

Generation of Noisy Atomic Clock Data for

GPS.DM Dark Matter Observatory Simulator

by

Alex Rollings

Thesis Advisor: Dr. Andrei Derevianko

A senior thesis submitted in fulfillment of the

requirements for the Bachelor of Science degree in

Physics

University of Nevada, Reno

May, 2016

Rollings i

Abstract

Evidence shows that approximately 27% of the mass-energy budget of the universe is

composed of dark matter1. Despite its prevalence, and the evidence supporting its existence, it has

never been directly observed. However, the theoretical groundwork for dark matter in the form of

a topological defect in space is believed to cause a “transient-in-time change in fundamental

constants2”. Variation of fundamental constants would affect the atomic transition frequency of an

atomic clock. Such a change might be detectable by cross comparing the phase data between

atomic clocks on board GPS satellites. This data however, contains fluctuations in the form of

noise. Thus, to confidently identify a dark matter signal, one must be sure that it can be detected

among the inherent noise. The objective of this research is to characterize and reproduce the types

of noise observed in atomic clocks. The two main types of quantum oscillators under consideration

are that of Cesium and Rubidium. The types of noise prevalent in these oscillators are: White PM,

Flicker PM, White FM, Flicker FM, and Random Walk FM (PM and FM stand for phase and

frequency modulations). Each type of noise follows a frequency power law, as given by the Allan

variance, and can be characterized by their respective power spectral densities. These spectra are

used to generate random phase data that fits each type of noise with Mathematica software. This

data can be used to build a simulation of dark matter events that can be referenced when

considering candidate signals in real clock data.

Rollings ii

Acknowledgments

 I would like to express my gratitude towards Dr. Andrei Derevianko for welcoming me

onto his research team. He has devoted a great deal of time to ensure that I was successful in

completing this project. I would also like to acknowledge Dr. Ben Roberts and Dr. Geoff Blewitt

for meeting with me personally to help me better understand key points of the research. I would

finally like to thank the Nevada Space Grant Consortium and the National Science Foundation.

The funding I have received from the Nevada Space Grant has allowed me to dedicate the time

and resources I need to focusing on this research, and has also given me the opportunity to travel

to present my work at conferences.

 iii

Contents

1 Introduction 1

 1.1 Overview . 1

 1.2 Dark Matter . 3

 1.3 Atomic Clocks . 3

 1.3.1 Basic Principles of a Clock . 4

 1.3.2 The Quantum Oscillator . 5

 1.4 Types of Signals . 6

 1.5 Statistical Development . 6

 1.5.1 Expectation Value . 6

 1.5.2 Variance . 7

 1.5.3 Correlation and Covariance . 8

 1.5.4 Stationarity and Ergodicity . 9

2 Spectral Analysis 10

 2.1 Fourier Transforms . 11

 2.2 Energy of a Signal . 13

 2.3 The Power Spectrum . 15

 2.3.1 Wiener–Khinchin Theorem . 15

3 Noise Characterization 17

 3.1 Frequency Stability . 17

 3.2 Noise Power Laws . 18

 3.3 Generating a New Time Series from the Given PSD 20

4 Implementation in Mathematica 22

 4.1 Generating a Random Signal . 22

 4.2 Generating Noise from a Power Spectrum . 27

 4.3 Generating a Time Series for Arbitrary Power Law Noise 29

 4.4 Application. 31

5 Conclusion 34

Bibliography 35

Appendices 37

 A Mathematica Code for Gaussian White Noise A.1

 B Mathematica Code for Reconstructing Power Law Noise B.1

 iv

List of Figures

1.1 A wall of dark matter passing through Earth . 1
1.2 The signature bias between a single ground station clock and a GPS satellite affected by

 topological dark matter . 2
1.3 Atomic Clock Bias from December 30, 2001 . 2

1.4 A sine wave . 4

1.5 Two histograms outlining the differences in how data is distributed 7

1.6 A Gaussian distribution function . 8

2.1 An application of the Fourier transform . 10

2.2 Example signals associated with each Fourier transform 11

2.3 The result of performing the inverse DFT on the DFT of a time series 13

2.4 Example of variance in the periodogram . 15

3.1 The power spectrum, time series, and histogram of random walk FM noise 18

3.2 The power spectrum, time series, and histogram of flicker FM noise 18

3.3 The power spectrum, time series, and histogram of white FM noise 18

3.4 The power spectrum, time series, and histogram of flicker PM noise 19

3.5 The power spectrum, time series, and histogram of white PM noise 19

3.6 The power spectrum of the clock bias shown in Figure 1.3 20

4.1 A signal composed primarily of Gaussian white noise 22

4.2 A histogram of the generated white noise . 23

4.3 The frequency spectrum of the generated white noise . 24

4.4 The power spectrum of the generated white noise . 25

4.5 Power spectrum convergence over an ensemble . 25

4.6 Autocovariance sequence of the generated white noise 26

4.7 Power spectrum calculated from the autocovariance sequence 27

4.8 A new time series reconstructed from the power spectrum 28

4.9 The power spectrum of the reconstructed signal . 28

4.10 Generated noise time series and power spectra . 30

Rollings v

4.11 A randomly generated clock signal . 31

4.12 The generated clock signal from Figure 4.11 with a TDM event added to it 31

4.13 Double differenced clock bias . 32

4.14 A random signal generated from bias that contained a TDM event 32

4.15 Double differenced clock bias of a signal reconstructed from data containing a TDM

 event . 33

 1

Chapter 1

Introduction

1.1 Overview

Atomic clocks are instruments used to count a specific number of oscillations and convert

that value into time. The problem with this principle is that counting is really all the clocks do.

Time is calculated by multiplying some counted number of oscillations with the known period of

oscillation. And so if the period is off, or fluctuating, so too will the time the clocks give be

inaccurate. For this reason, data from atomic clocks on board Global Positioning System (GPS)

satellites are compared with ground station clocks on Earth. Any discrepancy between the two is

attributed to noise in the clock on board the satellite. These differences are what is referred to as

the clock’s bias, meaning error from actual value. There is the possibility that there can be more

than noise affecting the clock bias. In a paper published by Derevianko and Pospelov, a theory is

proposed in which dark matter in the form of a topological defects will cause a “transient-in-time

change in fundamental constants2”. Part of this effect is a change in the electron emission period

of atoms within atomic clocks. A change in this frequency would be detectable in the form of a

distinct clock bias. As a wall of dark matter passes through a satellite, the clock on board becomes

desynchronized with the reference clock on Earth. Some period of time later, the wall of dark

matter will pass through the ground station clock, and the times will once again be synchronized.

Figure 1.1 illustrates the motion of the wall.

Figure 1.1: A wall of dark matter passing through Earth. Here, the simplest case of a thin walled

event is assumed. It can be seen that a sufficiently large event will first pass through satellites

before reaching the Earth.

