis might not be straightforward for a mixture of signals, or for a signal affected by 

noise. For these, it is more useful to examine the frequency spectrum of the signal. A very powerful 

tool in mathematics is the ability to decompose any signal’s waveform into a sum of sine and 

cosine functions. This is accomplished through the Fourier Transform. The Fourier Transform 

takes data from the time domain and maps it to the frequency domain, thereby specifying how 

much of a given frequency the signal is composed of. An example of its application is illustrated 

in Figure 2.1. 

 

Figure 2.1: An application of the Fourier transform. (a) A 20 Hz sine wave. (b) the Fourier 

transform of the sine wave. 20 Hz is the only frequency present. (c) The same 20 Hz signal, but 

with added Gaussian white noise. (d) The Fourier transform of the noisy signal. Note that the 20 

Hz sine wave still dominates the frequency spectrum. 
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2.1   Fourier Transforms 

 There are several ways to define the Fourier Transform that each correspond to the type of 

signal being analyzed. Unfortunately, sines and cosines extend from -∞ to +∞, and so using them 

to describe a finite signal requires one of two conditions. The signal itself can be said to extend to 

plus and minus infinity with all non-measured values set equal to zero, making it aperiodic. Or, 

the signal can span the same range and be imagined to repeat itself, thus becoming periodic. 

Furthermore, both cases can be applied to continuous and discrete data sets, making for a total of 

four types of transforms11. An example of each has been outlined below in Figure 2.2. 

 

Figure 2.2: Example signals associated with each Fourier transform11. 

Conversely, each transform has the ability to change frequency data back into the time 

domain. This is done using the Inverse Fourier Transform. The formulas corresponding to the 

transforms outlined above and their inverses are expressed mathematically as follows: 
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Fourier Transform (FT): 

 

𝑋(𝜔) = ∫ 𝑥(𝑡) ∙ 𝑒−𝑖𝜔𝑡 ∙ 𝑑𝑡

∞

−∞

   ↔   𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔) ∙ 𝑒𝑖𝜔𝑡 ∙ 𝑑𝜔

∞

−∞

 (2.1) 

   

Fourier Series (FS): 

 

𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)

𝑇

0

∙ 𝑒−𝑖𝑘𝜔0𝑡 ∙ 𝑑𝑡   ↔    𝑥(𝑡) = ∑ 𝑎𝑘

∞

𝑘=−∞

∙ 𝑒𝑖𝑘𝜔0𝑡 (2.2) 

   

Discrete Time Fourier Transform (DTFT): 

 
𝑋(𝑘) = ∑ 𝑥(𝑛)

∞

𝑛=−∞

∙ 𝑒−𝑖𝑘𝑡    ↔    𝑥(𝑡) =
1

𝑁
∑ 𝑋(𝑘) ∙ 𝑒𝑖𝑘𝑡

𝑘

 (2.3) 

   

If the DTFT is sampled over a finite time interval, T, then it can be imagined that the 

sampled segment is repeated from -∞ to +∞. Since it is now periodic over the sampling period 𝑇, 

then 𝑥(𝑡) = 𝑥(𝑡 + 𝑇). This limits the frequency 𝜔 to being integer multiples of 𝜔0, or, using the 

definition for the fundamental frequency given by Equation (1.3): 𝜔𝑘 → 𝑘𝜔0 = 𝑘2𝜋/𝑇. Also, the 

period of measurement  is given by the number of points multiplied by the interval of time between 

them, 𝑇 → 𝑁𝜏0. Furthermore, the time that has elapsed, 𝑡, now becomes the time that has elapsed 

to reach the 𝑛𝑡ℎ point under consideration : 𝑡𝑛 → 𝑛𝜏0. Putting all of the pieces together yields the 

Discrete Fourier Transform12. 

Discrete Fourier Transform (DFT): 

 

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

   ↔    𝑥(𝑛) =
1

𝑁
∑ 𝑎𝑘 ∙ 𝑒𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑘=0

 (2.4) 

The number of frequency bins, k, is equal to the number of samples being processed, N. A 

typical DTFT frequency spectrum will range from zero to half of the frequency with which the 

data was sampled. After this point, aliasing occurs. Aliasing is the allocation of a signal’s strength 

to frequencies that it isn’t actually composed of. Visually, this has the effect of reflecting the 

frequency spectrum about its midpoint. The cutoff frequency after which aliasing occurs is known 

as the Nyquist frequency. This can be applied to the DFT as well. If the signal is real, then 𝑋(−𝑘) =

𝑋(𝑘)∗. This means that all of the N data points become spread out between  – N/2 and N/2, and 

they are mirrored about zero. This implies that the complete frequency spectrum can be described 

by frequencies ranging from 0 to N/2. Thus, the Nyquist frequency of the DFT is defined as N/2. 

Even with the examples outlined in Figure 2.2, it can still be unclear which transform to 

use for a finite set of data. One would be tempted to use the DTFT, given that it is meant for a non-
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periodic signal, and a random set of data may or may not be periodic. However, the frequency 

spectrum of the DTFT is continuous, and the transform is defined for the range -∞ to +∞. It is 

unlikely that an infinite set of data will be under consideration. On the other hand, the DFT is 

defined over a finite range, meaning a finite set of data. It is worth noting that the literature on the 

subject usually uses the DTFT in theory and proofs. This is more correct for theory, as the DFT 

yields the frequency spectrum of the “imagined” periodic signal, sampled over a finite interval. 

Assuming that the function is periodic; however, is often disregarded in lieu of computational 

processing. The reason for this is that computing the inverse DFT will result in recovering the 

original signal back (Figure 2.3), and so assuming periodicity has little consequence. 

 

Figure 2.3: The result of performing the inverse DFT on the DFT of a time series. (a) 

Untransformed time series data. (b) The DFT of the time series. (c) The inverse DFT of the DFT. 