Rollings 2

The duration of time that the bias exists between the satellite clock and the reference clock is equal

to the time it takes the event to travel the distance separating the two clocks. The average velocity

of Earth through the dark matter halo is taken to be 300 km/s. At this velocity, there should be a

significant jump in clock bias that lasts for up to 150 seconds2. This signature will take the form

of Figure 1.2.

Figure 1.2: The signature bias between a single ground station clock and a GPS satellite

affected by topological dark matter.

It seems reasonable that such a distinct event should be easy to detect. But this is assuming

that the bias at all other times outside an event are equal to zero. Unfortunately, this will never be

the case. The data is often riddled with too many fluctuations in the form of noise. An example of

real clock bias is graphed in Figure 1.3.

Figure 1.3: Atomic Clock Bias from December 30, 2001. This type of data is made readily

available by the Jet Propulsion Laboratories (JPL).

The satellite data in Figure 1.3 comes from Space Vehicle Number (SVN) 22. The type of clock

on this satellite for this date is Cesium. The data is sampled every 30 seconds. This corresponds to

the duration of time between each GPS epoch. This means that the proposed dark matter signature

Rollings 3

(lasting for 150 seconds), would only be present for 5 of the 2880 data points plotted above.

Furthermore, this image also reveals the prevalence of noise in the clock bias. This leaves the

following question: Can the dark matter signature be distinguished from the noise? That question

is the motivation for this thesis. In order to confidently extract such a signature, one must place

bounds on the types of noise seen in Figure 1.3. This can be accomplished through spectral analysis

of generic noise types. If successfully applied to the generic noise types, the methods developed

can then be used to extract a dark matter signature from generated clock data. Thus a library of

event models can be built, and any dark matter candidates discovered in real clock data can be

compared to the existing simulation.

1.2 Dark Matter

Observations made by the Hubble Space Telescope have shown that the universe is

expanding at an accelerated rate. The cause of this is generally attributed to dark energy whose

source is unknown. This energy is believed to comprise roughly 68% of the universe’s total mass-

energy budget. Another 5% goes to all of the ordinary matter astronomers can account for, such as

planets, stars, and nebulae. Astronomical observations indicate that the remaining 27% of the

known universe is made up of matter which has not yet been detected1.The most well-known

observational evidence for dark matter comes from galactic rotation curves. Kepler’s third law

formulates the relationship between the orbital speed of a mass relative to its radial distance from

the object it encircles. Gravity is the force that acts as a tether between the two objects, and its

strength is diminished with distance. As a result, the circular speed of the orbiting mass decreases

with distance as well. This principal can be applied to the motion of stars orbiting about the center

of galaxies. Because galaxies are denser toward their centers, it is expected that the orbital speed

of masses within the galaxy should be inversely proportional to their distance from the galactic

center. However, it is often found that this is not the case. In fact, orbital speed has even been seen

to increase with radial distance. The discrepancy is believed to be caused by the gravitational pull

of the aforementioned 27% of undetected matter. Because it does not emit radiation in any range

of the electromagnetic spectrum, it has been aptly named dark matter3.

 A recent theory has been proposed in which dark matter is not a particle (which has been

the common view), but rather a collection of topological defects in space. The fundamental

constants belonging to regular matter passing through this defect will temporarily shift as a result

of interaction. The frequency of light emitted through electron transitions is sensitive to this type

of change. This is why atomic clocks on board GPS satellites would form a 50,000 km aperture

for detecting topological dark matter2. There are, on average, 24 GPS satellites in operation at any

given time4.

1.3 Atomic Clocks

Atomic clocks are like other time keeping devices, in that they count some number of

oscillations to tell time. They are special; however, because they can tell time with greater

Rollings 4

precision and accuracy than any type of instrument ever built. An often quoted statement is that it

would take over a million years for the time held by a modern Cesium clock to drift by one second5.

To understand the fundamental principles of clocks, atomic or not, one must first understand how

to measure time.

1.3.1 Basic Principles of a Clock

Time is a quantity defined by people. It is relative. The universe does not know what time

it is, people do. The notion of the second has changed over time, but has always been measured by

counting periodic cycles. A physical system that undergoes periodic cycles is often called an

oscillator. A pendulum is an example of an oscillator. It begins in one state and retraces a given

path only to return to that initial state. Consider a basic periodic function such as the one shown in

Figure 1.4. It is a sine wave, and takes the following form:

 𝑌(𝑡) = 𝑌0 ∙ sin[2𝜋𝜈0𝑡] . (1.1)

Here, Y0 is the amplitude of the signal. It corresponds to the maximum height of the sine wave.

The duration of time that the wave is analyzed is measured in t seconds. The distance that the wave

travels before repeating is denoted by the wavelength λ. Finally, the wave propagates with a

frequency of ν0, which has units 1/s. The entire argument of the sine function gives the phase,

which is how far into a given cycle the signal is. In the corresponding figure below, Y0 and ν0 have

both been assigned a value of 1.

Figure 1.4: A sine wave.

The physical interpretation of frequency defines how many full cycles, or revolutions, a

periodic function can complete in one second. Conversely, the time it takes the function to

complete one full cycle is simply the inverse of the frequency. This is known as the period of

oscillation, T, and is written as

Rollings 5

𝑇 =

1

𝜈0
 . (1.2)

The periodic functions in question take the form of sines and cosines. Since both of these

functions complete one full cycle in 2π radians, it is useful then to express their frequencies in

terms of radians. This is known as the angular frequency, and it is defined as

𝜔0 = 2𝜋𝜈0 =

2𝜋

𝑇
 , (1.3)

which has units of radians/second. Counting the time elapsed then becomes trivial. All one has to

do is count the number of completed cycles, and either multiply this number by the oscillation

period, or divide by the known frequency:

𝑇𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 ∙ 𝑇 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

𝜈0
 . (1.4)

1.3.2 The Quantum Oscillator

Electrons that are bound to atoms can only exist in discrete energy levels. Each level has

the potential to split into further divisions in the presence of a magnetic field. This is known as the

Zeeman effect, and it results in the hyperfine structure of the atom due interaction between the

electron spin and the nuclear spin. When an electron transitions from a higher energy state to a

lower one, it emits a photon. The frequency of the electromagnetic wave emitted corresponds

directly to the energy difference between the two levels. Likewise, an electron can absorb a photon

of the same frequency, allowing it to transition to a higher energy state6. This principle forms the

foundation of how an atomic clock works.

Each clock contains atoms with a well-defined transition frequency between a given energy

level. The most common type is Cesium. It has a 4.14 × 10−5 𝑒𝑉 energy gap between two

hyperfine ground states. The frequency of light associated with this transition is 9,192,631,770

Hz7. The remarkable thing is that this number is the same for all Cesium atoms. It is so precise,

that the SI unit of the second is defined as 9,192,631,770 periods of radiation corresponding to this

transition8. There are methods by which a clock can operate. In a particular example, atoms within

an atomic clock are driven by a microwave source whose frequency is fine-tuned by a feedback

mechanism within the clock. The frequency of the microwaves is matched to the transition

frequency described above. The atoms travel down a chamber where they are deflected by a

magnetic field. Within the magnetic field, atoms in a higher energy state will deviate from their

path more so than atoms in the ground state. A detector is placed in way of the excited atom’s path.

This detector is what provides the feedback to the microwave source. The goal is to maximize the

number of excited atoms reaching the detector by changing the frequency of the microwave source

accordingly. The phase of the source is sampled and compared with ground station clocks on Earth.

Rollings 6

A brief fluctuation in the optimal transition frequency, and thus, the phase of the oscillator, will

result in a clock bias that resembles the one portrayed in Figure 1.2.

1.4 Types of Signals

The output of an atomic clock is transmitted back to Earth via a carrier signal. Thus, it

becomes important to delineate between two main types of signals. They are classified as being

either discrete or continuous. A continuous signal is one that is defined over all points in time.

When plotted as a function of time, there are no breaks in the data. A discrete signal is the result

of sampling a continuous process at different times. If the sampling interval is constant, then the

plotted data will be evenly spaced by the time period between measurements. In this paper, the

interval of time between samples is denoted by 𝜏0. The importance of each classification will

become more apparent, as later mathematical development will depend on which case is examined.

See Figure 2.2 for an example of each type of signal.

Whether discrete or continuous, signals can also be described as stochastic or deterministic.

A deterministic signal is one whose future value can be determined based off of current trends. An

example of this is the sine wave described by Equation (1.1). The value of this wave can be readily

calculated at any point in time. In opposition to this are signals that are stochastic. These types

encompass data sets composed of random values. An example of a stochastic process would be

the noise produced in an atomic clock’s signal. It would not be possible to guess the exact value

of the noise at a given future time. The best that can be done in this situation is to estimate the

value by examining the statistical properties of the noise.

1.5 Statistical Development

 In order to ascertain the properties of the noise introduced into a signal, it will be necessary

to develop some of the statistics used to characterize a given set of data. The terms listed below

can be used to describe both continuous and discrete systems. However, the data analyzed in this

research is discrete, and so only the discrete mathematical formulations have been given.

1.5.1 Expectation Value

The expectation value of a given function is the weighted probabilistic average of a

function. This term does not necessarily imply that it is the most probable value. In general, the

expected value of a discrete function 𝑓(𝑥) is given by:

 𝐸{𝑓(𝑥)} = ∑ 𝑓(𝑥) ∙ 𝑃(𝑥)

𝑥

, (1.5)

where 𝑃(𝑥) is the probability distribution. In the limit as 𝑥 → ∞, the expectation value approaches

the mean of the data9. Specifically, the arithmetic mean refers to a number that can replace all

Rollings 7

values in a list without changing the sum of the list. For a list that is N terms long and has the

values X = {x1, x2 … xn}, the mean can be found the following way:

𝑋̅ =
1

𝑁
∑ 𝑥𝑛 .

𝑁

𝑛

 (1.6)

1.5.2 Variance

Though useful in their own regards, the mean, median, and most probable value are not

sufficient for complete statistical interpretation of a given set of data. For example, two different

sets of data might share the same mean, median, and most probable value; however, the data might

be distributed differently across a range of values, as is the case in Figure 1.5.

Figure 1.5: Two histograms outlining the differences in how data is distributed. The mean,

median, and most probable value are the same for both distributions. Despite this, the plots are

not identical.

The histograms above reveals that the “spread” of the data is yet another measurable quantity. One

might think that this can be estimated by taking the average distance from the mean value.

However, due to cancelation of negative and positive terms, this will ultimately lead to zero.

Instead, the square of each distance from the mean is calculated and the average of these values is

used. This is known as the variance. For the set X = {x1, x2 … xn} the variance can be expressed

mathematically as

𝜎2 =
1

𝑁
∑(𝑥𝑛 − 𝑋̅)2 .

𝑁

𝑛=1

 (1.7)

Rollings 8

Once again, N is the length of the data set and 𝑋̅ is

the mean of the set. Variance is a fundamental

statistical measurement, and it plays a large role in

noise analysis. The reason it is defined as σ2 is

because it is often written in terms of standard

deviation, which is defined as:

 𝜎 = √𝜎2 . (1.8)

A set of data whose points are more likely to be

found close to the mean rather than farther are said

to be normally distributed. A subsequent

histogram of such a data set will be bell shaped, or

Gaussian (Figure 1.6).

1.5.3 Covariance and Correlation

It is also useful to investigate how dependent two or more variables are on each other. To

get a sense of this, one can define the covariance between sets of data. It shows how much one

variable changes with another, if at all, and can be used to make predictions about trends in data.

For two sets of discrete data X = {x1, x2 … xn} and Y = {y1, y2 … yn}, both of length N, the covariance

function can be approximated by the sample covariance given by10:

𝑐𝑜𝑣𝑋𝑌 ≈ 𝑟𝑋𝑌 =
1

𝑁
∑(𝑥𝑛 − 𝑋̅)(𝑦𝑛 − 𝑌̅) .

𝑁

𝑛=1

 (1.9)

The same analysis can be done on a given set of data with itself. This can be used to see if data

entries in a list depend on previous values in the same sequence. This is referred to as the

autocovariance of the data, and is once again approximated by10:

𝑐𝑜𝑣𝑋𝑋 ≈ 𝑟(𝜏) =
1

𝑁
∑(𝑥𝑛 − 𝑋̅)(𝑥𝑛+𝜏 − 𝑋̅) .

𝑁

𝑛=1

 (1.10)

The iterator 𝜏 in the formula above represents the lag, or spacing, between each data point. 𝜏 can

be expressed as sample 𝑛 multiplied with the time interval between samples, 𝜏0, so that 𝜏 = 𝑛𝜏0.

It is possible to have a lag of 0 between points. This means that each point’s distance from the

mean is squared and the average of these values is taken. In other words, the autocovariance at lag

0 reduces to the variance of the data:

Rollings 9

 𝑟(0) = 𝜎𝑋
2. (1.11)

Given that it measures the dependence of values in a set of data, the autocovariance can also be

thought of as the signal’s “memory”. For white noise, each value is independent of the previous

entry in the set. Thus, the autocovariance at any lag time other than 0 is zero. This is expressed as:

 𝑟(𝜏) = 𝜎𝑋
2 ∙ 𝛿𝑡𝑡′ . (1.12)

Here, 𝛿𝑡𝑡′ is the Kronecker delta function. It is equal to 1 for time 𝑡 equal to time 𝑡′ (zero lag), and

is equal to 0 for all times 𝑡 not equal to time 𝑡′. If there are N data points, then there exists N-1

lags between all the points. Therefore, 𝜏 is indexed from 0 to N-1. The calculated coefficient

associated with each covariance can be a large or small number depending on the data. Some data

sets may have larger coefficients, yet be less correlated than others. It is; therefore, more practical

to normalize the covariance by dividing out the standard deviation of each set of data. When this

is done for two different variables, the result is known as the cross-correlation, or simply

correlation. And when the data is correlated with itself, it is called auto-correlation10:

𝑐𝑜𝑟𝑟𝑋𝑋 ≈ 𝑅(𝜏) =
𝑟(𝜏)

𝜎𝑋
2 =

1

𝑁𝜎𝑋
2 ∑(𝑥𝑛 − 𝑋̅)(𝑥𝑛+𝜏 − 𝑋̅) .