The original time series is recovered. 

2.2   Energy of a Signal 

The total energy of a discrete signal is conventionally defined as12 

 

𝐸𝑥 = ∑|𝑥(𝑛)|2

𝑁

𝑛=1

 , (2.5) 

   

where x(n) is the nth value in the time domain. Parseval's theorem states that the energy of a 

waveform is the same whether measuring it from the time domain or the frequency domain13. For 

discrete signals, the proof is as follows: Suppose there is a list with N values of x(n), and that X(k) 

is related to x(n) via a Discrete Fourier Transform (Equation 2.4): 

 

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖2𝜋𝑛𝑘/𝑁

𝑁

𝑛=1

 ,  

   

where n and k are, once again, the current sample number and frequency under consideration. 

Squaring the left side and multiplying the right by its complex conjugate yields 
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|𝑋(𝑘)|2 = ∑ 𝑥(𝑛)

𝑁

𝑛=1

∑ 𝑥∗(𝑛′)𝑒𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑛′=1

. (2.6) 

   

Summing both sides gives the total energy of the signal 

 

∑|𝑋(𝑘)|2

𝑁

𝑘=1

= ∑ ∑ 𝑥(𝑛)

𝑁

𝑛=1

∑ 𝑥∗(𝑛′)𝑒
𝑖2𝜋(𝑛−𝑛′)𝑘

𝑁

𝑁

𝑛′=1

𝑁

𝑘=1

 (2.7) 

   

 

                           = ∑ 𝑥(𝑛)

𝑁

𝑛=1

∑ 𝑥∗(𝑛′) ∑ 𝑒𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑘=1

𝑁

𝑛′=1

 . (2.8) 

   

The final sum in this expression is a geometric series, which can be calculated as 

 

∑ 𝑒−𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑘=1

=
𝑒𝑖2𝜋(𝑛−𝑛′) − 1

𝑒𝑖2𝜋(𝑛−𝑛′)/𝑁 − 1
 . (2.9) 

   

The right hand side is evaluated as 0 when n ≠ n' and is N when n = n'. Therefore 

 

∑ 𝑒−𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑘=1

= 𝑁𝛿𝑛𝑛′ . (2.10) 

   

Consequently 

 

𝐸𝑥 =
1

𝑁
∑|𝑋(𝑘)|2

𝑁

𝑘=1

= ∑|𝑥(𝑛)|2

𝑁

𝑛=1

 . (2.11) 

   

The summation in this case is performed over a finite range of data. Doing this for an infinite-

length signal would theoretically result in infinite energy. Given that the total energy is represented 

by the average of each frequency component squared, the energy density, or energy per frequency, 

is expressed as: 

 𝐸𝑆𝐷 = |𝑋(𝑘)|2. (2.12) 

   

Note that the signal’s energy might not be described in the physical sense of the term. Depending 

on what is actually being measured, the units of energy may not work out to be entirely what one 

would expect. To get the units to work out then, the Fourier transform can be scaled by the time 

step, Δt, that separates each data point. Recall that for an evenly sampled signal, the duration of 

time between the points is 𝜏0. This rescales the energy spectrum to: 



Rollings  15 

 

  

 𝐸𝑆𝐷 = 𝜏0
2 ∙ |𝑋(𝑘)|2. (2.13) 

   

2.3   The Power Spectrum 

Power is defined as the energy per unit of time. The duration of time the signal encompasses is, 

again, the number of data samples multiplied by the time between each point, 𝑇 = 𝑁 ∙ 𝜏0. Dividing 

this into the energy spectrum yields the power spectral density (PSD)12: 

 𝑃𝑆𝐷 = 𝑆(𝑘) =
𝜏0

𝑁
∙ |𝑋(𝑘)|2. (2.14) 

   

This manner of power spectral estimation is referred to as the periodogram. A drawback of using 

this method is that the power spectrum does not converge to its true value regardless of how many 

samples it is computed over. An example of this is illustrated in Figure 2.4. 

 

Figure 2.4: Example of variance in the periodogram. (a) Power spectrum for 1000 samples.    

(b) Power spectrum for 2000 samples. (c) Power spectrum for 4000 samples. 

In the example above, the number of data points sampled begins at 1000, and is then doubled 

twice. The average of each spectrum is the same at a value of .048; however, the variance of each 

one also has an identical value of .002. The variance of the spectrum did not decrease with the 

number of samples. There are alternative methods for estimating the power spectrum. Due to time 

constraints, the periodogram remains the method chosen for this research. The lack of convergence 

has been dealt with by averaging over an ensemble of power spectra in chapter 4. 

2.3.1   Wiener–Khinchin Theorem 

One way to check that the correct power spectrum has been attained is to take the DFT of 

the autocovariance function described earlier. This principal is known as the Weiner-Khinchin 

Theorem, and it states that the PSD and autocovariance are Fourier transform pairs13: 

 

𝑆(𝑓) = ∫ 𝑟(𝜏) ∙ 𝑒−𝑖2𝜋𝑓𝑡 ∙ 𝑑𝜏

∞

−∞

 . (2.15) 
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To approximate this for a discrete signal, the integral is replaced by a sum, and the exponential 

takes the same form as in the DFT. The time step 𝑑𝜏 becomes the time interval in between data 

points, 𝜏0. 