𝑁

𝑛=1

 (1.13)

1.5.4 Stationarity and Ergodicity

 The statistical definitions given above can be used to describe any finite set of discrete

data. When the mean, variance, and correlation functions of a given list do not change in time, then

the process is said to be stationary. It can also be the case that the statistical properties of a single

set of data will closely resemble the same properties of an average over an ensemble of realizations

produced by the same process. In this case, the process is also ergodic.

Rollings 10

Chapter 2

Spectral Analysis

Examination of the time domain can be useful for obtaining certain information about a

signal. For instance, it might be apparent that the signal has a particular waveform. However, this

type of analysis might not be straightforward for a mixture of signals, or for a signal affected by

noise. For these, it is more useful to examine the frequency spectrum of the signal. A very powerful

tool in mathematics is the ability to decompose any signal’s waveform into a sum of sine and

cosine functions. This is accomplished through the Fourier Transform. The Fourier Transform

takes data from the time domain and maps it to the frequency domain, thereby specifying how

much of a given frequency the signal is composed of. An example of its application is illustrated

in Figure 2.1.

Figure 2.1: An application of the Fourier transform. (a) A 20 Hz sine wave. (b) the Fourier

transform of the sine wave. 20 Hz is the only frequency present. (c) The same 20 Hz signal, but

with added Gaussian white noise. (d) The Fourier transform of the noisy signal. Note that the 20

Hz sine wave still dominates the frequency spectrum.

Rollings 11

2.1 Fourier Transforms

 There are several ways to define the Fourier Transform that each correspond to the type of

signal being analyzed. Unfortunately, sines and cosines extend from -∞ to +∞, and so using them

to describe a finite signal requires one of two conditions. The signal itself can be said to extend to

plus and minus infinity with all non-measured values set equal to zero, making it aperiodic. Or,

the signal can span the same range and be imagined to repeat itself, thus becoming periodic.

Furthermore, both cases can be applied to continuous and discrete data sets, making for a total of

four types of transforms11. An example of each has been outlined below in Figure 2.2.

Figure 2.2: Example signals associated with each Fourier transform11.

Conversely, each transform has the ability to change frequency data back into the time

domain. This is done using the Inverse Fourier Transform. The formulas corresponding to the

transforms outlined above and their inverses are expressed mathematically as follows:

Rollings 12

Fourier Transform (FT):

𝑋(𝜔) = ∫ 𝑥(𝑡) ∙ 𝑒−𝑖𝜔𝑡 ∙ 𝑑𝑡

∞

−∞

 ↔ 𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔) ∙ 𝑒𝑖𝜔𝑡 ∙ 𝑑𝜔

∞

−∞

 (2.1)

Fourier Series (FS):

𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)

𝑇

0

∙ 𝑒−𝑖𝑘𝜔0𝑡 ∙ 𝑑𝑡 ↔ 𝑥(𝑡) = ∑ 𝑎𝑘

∞

𝑘=−∞

∙ 𝑒𝑖𝑘𝜔0𝑡 (2.2)

Discrete Time Fourier Transform (DTFT):

𝑋(𝑘) = ∑ 𝑥(𝑛)

∞

𝑛=−∞

∙ 𝑒−𝑖𝑘𝑡 ↔ 𝑥(𝑡) =
1

𝑁
∑ 𝑋(𝑘) ∙ 𝑒𝑖𝑘𝑡

𝑘

 (2.3)

If the DTFT is sampled over a finite time interval, T, then it can be imagined that the

sampled segment is repeated from -∞ to +∞. Since it is now periodic over the sampling period 𝑇,

then 𝑥(𝑡) = 𝑥(𝑡 + 𝑇). This limits the frequency 𝜔 to being integer multiples of 𝜔0, or, using the

definition for the fundamental frequency given by Equation (1.3): 𝜔𝑘 → 𝑘𝜔0 = 𝑘2𝜋/𝑇. Also, the

period of measurement is given by the number of points multiplied by the interval of time between

them, 𝑇 → 𝑁𝜏0. Furthermore, the time that has elapsed, 𝑡, now becomes the time that has elapsed

to reach the 𝑛𝑡ℎ point under consideration : 𝑡𝑛 → 𝑛𝜏0. Putting all of the pieces together yields the

Discrete Fourier Transform12.

Discrete Fourier Transform (DFT):

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 ↔ 𝑥(𝑛) =
1

𝑁
∑ 𝑎𝑘 ∙ 𝑒𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑘=0

 (2.4)

The number of frequency bins, k, is equal to the number of samples being processed, N. A

typical DTFT frequency spectrum will range from zero to half of the frequency with which the

data was sampled. After this point, aliasing occurs. Aliasing is the allocation of a signal’s strength

to frequencies that it isn’t actually composed of. Visually, this has the effect of reflecting the

frequency spectrum about its midpoint. The cutoff frequency after which aliasing occurs is known

as the Nyquist frequency. This can be applied to the DFT as well. If the signal is real, then 𝑋(−𝑘) =

𝑋(𝑘)∗. This means that all of the N data points become spread out between – N/2 and N/2, and

they are mirrored about zero. This implies that the complete frequency spectrum can be described

by frequencies ranging from 0 to N/2. Thus, the Nyquist frequency of the DFT is defined as N/2.

Even with the examples outlined in Figure 2.2, it can still be unclear which transform to

use for a finite set of data. One would be tempted to use the DTFT, given that it is meant for a non-

Rollings 13

periodic signal, and a random set of data may or may not be periodic. However, the frequency

spectrum of the DTFT is continuous, and the transform is defined for the range -∞ to +∞. It is

unlikely that an infinite set of data will be under consideration. On the other hand, the DFT is

defined over a finite range, meaning a finite set of data. It is worth noting that the literature on the

subject usually uses the DTFT in theory and proofs. This is more correct for theory, as the DFT

yields the frequency spectrum of the “imagined” periodic signal, sampled over a finite interval.

Assuming that the function is periodic; however, is often disregarded in lieu of computational

processing. The reason for this is that computing the inverse DFT will result in recovering the

original signal back (Figure 2.3), and so assuming periodicity has little consequence.

Figure 2.3: The result of performing the inverse DFT on the DFT of a time series. (a)

Untransformed time series data. (b) The DFT of the time series. (c) The inverse DFT of the DFT.

The original time series is recovered.

2.2 Energy of a Signal

The total energy of a discrete signal is conventionally defined as12

𝐸𝑥 = ∑|𝑥(𝑛)|2

𝑁

𝑛=1

 , (2.5)

where x(n) is the nth value in the time domain. Parseval's theorem states that the energy of a

waveform is the same whether measuring it from the time domain or the frequency domain13. For

discrete signals, the proof is as follows: Suppose there is a list with N values of x(n), and that X(k)

is related to x(n) via a Discrete Fourier Transform (Equation 2.4):

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖2𝜋𝑛𝑘/𝑁

𝑁

𝑛=1

 ,

where n and k are, once again, the current sample number and frequency under consideration.

Squaring the left side and multiplying the right by its complex conjugate yields

Rollings 14

|𝑋(𝑘)|2 = ∑ 𝑥(𝑛)

𝑁

𝑛=1

∑ 𝑥∗(𝑛′)𝑒𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑛′=1

. (2.6)

Summing both sides gives the total energy of the signal

∑|𝑋(𝑘)|2

𝑁

𝑘=1

= ∑ ∑ 𝑥(𝑛)

𝑁

𝑛=1

∑ 𝑥∗(𝑛′)𝑒
𝑖2𝜋(𝑛−𝑛′)𝑘

𝑁

𝑁

𝑛′=1

𝑁

𝑘=1

 (2.7)

 = ∑ 𝑥(𝑛)

𝑁

𝑛=1

∑ 𝑥∗(𝑛′) ∑ 𝑒𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑘=1

𝑁

𝑛′=1

 . (2.8)

The final sum in this expression is a geometric series, which can be calculated as

∑ 𝑒−𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑘=1

=
𝑒𝑖2𝜋(𝑛−𝑛′) − 1

𝑒𝑖2𝜋(𝑛−𝑛′)/𝑁 − 1
 . (2.9)

The right hand side is evaluated as 0 when n ≠ n' and is N when n = n'. Therefore

∑ 𝑒−𝑖2𝜋(𝑛−𝑛′)𝑘/𝑁

𝑁

𝑘=1

= 𝑁𝛿𝑛𝑛′ . (2.10)

Consequently

𝐸𝑥 =
1

𝑁
∑|𝑋(𝑘)|2

𝑁

𝑘=1

= ∑|𝑥(𝑛)|2

𝑁

𝑛=1

 . (2.11)

The summation in this case is performed over a finite range of data. Doing this for an infinite-

length signal would theoretically result in infinite energy. Given that the total energy is represented

by the average of each frequency component squared, the energy density, or energy per frequency,

is expressed as:

 𝐸𝑆𝐷 = |𝑋(𝑘)|2. (2.12)

Note that the signal’s energy might not be described in the physical sense of the term. Depending

on what is actually being measured, the units of energy may not work out to be entirely what one

would expect. To get the units to work out then, the Fourier transform can be scaled by the time

step, Δt, that separates each data point. Recall that for an evenly sampled signal, the duration of

time between the points is 𝜏0. This rescales the energy spectrum to:

Rollings 15

 𝐸𝑆𝐷 = 𝜏0
2 ∙ |𝑋(𝑘)|2. (2.13)

2.3 The Power Spectrum

Power is defined as the energy per unit of time. The duration of time the signal encompasses is,

again, the number of data samples multiplied by the time between each point, 𝑇 = 𝑁 ∙ 𝜏0. Dividing

this into the energy spectrum yields the power spectral density (PSD)12:

 𝑃𝑆𝐷 = 𝑆(𝑘) =
𝜏0

𝑁
∙ |𝑋(𝑘)|2. (2.14)

This manner of power spectral estimation is referred to as the periodogram. A drawback of using

this method is that the power spectrum does not converge to its true value regardless of how many

samples it is computed over. An example of this is illustrated in Figure 2.4.

Figure 2.4: Example of variance in the periodogram. (a) Power spectrum for 1000 samples.

(b) Power spectrum for 2000 samples. (c) Power spectrum for 4000 samples.

In the example above, the number of data points sampled begins at 1000, and is then doubled

twice. The average of each spectrum is the same at a value of .048; however, the variance of each

one also has an identical value of .002. The variance of the spectrum did not decrease with the

number of samples. There are alternative methods for estimating the power spectrum. Due to time

constraints, the periodogram remains the method chosen for this research. The lack of convergence

has been dealt with by averaging over an ensemble of power spectra in chapter 4.

2.3.1 Wiener–Khinchin Theorem

One way to check that the correct power spectrum has been attained is to take the DFT of

the autocovariance function described earlier. This principal is known as the Weiner-Khinchin

Theorem, and it states that the PSD and autocovariance are Fourier transform pairs13:

𝑆(𝑓) = ∫ 𝑟(𝜏) ∙ 𝑒−𝑖2𝜋𝑓𝑡 ∙ 𝑑𝜏

∞

−∞

 . (2.15)

Rollings 16

To approximate this for a discrete signal, the integral is replaced by a sum, and the exponential

takes the same form as in the DFT. The time step 𝑑𝜏 becomes the time interval in between data

points, 𝜏0.

𝑆(𝑓) = 𝜏0 ∙ ∑ 𝑟(𝑛) ∙ 𝑒−𝑖2𝜋𝑓𝑛/𝑁

𝑁

𝑛=−∞

 . (2.16)

Note the change from 𝑟(𝜏) to 𝑟(𝑛), this is because the nth part of the covariance function is now

under consideration in the transform. Recall that the autocovariance of white noise is equal to its

variance multiplied with the Kronecker delta (Equation 1.12). Modifying the index of the

Kronecker from time, t, to list position, n, and plugging it into Equation (2.16) yields:

𝑆(𝑓) = 𝜏0 ∙ ∑ 𝜎𝑋
2 ∙ 𝛿𝑛𝑛′ ∙ 𝑒−𝑖2𝜋𝑓𝑛/𝑁

𝑁

𝑛=−∞

 = 𝜏0 ∙ 𝜎𝑋
2 . (2.17)

This means that white noise will have a flat power spectrum held at a constant value of 𝜏0 ∙ 𝜎𝑋
2. In

the example shown in Figure 2.4, 𝜏0 was set to 1/1024 seconds, and the variance of the data was

taken to be 49. Multiplying these numbers together yields a value of .04785, which is precisely

what the power spectrum of that signal averages to.

Rollings 17

Chapter 3

Noise Characterization

In general, any periodic signal can be described as having both a phase and amplitude.

Instabilities in either of these components leads to instantaneous values differing from their actual

value. These discrepancies are what is referred to as the noise of the data14.