 

𝑆(𝑓) = 𝜏0 ∙ ∑ 𝑟(𝑛) ∙ 𝑒−𝑖2𝜋𝑓𝑛/𝑁

𝑁

𝑛=−∞

 . (2.16) 

   

Note the change from 𝑟(𝜏) to 𝑟(𝑛), this is because the nth part of the covariance function is now 

under consideration in the transform. Recall that the autocovariance of white noise is equal to its 

variance multiplied with the Kronecker delta (Equation 1.12). Modifying the index of the 

Kronecker from time, t, to list position, n, and plugging it into Equation (2.16) yields: 

 

𝑆(𝑓) = 𝜏0 ∙ ∑ 𝜎𝑋
2 ∙ 𝛿𝑛𝑛′ ∙ 𝑒−𝑖2𝜋𝑓𝑛/𝑁

𝑁

𝑛=−∞

 = 𝜏0 ∙ 𝜎𝑋
2 . (2.17) 

   

This means that white noise will have a flat power spectrum held at a constant value of 𝜏0 ∙ 𝜎𝑋
2. In 

the example shown in Figure 2.4, 𝜏0 was set to 1/1024 seconds, and the variance of the data was 

taken to be 49. Multiplying these numbers together yields a value of .04785, which is precisely 

what the power spectrum of that signal averages to. 
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Chapter 3 

Noise Characterization 

In general, any periodic signal can be described as having both a phase and amplitude. 

Instabilities in either of these components leads to instantaneous values differing from their actual 

value. These discrepancies are what is referred to as the noise of the data14. 

3.1   Frequency Stability 

Oscillators often undergo what is known as frequency drift. This means that their operating 

frequency will change with time due to a variety of factors such as aging of the oscillator, or outside 

environmental factors. Drift typically has units of Hz/s, and can; therefore, be thought of as 

velocity in a sense. On the other hand, frequency stability describes how little a clock is prone to 

frequency drift. Consider, once again, the function Y(t) defined earlier, now with the following 

modifications: 

 𝑌(𝑡) = [𝑌0 + 𝜀(𝑡)] ∙ sin[2𝜋𝜈0𝑡 + 𝜑(𝑡)]. (3.1) 

   

Where, Y0 = Nominal amplitude  

 ε(t) = Deviation from nominal amplitude  

 ν0 = Nominal frequency  

 φ(t) = Deviation from nominal frequency  

Both ε(t) and φ(t) take the form of added noise. The phase of the signal is defined by the argument 

of sine. The fluctuations defined by φ(t) are phase modulated (PM) noise15. Taking the derivative 

of this argument will give the instantaneous angular frequency, ω(t): 

 
𝜔(𝑡) =

𝑑

𝑑𝑡
[2𝜋𝜈0𝑡 + 𝜑(𝑡)] = 2𝜋𝜈0 +

𝑑𝜑

𝑑𝑡
 , (3.2) 

   

which can be expressed in Hz by dividing out 2π: 

 

𝜈(𝑡) = 𝜈0 +
1

2𝜋

𝑑𝜑

𝑑𝑡
 . (3.3) 

Fluctuations in this form are frequency modulated (FM) noise15. 
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3.2   Noise Power Laws 

 Five types of noise have been identified through their distinctive power spectra. The power 

spectrum of a given noise type will follow the relationship10 

 𝑆(𝑓) = ℎ𝛼 ∙ 𝑓𝛼 . (3.4) 

   

This states that the power of a signal will be proportional to a given frequency, 𝑓, raised to some 

power 𝛼. Each one is classified below, and has its own contribution (ℎ𝛼) to a given signal. 

 

𝜶 Noise Name Corresponding Figure 

-2 Random Walk FM Figure 3.1 

-1 Flicker FM Figure 3.2 

0 White FM Figure 3.3 

1 Flicker PM Figure 3.4 

2 White PM Figure 3.5 

 

 

 
Figure 3.1: The power spectrum, time series, and histogram of random walk FM noise. 

 
Figure 3.2: The power spectrum, time series, and histogram of flicker FM noise. 

 
Figure 3.3: The power spectrum, time series, and histogram of white FM noise. 
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Figure 3.4: The power spectrum, time series, and histogram of flicker PM noise. 

 
Figure 3.5: The power spectrum, time series, and histogram of white PM noise. 

 

The reason for including histograms is to get a sense of the statistical properties associated 

with each type of noise. For the most part, each follows a Gaussian distribution. However, random 

walk breaks this pattern in that it does not have a clear distribution. In addition to this, each 

realization of random walk will generate a different histogram altogether. Thus, the random walk 

is considered a non-stationary process. Because it is non-stationary, things like the autocovariance 

function do not technically exist for it. Random walk is described as noise that has been added 

onto the previous entry in a list. One can visualize random walk in the analogy of a person walking 

in random directions. Each step is limited by the length of the person’s legs, and the person’s 

current position depends on where they were one step ago. Random walk exhibits a strong 

autocorrelation. In order to apply some of the processing tools developed then, it must be 

transformed into white noise. This is achieved by taking the difference between data points in the 

random walk. Mathematically, random walk can be expressed as: 

 𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡, (3.5) 

   

Where the current value, 𝑦𝑡, is equal to the previous value, 𝑦𝑡−1, with added Gaussian white noise, 

𝜀𝑡. Following this definition, the next term in the series will be: 

 
𝑦𝑡+1 = 𝑦𝑡 + 𝜀𝑡′. (3.6) 

   

Differencing any two adjacent points in the list will yield: 

 
𝑦𝑡+1 − 𝑦𝑡 = (𝑦𝑡 + 𝜀𝑡′) − (𝑦𝑡−1 + 𝜀𝑡) (3.7) 

 = (𝑦𝑡−1 + 𝜀𝑡 + 𝜀𝑡′) − (𝑦𝑡−1 + 𝜀𝑡)  

 = 𝜀𝑡′  

Thus, it is shown that differenced random walk produces Gaussian white noise. 



Rollings  20 

 

  

 Flicker FM noise resembles a mixture of random walk and white FM noise. For the most 

part, its statistical properties do not change. For this reason, it is referred to as being weakly 

stationary. It too can be differenced into white noise. 