3.1 Frequency Stability

Oscillators often undergo what is known as frequency drift. This means that their operating

frequency will change with time due to a variety of factors such as aging of the oscillator, or outside

environmental factors. Drift typically has units of Hz/s, and can; therefore, be thought of as

velocity in a sense. On the other hand, frequency stability describes how little a clock is prone to

frequency drift. Consider, once again, the function Y(t) defined earlier, now with the following

modifications:

 𝑌(𝑡) = [𝑌0 + 𝜀(𝑡)] ∙ sin[2𝜋𝜈0𝑡 + 𝜑(𝑡)]. (3.1)

Where, Y0 = Nominal amplitude

 ε(t) = Deviation from nominal amplitude

 ν0 = Nominal frequency

 φ(t) = Deviation from nominal frequency

Both ε(t) and φ(t) take the form of added noise. The phase of the signal is defined by the argument

of sine. The fluctuations defined by φ(t) are phase modulated (PM) noise15. Taking the derivative

of this argument will give the instantaneous angular frequency, ω(t):

𝜔(𝑡) =

𝑑

𝑑𝑡
[2𝜋𝜈0𝑡 + 𝜑(𝑡)] = 2𝜋𝜈0 +

𝑑𝜑

𝑑𝑡
 , (3.2)

which can be expressed in Hz by dividing out 2π:

𝜈(𝑡) = 𝜈0 +
1

2𝜋

𝑑𝜑

𝑑𝑡
 . (3.3)

Fluctuations in this form are frequency modulated (FM) noise15.

Rollings 18

3.2 Noise Power Laws

 Five types of noise have been identified through their distinctive power spectra. The power

spectrum of a given noise type will follow the relationship10

 𝑆(𝑓) = ℎ𝛼 ∙ 𝑓𝛼 . (3.4)

This states that the power of a signal will be proportional to a given frequency, 𝑓, raised to some

power 𝛼. Each one is classified below, and has its own contribution (ℎ𝛼) to a given signal.

𝜶 Noise Name Corresponding Figure

-2 Random Walk FM Figure 3.1

-1 Flicker FM Figure 3.2

0 White FM Figure 3.3

1 Flicker PM Figure 3.4

2 White PM Figure 3.5

Figure 3.1: The power spectrum, time series, and histogram of random walk FM noise.

Figure 3.2: The power spectrum, time series, and histogram of flicker FM noise.

Figure 3.3: The power spectrum, time series, and histogram of white FM noise.

Rollings 19

Figure 3.4: The power spectrum, time series, and histogram of flicker PM noise.

Figure 3.5: The power spectrum, time series, and histogram of white PM noise.

The reason for including histograms is to get a sense of the statistical properties associated

with each type of noise. For the most part, each follows a Gaussian distribution. However, random

walk breaks this pattern in that it does not have a clear distribution. In addition to this, each

realization of random walk will generate a different histogram altogether. Thus, the random walk

is considered a non-stationary process. Because it is non-stationary, things like the autocovariance

function do not technically exist for it. Random walk is described as noise that has been added

onto the previous entry in a list. One can visualize random walk in the analogy of a person walking

in random directions. Each step is limited by the length of the person’s legs, and the person’s

current position depends on where they were one step ago. Random walk exhibits a strong

autocorrelation. In order to apply some of the processing tools developed then, it must be

transformed into white noise. This is achieved by taking the difference between data points in the

random walk. Mathematically, random walk can be expressed as:

 𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡, (3.5)

Where the current value, 𝑦𝑡, is equal to the previous value, 𝑦𝑡−1, with added Gaussian white noise,

𝜀𝑡. Following this definition, the next term in the series will be:

𝑦𝑡+1 = 𝑦𝑡 + 𝜀𝑡′. (3.6)

Differencing any two adjacent points in the list will yield:

𝑦𝑡+1 − 𝑦𝑡 = (𝑦𝑡 + 𝜀𝑡′) − (𝑦𝑡−1 + 𝜀𝑡) (3.7)

 = (𝑦𝑡−1 + 𝜀𝑡 + 𝜀𝑡′) − (𝑦𝑡−1 + 𝜀𝑡)

 = 𝜀𝑡′

Thus, it is shown that differenced random walk produces Gaussian white noise.

Rollings 20

 Flicker FM noise resembles a mixture of random walk and white FM noise. For the most

part, its statistical properties do not change. For this reason, it is referred to as being weakly

stationary. It too can be differenced into white noise.

 A considerable amount of examples used so far have pertained to flat spectrum (white)

noise. This type of noise will be more closely analyzed in chapter 4. Oscillators within various

types of clocks can be affected by all of the power law noise described above. However, in the

case of atomic clocks, Rubidium and Cesium oscillators exhibit noise mostly in the range of 𝛼 =

 −2, −1,0 (Figure 3.6). These correspond to the random walk, flicker FM, and white FM noise

types respectively16.

Figure 3.6: The power spectrum of the clock bias shown in Figure 1.3.

3.3 Generating a New Time Series from the Given PSD

 Once the power spectrum of a signal has been defined, it is possible to then generate a time

series with the same statistical properties that will produce the same spectrum. The procedure for

applying this numerically is outlined in chapter 4, but it is shown analytically here. Suppose there

is a target power spectrum denoted by S(f)target. This power spectrum will have been produced by

taking the square magnitude of the DFT of a time series, per Equation (2.14). This random time

series will be denoted by X(t)target. The DFT of this series gives back a list of complex terms. This

list will be called X(f)target. The phase information contained in each complex value is lost when

the magnitude of the DFT is computed. Therefore, new phase information must be generated if

X(t)target is to be recovered from the power spectrum. This phase information can come from the

DFT of a newly generated random list with the same number of data entries as X(t)target. The DFT

of this new list will be denoted as Y(f)new. Dividing the DFT by its conjugate will normalize it,

leaving only the phase information left. Now that the phase information has been created, the

proper magnitude of the transform will need to be evaluated. It can be easily obtained by taking

the square root of S(f)target. This will be equal to the magnitude of the frequency spectrum since

 √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡 ∝ |𝑋(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡| . (3.8)

Rollings 21

Multiplying Y(f)new with √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡 now yields the appropriate frequency spectrum complete

with phase information. Taking the inverse DFT of this spectrum will reproduce a signal in the

time domain, denoted by Z(t)Reconstructed. This new signal will not be identical to X(t)target. However,

it does have the same statistical properties as X(t)target.

It is straight forward to check that this new signal will reproduce the same power spectrum

as before. The DFT of the reconstructed signal is:

𝑍(𝑓)𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 =

𝑌(𝑓)𝑛𝑒𝑤

𝑌(𝑓)𝑛𝑒𝑤
∗

∙ √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡 (3.9)

Taking the square magnitude of this, as per Equation (2.14), yields:

|𝑍(𝑓)𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑|2 = (

𝑌(𝑓)𝑛𝑒𝑤

𝑌(𝑓)𝑛𝑒𝑤
∗

∙
𝑌(𝑓)𝑛𝑒𝑤

∗

𝑌(𝑓)𝑛𝑒𝑤
∙ √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡)

2

 (3.10)

 = √𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡

2

 = 𝑆(𝑓)𝑇𝑎𝑟𝑔𝑒𝑡

This shows that the power spectrum of the reconstructed signal is equal to the power spectrum of

the target signal. Note that there was no need to renormalized the spectrum by a factor of
𝜏0

𝑁
 as in

Equation (2.14) because this value has already been accounted for in S(f)target.