 A considerable amount of examples used so far have pertained to flat spectrum (white) 

noise. This type of noise will be more closely analyzed in chapter 4. Oscillators within various 

types of clocks can be affected by all of the power law noise described above. However, in the 

case of atomic clocks, Rubidium and Cesium oscillators exhibit noise mostly in the range of 𝛼 =

 −2, −1,0 (Figure 3.6). These correspond to the random walk, flicker FM, and white FM noise 

types respectively16. 

 
Figure 3.6: The power spectrum of the clock bias shown in Figure 1.3. 

3.3   Generating a New Time Series from the Given PSD 

 Once the power spectrum of a signal has been defined, it is possible to then generate a time 

series with the same statistical properties that will produce the same spectrum. The procedure for 

applying this numerically is outlined in chapter 4, but it is shown analytically here. Suppose there 

is a target power spectrum denoted by S(f)target. This power spectrum will have been produced by 

taking the square magnitude of the DFT of a time series, per Equation (2.14). This random time 

series will be denoted by X(t)target. The DFT of this series gives back a list of complex terms. This 

list will be called X(f)target. The phase information contained in each complex value is lost when 

the magnitude of the DFT is computed. Therefore, new phase information must be generated if 

X(t)target is to be recovered from the power spectrum. This phase information can come from the 

DFT of a newly generated random list with the same number of data entries as X(t)target. The DFT 

of this new list will be denoted as Y(f)new. Dividing the DFT by its conjugate will normalize it, 

leaving only the phase information left. Now that the phase information has been created, the 

proper magnitude of the transform will need to be evaluated. It can be easily obtained by taking 

the square root of S(f)target. This will be equal to the magnitude of the frequency spectrum since 

 √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡 ∝ |𝑋(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡| . (3.8) 
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Multiplying Y(f)new with √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡 now yields the appropriate frequency spectrum complete 

with phase information. Taking the inverse DFT of this spectrum will reproduce a signal in the 

time domain, denoted by Z(t)Reconstructed. This new signal will not be identical to X(t)target. However, 

it does have the same statistical properties as X(t)target. 

It is straight forward to check that this new signal will reproduce the same power spectrum 

as before. The DFT of the reconstructed signal is: 

 
𝑍(𝑓)𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 =

𝑌(𝑓)𝑛𝑒𝑤

𝑌(𝑓)𝑛𝑒𝑤
∗

∙ √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡 (3.9) 

Taking the square magnitude of this, as per Equation (2.14), yields: 

 
|𝑍(𝑓)𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑|2 = (

𝑌(𝑓)𝑛𝑒𝑤

𝑌(𝑓)𝑛𝑒𝑤
∗

∙
𝑌(𝑓)𝑛𝑒𝑤

∗

𝑌(𝑓)𝑛𝑒𝑤
∙ √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡)

2

 (3.10) 

 

                                                        = √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡

2

  

                                                          = 𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡  

This shows that the power spectrum of the reconstructed signal is equal to the power spectrum of 

the target signal. Note that there was no need to renormalized the spectrum by a factor of  
𝜏0

𝑁
 as in 

Equation (2.14) because this value has already been accounted for in S(f)target. 

 

 

 

 

 

 



Rollings  22 

 

  

Chapter 4 

Implementation in Mathematica 

Mathematica is a mathematical computation program developed by Wolfram Research of 

Champaign, Illinois. It contains a multitude of function libraries which can be called in the 

following way FunctionName[FunctionArguement]. Mathematica has built in 

algorithms for processing large amounts of data in a short period of time. It is also relatively simple 

to use, and there are a multitude of help pages and example codes available online. For these 

reasons, it has been selected as the program used to model the noise simulation. 

4.1   Generating a Random Signal 

The simplest form of noise to generate is Gaussian White noise. Mathematica comes with 

a built in random number generator, RandomReal[], utilized to create a list of randomized 

discrete data of specified length. The desired standard deviation, or “spread”, of the data can be 

defined as well. Furthermore, this can be combined with the NormalDistribution[] 

function to produce Gaussian data centered about a specified mean value. Figure 4.1 illustrates the 

result of combining these functions. 

 

Figure 4.1: A signal composed primarily of Gaussian white noise. 

The image shown above was produced by calling Mathematica’s ListPlot[] command. There 

are 210, or 1024, random data points contained within the list. For programming in general, more 

efficient computations can be carried out when a given set of data has a length equal to a power of 

2. It can be imagined that the data produced is the result of sampling a real, continuous signal at 
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regular intervals. The duration of time that the signal is sampled for is arbitrarily chosen to be 1 

second. This makes the sampling frequency 1024 Hz. And so, a Nyquist frequency of 512 Hz will 

be expected. The data has also been prescribed an arbitrary standard deviation of 7, and is normally 

distributed about 0. A histogram of this data, shown in Figure 4.2, reflects these statistical 

properties. 

 

Figure 4.2: A histogram of the generated white noise. 

Although the mean and standard deviation have been specified, the random list will not exhibit 

these values identically. For the random signal generated above, the calculated mean is .33, while 

the calculated standard deviation is 6.88. 

Next, the frequency spectrum of the generated noise is examined. For this, the function 

Fourier[] has been called to compute the DFT of the signal. One must be careful when using 

this function, as Mathematica defines it in the following fashion: 

 

𝑋(𝑘) =
1

𝑁(1−𝑎)/2
∑ 𝑥(𝑛) ∙ 𝑒𝑖2𝜋𝑏(𝑘−1)(𝑛−1)/𝑁

𝑁

𝑛=1

 , (4.1) 

   

where the terms a and b can be set using FourierParameters→{a,b}. The iterator n starts at 1 

because it refers to the position in the list being transformed, and there is no 0th position. N is the 

total number of data points, and k is the frequency under consideration. To get the desired 

transform given by Equation (4.1), a and b have been set to 1 and -1 respectively. When taking a 

transform numerically, one gets back a list of complex terms. Each frequency’s contribution to the 

signal can be expressed by the magnitude of these complex terms. In Mathematica, this is 

accomplished by either calling the absolute value, Abs[], of the Fourier transform, or by 
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multiplying the transformed data by its conjugate, Conjugate[], and taking the square root, 

Sqrt[]. The result of doing this is captured in Figure 4.3. 