Rollings 22

Chapter 4

Implementation in Mathematica

Mathematica is a mathematical computation program developed by Wolfram Research of

Champaign, Illinois. It contains a multitude of function libraries which can be called in the

following way FunctionName[FunctionArguement]. Mathematica has built in

algorithms for processing large amounts of data in a short period of time. It is also relatively simple

to use, and there are a multitude of help pages and example codes available online. For these

reasons, it has been selected as the program used to model the noise simulation.

4.1 Generating a Random Signal

The simplest form of noise to generate is Gaussian White noise. Mathematica comes with

a built in random number generator, RandomReal[], utilized to create a list of randomized

discrete data of specified length. The desired standard deviation, or “spread”, of the data can be

defined as well. Furthermore, this can be combined with the NormalDistribution[]

function to produce Gaussian data centered about a specified mean value. Figure 4.1 illustrates the

result of combining these functions.

Figure 4.1: A signal composed primarily of Gaussian white noise.

The image shown above was produced by calling Mathematica’s ListPlot[] command. There

are 210, or 1024, random data points contained within the list. For programming in general, more

efficient computations can be carried out when a given set of data has a length equal to a power of

2. It can be imagined that the data produced is the result of sampling a real, continuous signal at

Rollings 23

regular intervals. The duration of time that the signal is sampled for is arbitrarily chosen to be 1

second. This makes the sampling frequency 1024 Hz. And so, a Nyquist frequency of 512 Hz will

be expected. The data has also been prescribed an arbitrary standard deviation of 7, and is normally

distributed about 0. A histogram of this data, shown in Figure 4.2, reflects these statistical

properties.

Figure 4.2: A histogram of the generated white noise.

Although the mean and standard deviation have been specified, the random list will not exhibit

these values identically. For the random signal generated above, the calculated mean is .33, while

the calculated standard deviation is 6.88.

Next, the frequency spectrum of the generated noise is examined. For this, the function

Fourier[] has been called to compute the DFT of the signal. One must be careful when using

this function, as Mathematica defines it in the following fashion:

𝑋(𝑘) =
1

𝑁(1−𝑎)/2
∑ 𝑥(𝑛) ∙ 𝑒𝑖2𝜋𝑏(𝑘−1)(𝑛−1)/𝑁

𝑁

𝑛=1

 , (4.1)

where the terms a and b can be set using FourierParameters→{a,b}. The iterator n starts at 1

because it refers to the position in the list being transformed, and there is no 0th position. N is the

total number of data points, and k is the frequency under consideration. To get the desired

transform given by Equation (4.1), a and b have been set to 1 and -1 respectively. When taking a

transform numerically, one gets back a list of complex terms. Each frequency’s contribution to the

signal can be expressed by the magnitude of these complex terms. In Mathematica, this is

accomplished by either calling the absolute value, Abs[], of the Fourier transform, or by

Rollings 24

multiplying the transformed data by its conjugate, Conjugate[], and taking the square root,

Sqrt[]. The result of doing this is captured in Figure 4.3.

Figure 4.3: The frequency spectrum of the generated white noise.

As expected, the white noise signal is an amalgamation of many frequencies, each with a similar

contribution to the signal’s energy. Note that the signal is mirrored about the Nyquist frequency

of 512 Hz as a result of aliasing. Parseval’s Theorem, described by Equation (2.11), can be used

to check that the energies in each domain are equal. Applying it to the time domain of this data set

yields a value of 47,643. Taking the square magnitude of the frequency spectrum and dividing it

by the number of data points also yields a value of 47,643. Although difficult to discern from the

graph, it is important to point out that both the zero frequency and Nyquist frequency only appear

once in the Fourier transform. This will be applied later, when reconstructing a signal from a power

spectrum.

 Equation (2.14) is then applied to the data to estimate the power spectrum of the random

signal. Again, white noise has equal contributions from many frequencies, and so one would expect

the power spectrum to be flat. However, Figure 4.4 shows that this is not quite the case.

Rollings 25

Figure 4.4: The power spectrum of the generated white noise.

The power spectrum has fluctuations because this is a single realization of data under

consideration. Because white noise is ergodic, the situation can be remedied by taking the average

over an ensemble of power spectra generated from white noise with the same statistical parameters.

Implementing this demonstrates how the power spectrum converges to its true value for the given

noise.

Figure 4.5: Power spectrum convergence over an ensemble. (a) A single realization with mean

.0489 (b) Average over 10 realizations with mean .0477 (c) Average over 100 realizations with

mean .0477 (d) Average over 1000 realizations with mean .0479

Rollings 26

Even though the original power spectrum has high variance, its mean value still closely resembles

what the ensemble ends up converging to. Both of these values also match the expected value of

𝜎2𝜏0 formulated earlier. For this particular signal, 𝜎2𝜏0 is approximately .048.

 A further investigation can confirm if the correct power spectrum has been estimated. This

requires translating Equation (1.10) into Mathematica to produce a covariance sequence. The result

of doing so is depicted in Figure 4.6.

Figure 4.6: Autocovariance sequence of the generated white noise.

As predicted for white noise, the autocovariance is a delta spike about zero lag. The Weiner-

Khinchin Theorem is utilized (Equation 2.16), and the resulting power spectrum shown in Figure

4.7 is compared to the previous.

Rollings 27

Figure 4.7: Power spectrum calculated from the autocovariance sequence.

This new power spectrum has the same shape as the one in Figure 4.4, but contains less variance.

The average value of this spectrum; however, is .048, which is in agreement with the previous

results.

4.2 Generating Noise from a Power Spectrum

Because of their distinct power spectra, each noisy signal can be reconstructed when a

particular power spectrum is given. The general outline for doing this in Mathematica is as follows.

The power spectrum is estimated by squaring the frequency spectrum, and then normalizing it by

some value. To get new data back then, a new frequency domain must be reconstructed that is

proportional to the square root of the given power spectrum. Take the square root of the power

spectrum to yield the amplitude spectrum. In order to be able to transition back into the time

domain, some phase information will be required. This was obtained by taking the DFT of another

random list of the same length as the power spectrum. Dividing this new transformed data by its

conjugate yields random phase data. Next is to convolve the list of random phase data with the

computed amplitude spectrum. The result is now a new frequency spectrum constructed from

random phases. Following Equation (2.4), the inverse DFT is taken by applying Equation (4.1)

with a and b set to -1 and 1 respectively. This transforms the data back into the time domain,

producing a signal with the same statistical properties as the original.

Rollings 28

Figure 4.8: A new time series reconstructed from the power spectrum.

The mean of this new list is .333, and it standard deviation is 6.88. These values perfectly match

the original signal shown in Figure 4.1. Recalculating the power spectrum of this new signal shows

that it is identical to the original power spectrum that produced it.

Figure 4.9: The power spectrum of the reconstructed signal. It is identical to the original power

spectrum.