 

Figure 4.3: The frequency spectrum of the generated white noise. 

As expected, the white noise signal is an amalgamation of many frequencies, each with a similar 

contribution to the signal’s energy. Note that the signal is mirrored about the Nyquist frequency 

of 512 Hz as a result of aliasing. Parseval’s Theorem, described by Equation (2.11), can be used 

to check that the energies in each domain are equal. Applying it to the time domain of this data set 

yields a value of 47,643. Taking the square magnitude of the frequency spectrum and dividing it 

by the number of data points also yields a value of 47,643. Although difficult to discern from the 

graph, it is important to point out that both the zero frequency and Nyquist frequency only appear 

once in the Fourier transform. This will be applied later, when reconstructing a signal from a power 

spectrum. 

 Equation (2.14) is then applied to the data to estimate the power spectrum of the random 

signal. Again, white noise has equal contributions from many frequencies, and so one would expect 

the power spectrum to be flat. However, Figure 4.4 shows that this is not quite the case. 
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Figure 4.4: The power spectrum of the generated white noise. 

The power spectrum has fluctuations because this is a single realization of data under 

consideration. Because white noise is ergodic, the situation can be remedied by taking the average 

over an ensemble of power spectra generated from white noise with the same statistical parameters. 

Implementing this demonstrates how the power spectrum converges to its true value for the given 

noise. 

 

Figure 4.5: Power spectrum convergence over an ensemble. (a) A single realization with mean 

.0489 (b) Average over 10 realizations with mean .0477 (c) Average over 100 realizations with 

mean .0477 (d) Average over 1000 realizations with mean .0479 
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Even though the original power spectrum has high variance, its mean value still closely resembles 

what the ensemble ends up converging to. Both of these values also match the expected value of 

𝜎2𝜏0 formulated earlier. For this particular signal, 𝜎2𝜏0 is approximately .048.  

 A further investigation can confirm if the correct power spectrum has been estimated. This 

requires translating Equation (1.10) into Mathematica to produce a covariance sequence. The result 

of doing so is depicted in Figure 4.6. 

 

Figure 4.6: Autocovariance sequence of the generated white noise. 

As predicted for white noise, the autocovariance is a delta spike about zero lag. The Weiner-

Khinchin Theorem is utilized (Equation 2.16), and the resulting power spectrum shown in Figure 

4.7 is compared to the previous. 
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Figure 4.7: Power spectrum calculated from the autocovariance sequence. 

This new power spectrum has the same shape as the one in Figure 4.4, but contains less variance. 

The average value of this spectrum; however, is .048, which is in agreement with the previous 

results. 

4.2   Generating Noise from a Power Spectrum 

Because of their distinct power spectra, each noisy signal can be reconstructed when a 

particular power spectrum is given. The general outline for doing this in Mathematica is as follows. 

The power spectrum is estimated by squaring the frequency spectrum, and then normalizing it by 

some value. To get new data back then, a new frequency domain must be reconstructed that is 

proportional to the square root of the given power spectrum. Take the square root of the power 

spectrum to yield the amplitude spectrum. In order to be able to transition back into the time 

domain, some phase information will be required. This was obtained by taking the DFT of another 

random list of the same length as the power spectrum. Dividing this new transformed data by its 

conjugate yields random phase data. Next is to convolve the list of random phase data with the 

computed amplitude spectrum. The result is now a new frequency spectrum constructed from 

random phases. Following Equation (2.4), the inverse DFT is taken by applying Equation (4.1) 

with a and b set to -1 and 1 respectively. This transforms the data back into the time domain, 

producing a signal with the same statistical properties as the original. 
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Figure 4.8: A new time series reconstructed from the power spectrum. 

The mean of this new list is .333, and it standard deviation is 6.88. These values perfectly match 

the original signal shown in Figure 4.1. Recalculating the power spectrum of this new signal shows 

that it is identical to the original power spectrum that produced it. 

 

Figure 4.9: The power spectrum of the reconstructed signal. It is identical to the original power 

spectrum. 
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4.3   Generating a Time Series for Arbitrary Power Law Noise 

 In the previous section, a signal was reconstructed from the power spectrum of a single 

white noise realization. As demonstrated, the spectrum of this single set of data contains 

fluctuations. Theoretically, white noise is expected to have a flat spectrum. So too do other types 

of noise spectra have a specific shape as outlined by their respective power law. Recreating a 

random signal from these spectra requires more steps than in the previous case. This is due to the 

fact that these power law spectra are only defined between the zero and Nyquist frequencies, 

whereas the estimated power spectrum of a given signal should be mirrored about the Nyquist 

frequency. In order to generate an accurate time series that will produce the same spectra, the left 

and right hand sides of the frequency spectrum will need to be dealt with separately. 

The first step remains the same in that the square root of the given power spectrum is 

calculated. Now, a new list of random numbers that is twice the length of the current power 

spectrum must be generated. Taking the DFT of this list will result in a frequency spectrum 

mirrored about the Nyquist frequency. Once again, divide this list by its conjugate to produce 

random phase data. Only the left half of this list, parts 1 through the Nyquist frequency, will match 

up with the power spectrum. To obtain individual segments of a list in Mathematica, call the list 

with the following syntax attached to it: [List][[First element;;Final element]]. 

In this case, the first element needed is in position 1 of the list, and the final element needed occurs 

at the Nyquist frequency, which is half way through the complete list. Once obtained, the left side 

can be scaled right away by multiplying it with the square root of the power spectrum. This will 

form the first half of the new frequency spectrum. 

To get the second half, the right hand side of the random phase data must be scaled as well. 

As mentioned before, the zero and Nyquist frequencies only occur once. So the elements of the 

list needed to form the right side will begin at the Nyquist frequency + 1, and include all points 

through the end of the list. Because it is a mirror image of the left, it must first be flipped before 

scaling it to the power spectrum. This is achieved through using Reverse[]. This reversed right 

hand side can now be scaled by multiplying with the square root of the power spectrum as well. 

To turn it back into its former mirrored image, Reverse[] is applied once more. The now 

properly scaled left and right hand sides can be brought back together using Join[]. What’s left 

is a complete frequency spectrum whose inverse DFT will generate a new random signal. The 

power spectrum of this newly generated signal can be calculated using the same techniques as 

before. Doing so shows that the resulting spectrum is identical to the original. Figure 4.10 shows 

the results of applying this to each of the five power law noise spectra. 
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Figure 4.10: Generated noise time series and power spectra. The first plot in each row is of a 

power law noise spectrum. The second and third image are the generated signal and power 

spectrum respectively. The original power spectra shown here have been produced using the 

relationship given by Equation (3.4). In each case, ℎ𝛼 has been arbitrarily set to 5. 
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4.4   Application  

 The methods discussed can be directly applied to a clock signal. The bias shown in Figure 

1.3 is used as an example. Generating a signal from its power spectrum (shown in Figure 3.6) 

produces the following random data: 

 

Figure 4.11: A randomly generated clock signal. 

 It is possible to inject a dark matter signal into the reconstructed phase data. The dark matter 

signal takes the form of the step function shown in Figure 1.2. It is generated by building a list that 

is the same length of the phase data, and then setting all values equal to zero, with the exception 

of a small portion of consecutive terms at any random portion of the list. The amplitude of these 

terms will reflect the amplitude of the bias caused by the dark matter event. It is not entirely known 

how much bias is to be expected. For this example, the value is arbitrarily set to 5 ×

10−11 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. An image of the a reconstructed clock signal with an added TDM event is shown 

in Figure 4.12. 

  

Figure 4.12: The generated clock signal from Figure 4.11 with a TDM event added to it. The 

event has been introduced at the 1000th epoch.  
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Though not obvious at first, the dark matter signal for this example begins at the 1000th epoch. 

Double differencing of the data reduces the clock data into Gaussian white noise. This is plotted 

in Figure 4.13. 

 

Figure 4.13: Double differenced clock bias. The TDM event has been circled in black.  

The standard deviation of the white noise produced is 4.56 × 10−11. Most of the data lies within 

three standard deviations, as predicted for a Gaussian distribution. The event makes its appearance 

as a jump that is nearly seven standard deviations from the mean. For a large enough jumps, then, 

the event can be clearly seen. Despite this, such a jump must be seen in other satellite clocks at 

specific times in order to adequately confirm an event. 

 A question that might arise is whether the signature detected in the double differenced data 

was actually introduced by the injected dark matter signal, or if such a signal was already present. 

Reproducing clock bias that contains a dark matter signal effectively creates a ‘blank slate’ to work 

with. This is illustrated by applying the methods outlined in Section 4.2 to the signal shown in 

Figure 4.12. There is a known event in this signal because it was purposefully placed there. 

Generating a new time series from the power spectrum of this data produces the following random 

signal: 

 

Figure 4.14: A random signal generated from bias that contained a TDM event. 
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 This new signal can be double differenced as before to see if the dark matter signal can still 

be detected. The results are shown in Figure 4.15. 

 

Figure 4.15: Double differenced clock bias of a signal reconstructed from data containing a 

TDM event. 

Once again, the standard deviation of the white noise produced is 4.56 × 10−11. Again, most of 

the data lies within three standard deviations from the mean. The jump seen before at the 1000th 

epoch is no longer present. This demonstrates that producing a new signal with the given methods 

eliminates events of a large enough magnitude.   
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Chapter 5 

Conclusion 

 The numerical results of this research are promising. Producing a power spectrum through 

the periodogram leads to high variance in the estimate. However, an average over an ensemble of 

noise realizations causes the power spectrum to converge to its actual value. Calculating the power 

spectrum from the autocovariance sequence leads to less variance, but it too converges to the same 

value. This sequence does not exist for nonstationary stochastic processes such as random walk. 

This can be remedied by differencing these noise types to produce white noise. In the case of white 

noise, it has been demonstrated that a power spectrum produced from a random signal can also be 

used to generate a new time series. This newly generated data exhibits the same statistical 

properties as the original signal. This is a desirable outcome, as it means these techniques can be 

used to generate atomic clock bias with the appropriate variance. 

 These methods will allow signals to be generated that emulate atomic clock data. A library 

of these signals will be developed for each type of clock on board GPS satellites in orbit. The 

proposed dark matter signal can then be introduced into these lists of random data. If the signal to 

noise ratio is strong enough, then the signal can be recovered. These will effectively form a 

simulation of what to look for during a topological dark matter event. When considering dark 

matter candidates in actual clock data, the simulation can be used to cross compare results. 

There are two key benefits to being able to generate random clock data. The first has to do 

with logistics. It takes time to collect, import, and process clock data. Now, it can simply be 

generated in a fraction of the time. In addition to this, the methods discussed produce new clock 

data sets that are free from existing dark matter signals. This provides a ‘clean slate’ to work with 

when injecting dark matter signals into the data.     
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Appendices 

 

These source codes are available for the GPS.DM         

collaboration in the shared directory: 

https://www.dropbox.com/home/GPS.DM/Students/AlexRollings 

 



Appendix A

Mathematica Code for Gaussian White Noise

Gaussian White Noise Sampled at 
Discrete Time Intervals

Define Parameters

Choose Total duration of time the signal is sampled for (seconds).

T = 1;

Choose Sampling Frequency: Samples per second (Hz). Must be a power of 2 to 
compute.

sf = 2^10;

Sampling Period: Time interval between samples (seconds).

τ0 = 1 / sf;

Total number of data points generated.

npts = T * sf;

Nyquist Frequency (Hz).

nyq = npts / 2;

Choose the Mean value of the data.

mean = 0;

Choose the Standard Deviation of the data.

σ = 7;

A.1

White Noise Spectrum.nb |   1



Generate Gaussian White Noise in Time Domain

Generate Normally Distributed Random Data

xlst = RandomReal[NormalDistribution[mean, σ], npts];

Plot as time series

ListPlot[xlst, PlotRange → All, AxesLabel → {"Sample Number", "X"},
LabelStyle → Directive[Black, 18], ImageSize → Large, PlotStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

200 400 600 800 1000
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A.2

White Noise Spectrum.nb |   2



Show histogram of data

hist = Histogram[xlst, 100, ChartStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18]];

pdf = Plot[(npts / 2) * PDF[NormalDistribution[mean, σ], x],
{x, -Max[xlst], Max[xlst]}, PlotStyle → Directive[Thick, Black]];

Show[{hist, pdf}, ImageSize → Large]

-20 -10 0 10 20
0

10

20

30

40

Analyze Frequency Spectrum

Take Discrete Fourier Transform of data

dft = Fourier[xlst, FourierParameters → {1, -1}];
flst = Abs[dft];

A.3

White Noise Spectrum.nb |   3



Plot the magnitude of the frequency spectrum

ListPlot[flst, PlotRange → All,
AxesLabel → {"Frequency [Hz]", "X"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]
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X

Proof of Parseval’s Theorem

energy1 = Sum[xlst[[n]]^2, {n, 1, npts}];
energy2 = (1 / npts) * Sum[flst[[n]]^2, {n, 1, npts}];
StringForm["Total energy in time domain = ``", energy1]
StringForm["Total energy in frequency domain = ``", energy2]

Total energy in time domain = 48604.77548521312`

Total energy in frequency domain = 48604.77548521318`

Estimate Power Spectral Density (PSD)

psd1 = (τ0 / npts) * flst^2;
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Plot Power Spectrum

ListPlot[psd1, PlotRange → .2,
AxesLabel → {"Frequency [Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]
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Wiener–Khinchin Theorem

Generate auto-correlation function (ACF) by taking the inverse DFT of the PSD 
(the real part of the transform is taken because Mathematica introduces minor 
error in the form of negligibly small imaginary terms)

acf1 = (1 / T) * Re[Fourier[psd1, FourierParameters → {1, 1}]];
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Plot the ACF

ListPlot[acf1, PlotRange → All,
AxesLabel → {"Lag", "r(τ)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]
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Check by computing the ACF directly

acf2 =

Table[(1 / npts) * Sum[(xlst[[n]] - mean) * (xlst[[n + lag]] - mean), {n, 1, npts - lag}],
{lag, 0, npts - 1}];
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Plot the new ACF

ListPlot[acf2, PlotRange → All,
AxesLabel → {"Lag", "r(τ)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]
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Estimate PSD from the DFT of the ACF

psd2 = Re[Fourier[acf2, FourierParameters → {-1, -1}]];

A.7
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Plot the new PSD

ListPlot[psd2, PlotRange → .2,
AxesLabel → {"Frequency [Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]
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S(f)

Check that each spectra converges to the same value

StringForm["Mean of first PSD = ``", Mean[psd1]]
StringForm["Mean of second PSD = ``", Mean[psd2]]

StringForm"σ2τ0 = ``", σ2 τ0 // N

Mean of first PSD = 0.046353126034939934`

Mean of second PSD = 0.04635312603493989`

σ2τ0 = 0.0478515625`

Generate New Signal From the Existing Power Spectrum

Produce a random time series of the same length as number of frequency bins (the 
data can have any statistical properties)

rdata = RandomReal[{-1, 1}, Length[psd1]];

A.8
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Take DFT of the new random data

fdata = Fourier[rdata, FourierParameters → {1, -1}];

Divide the transformed data by its conjugate to produce random phase data

conj = Conjugate[fdata];
phase = fdata / conj;

Take square root of PSD to get the amplitude spectrum

amplitude = Sqrt[psd1];

Multiply the amplitude spectrum by the random phase data to produce a new 
frequency spectrum

newfreq = amplitude * phase;

Take inverse DFT to reproduce a new time series (take real part to eliminate 
imaginary terms introduced through roundoff errors)

newdata = Re[Fourier[newfreq, FourierParameters → {1, 1}]];

Plot new data

ListPlot[newdata, PlotRange → All, AxesLabel → {"Sample Number", "X"},
LabelStyle → Directive[Black, 18], ImageSize → Large, PlotStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

200 400 600 800 1000
Sample Number

-20

-10

10

20

X

A.9
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Check that the statistical properties of the reconstructed data match the original 
data

StringForm["Mean of original data = ``", Mean[xlst]]
StringForm["Mean of reconstructed data = ``", Mean[newdata]]
StringForm["σ of original data = ``", StandardDeviation[xlst]]
StringForm["σ of reconstructed data = ``", StandardDeviation[newdata]]

Mean of original data = -0.333742

Mean of reconstructed data = 0.333742118537928`

σ of original data = 6.884802598152638`

σ of reconstructed data = 6.884802598152637`

Check that new PSD equals the original PSD

newpsd = (τ0 / npts) * Abs[Fourier[newdata, FourierParameters → {1, -1}]]^2;
StringForm["Mean of original PSD = ``", Mean[psd1]]
StringForm["Mean of new PSD = ``", Mean[newpsd]]

Mean of original PSD = 0.046353126034939934`

Mean of new PSD = 0.04635312603493991`

A.10
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Plot the new PSD

p1 = ListPlot[newpsd, PlotRange → .2,
AxesLabel → {"Frequency [Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]
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Appendix B

Mathematica Code for Reconstructing Power Law Noise

Reconstruct a Time Series from a 
Given Power Law PSD

Generate the Power Spectrum
In[93]:= Clear["Global`*"]

Create a list of distinct frequencies that will go up to the Nyquist frequency (in 
Hz). 

In[94]:= nyq = 512;
freq = Range[1, nyq];

Raise the frequencies to a power, α, in accordance with the noise type.

In[96]:= freqExp = freq^α;

Choose an initial amplitude h0 for the power spectrum.

In[97]:= h0 = 5;

Generate the power spectrum.

In[98]:= psd1 = h0 * freqExp;

Take square root of power spectrum to get the amplitude spectrum.

In[99]:= sqrtpsd = Sqrt[psd1];

Create Random Frequency Data

Generate a list of random data in the time domain that is twice as long as the 
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power spectrum.

In[100]:= xlst = RandomReal[{-1, 1}, 2 * nyq];

Take the DFT of the random data.

In[101]:= flst = Fourier[xlst, FourierParameters → {1, -1}];

Divide the frequency spectrum by its conjugate to get random phase data.

In[102]:= conj = Conjugate[flst];
phase = flst / conj;

The frequency spectrum is symmetric about the Nyquist frequency. Divide the list 
into the two halves. Note: the first frequency component and the Nyquist 
frequency only show up once.

In[104]:= leftSide = phase[[1 ;; nyq]];
rightSide = phase[[nyq + 1 ;;]];

Generate the Time Series

The left hand side should be proportional to the amplitude spectrum. The right 
hand side will be proportional to the mirror of the amplitude spectrum.

In[106]:= leftFreq = leftSide * sqrtpsd;
rightFreq = rightSide * Reverse[sqrtpsd];

Re-join both halves to get the new frequency spectrum.

In[108]:= totalFreq = Join[leftFreq, rightFreq];
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Inverse DFT to get the new time series (take real part to eliminate imaginary 
terms introduced through roundoff error).

In[109]:= newData = Re[Fourier[totalFreq, FourierParameters → {1, 1}]];

Fourier::fftl : Argument 2.23607 + 0. ⅈ, (1.59838 + 1.56371 ⅈ) 2α , (1.17277 + 1.90384 ⅈ) 3α , (0.5274

+ 2.17298 ⅈ) 4α , (-0.295376 + 0.955381 ⅈ) 51+α , (1.91712 - 1.15093 ⅈ) 6α , (1.90532

+ 1.17036 ⅈ) 7α , 37, (-0.612171 - 0.790726 ⅈ) 51+α 9α , (-1.99495 + 1.01004 ⅈ) 46α , (0.608733

+ 2.15161 ⅈ) 47α , (2.23606 + 0.00448652 ⅈ) 48α , (2.16574

- 0.556392 ⅈ) 49α , (-0.545005 - 0.838433 ⅈ) 2α 51+2α , 974 

is not a non-empty list or rectangular array of numeric quantities. 

Check that the power spectrum of the new data is equal to the original power 
spectrum.

In[110]:= psd2 = Abs[Fourier[newData, FourierParameters → {-1, -1}]]^2;

Fourier::fftl : Argument ReFourier2.23607 + 0. ⅈ, (1.59838 + 1.56371 ⅈ) 2α , (1.17277 + 1.90384 ⅈ) 3α , (0.5274

+ 2.17298 ⅈ) 4α , (-0.295376 + 0.955381 ⅈ) 51+α , (1.91712 - 1.15093 ⅈ) 6α , (1.90532

+ 1.17036 ⅈ) 7α , 37, (-0.612171 - 0.790726 ⅈ) 5Plus[2] 9α , (-1.99495 + 1.01004 ⅈ) 46α , (0.608733

+ 2.15161 ⅈ) 47α , (2.23606 + 0.00448652 ⅈ) 48α , (2.16574

- 0.556392 ⅈ) 49α , (-0.545005 - 0.838433 ⅈ) 2α 5Plus[2] , 974, FourierParameters → 1 

is not a non-empty list or rectangular

array

of

numeric

quantities.


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Plot the Results

Run the code for the frequency powers from -2 to 2.

In[111]:= For[α = -2, α ≤ 2, α++,
p1 = ListLinePlot[psd1, PlotRange → All,

AxesLabel → {"[Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
PlotStyle → Red, AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Original PSD, α =``", α], 18],
Filling → Axis, FillingStyle → Red];

p2 = ListLinePlot[newData, PlotRange → All, AxesLabel → {"Time", "X"},
LabelStyle → Directive[Black, 18], PlotStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Reconstructed Time Series, α =``", α], 18]];

p3 = ListLinePlot[psd2[[1 ;; nyq]], PlotRange → All,
AxesLabel → {"[Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
PlotStyle → Red, AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Reconstructed PSD, α =``", α], 18],
Filling → Axis, FillingStyle → Red];

p4 = ListLogLogPlot[psd2[[1 ;; nyq]], PlotRange → All,
AxesLabel → {"Log[Hz]", "Log[S(f)]"}, LabelStyle → Directive[Black, 18],
PlotStyle → Red, AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Log-Log Plot, α =``", α], 18]];

Print[GraphicsRow[{p1, p2}, ImageSize → Full],
GraphicsRow[{p3, p4}, ImageSize → Full]]]
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