Rollings 29

4.3 Generating a Time Series for Arbitrary Power Law Noise

 In the previous section, a signal was reconstructed from the power spectrum of a single

white noise realization. As demonstrated, the spectrum of this single set of data contains

fluctuations. Theoretically, white noise is expected to have a flat spectrum. So too do other types

of noise spectra have a specific shape as outlined by their respective power law. Recreating a

random signal from these spectra requires more steps than in the previous case. This is due to the

fact that these power law spectra are only defined between the zero and Nyquist frequencies,

whereas the estimated power spectrum of a given signal should be mirrored about the Nyquist

frequency. In order to generate an accurate time series that will produce the same spectra, the left

and right hand sides of the frequency spectrum will need to be dealt with separately.

The first step remains the same in that the square root of the given power spectrum is

calculated. Now, a new list of random numbers that is twice the length of the current power

spectrum must be generated. Taking the DFT of this list will result in a frequency spectrum

mirrored about the Nyquist frequency. Once again, divide this list by its conjugate to produce

random phase data. Only the left half of this list, parts 1 through the Nyquist frequency, will match

up with the power spectrum. To obtain individual segments of a list in Mathematica, call the list

with the following syntax attached to it: [List][[First element;;Final element]].

In this case, the first element needed is in position 1 of the list, and the final element needed occurs

at the Nyquist frequency, which is half way through the complete list. Once obtained, the left side

can be scaled right away by multiplying it with the square root of the power spectrum. This will

form the first half of the new frequency spectrum.

To get the second half, the right hand side of the random phase data must be scaled as well.

As mentioned before, the zero and Nyquist frequencies only occur once. So the elements of the

list needed to form the right side will begin at the Nyquist frequency + 1, and include all points

through the end of the list. Because it is a mirror image of the left, it must first be flipped before

scaling it to the power spectrum. This is achieved through using Reverse[]. This reversed right

hand side can now be scaled by multiplying with the square root of the power spectrum as well.

To turn it back into its former mirrored image, Reverse[] is applied once more. The now

properly scaled left and right hand sides can be brought back together using Join[]. What’s left

is a complete frequency spectrum whose inverse DFT will generate a new random signal. The

power spectrum of this newly generated signal can be calculated using the same techniques as

before. Doing so shows that the resulting spectrum is identical to the original. Figure 4.10 shows

the results of applying this to each of the five power law noise spectra.

Rollings 30

Figure 4.10: Generated noise time series and power spectra. The first plot in each row is of a

power law noise spectrum. The second and third image are the generated signal and power

spectrum respectively. The original power spectra shown here have been produced using the

relationship given by Equation (3.4). In each case, ℎ𝛼 has been arbitrarily set to 5.

Rollings 31

4.4 Application

 The methods discussed can be directly applied to a clock signal. The bias shown in Figure

1.3 is used as an example. Generating a signal from its power spectrum (shown in Figure 3.6)

produces the following random data:

Figure 4.11: A randomly generated clock signal.

 It is possible to inject a dark matter signal into the reconstructed phase data. The dark matter

signal takes the form of the step function shown in Figure 1.2. It is generated by building a list that

is the same length of the phase data, and then setting all values equal to zero, with the exception

of a small portion of consecutive terms at any random portion of the list. The amplitude of these

terms will reflect the amplitude of the bias caused by the dark matter event. It is not entirely known

how much bias is to be expected. For this example, the value is arbitrarily set to 5 ×

10−11 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. An image of the a reconstructed clock signal with an added TDM event is shown

in Figure 4.12.

Figure 4.12: The generated clock signal from Figure 4.11 with a TDM event added to it. The

event has been introduced at the 1000th epoch.

Rollings 32

Though not obvious at first, the dark matter signal for this example begins at the 1000th epoch.

Double differencing of the data reduces the clock data into Gaussian white noise. This is plotted

in Figure 4.13.

Figure 4.13: Double differenced clock bias. The TDM event has been circled in black.

The standard deviation of the white noise produced is 4.56 × 10−11. Most of the data lies within

three standard deviations, as predicted for a Gaussian distribution. The event makes its appearance

as a jump that is nearly seven standard deviations from the mean. For a large enough jumps, then,

the event can be clearly seen. Despite this, such a jump must be seen in other satellite clocks at

specific times in order to adequately confirm an event.

 A question that might arise is whether the signature detected in the double differenced data

was actually introduced by the injected dark matter signal, or if such a signal was already present.

Reproducing clock bias that contains a dark matter signal effectively creates a ‘blank slate’ to work

with. This is illustrated by applying the methods outlined in Section 4.2 to the signal shown in

Figure 4.12. There is a known event in this signal because it was purposefully placed there.

Generating a new time series from the power spectrum of this data produces the following random

signal:

Figure 4.14: A random signal generated from bias that contained a TDM event.

Rollings 33

 This new signal can be double differenced as before to see if the dark matter signal can still

be detected. The results are shown in Figure 4.15.

Figure 4.15: Double differenced clock bias of a signal reconstructed from data containing a

TDM event.

Once again, the standard deviation of the white noise produced is 4.56 × 10−11. Again, most of

the data lies within three standard deviations from the mean. The jump seen before at the 1000th

epoch is no longer present. This demonstrates that producing a new signal with the given methods

eliminates events of a large enough magnitude.

Rollings 34

Chapter 5

Conclusion

 The numerical results of this research are promising. Producing a power spectrum through

the periodogram leads to high variance in the estimate. However, an average over an ensemble of

noise realizations causes the power spectrum to converge to its actual value. Calculating the power

spectrum from the autocovariance sequence leads to less variance, but it too converges to the same

value. This sequence does not exist for nonstationary stochastic processes such as random walk.

This can be remedied by differencing these noise types to produce white noise. In the case of white

noise, it has been demonstrated that a power spectrum produced from a random signal can also be

used to generate a new time series. This newly generated data exhibits the same statistical

properties as the original signal. This is a desirable outcome, as it means these techniques can be

used to generate atomic clock bias with the appropriate variance.

 These methods will allow signals to be generated that emulate atomic clock data. A library

of these signals will be developed for each type of clock on board GPS satellites in orbit. The

proposed dark matter signal can then be introduced into these lists of random data. If the signal to

noise ratio is strong enough, then the signal can be recovered. These will effectively form a

simulation of what to look for during a topological dark matter event. When considering dark

matter candidates in actual clock data, the simulation can be used to cross compare results.

There are two key benefits to being able to generate random clock data. The first has to do

with logistics. It takes time to collect, import, and process clock data. Now, it can simply be

generated in a fraction of the time. In addition to this, the methods discussed produce new clock

data sets that are free from existing dark matter signals. This provides a ‘clean slate’ to work with

when injecting dark matter signals into the data.

 35

Bibliography

1. Erickson, K. (2015, June 5). Dark Energy, Dark Matter - NASA Science. Retrieved April 4, 2016,

from http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-

energy/

2. Derevianko, A., & Pospelov, M. (2014). Hunting for topological dark matter with atomic clocks.

Nature Physics, 10(12), 933–936. http://doi.org/10.1038/NPHYS3137

3. Maoz, D. (2007). Astrophysics in a Nutshell. 41 William Street, Princeton, NJ 08540: Princeton

University Press.

4. Space Segment. Retrieved April 21, 2016, from

http://www.gps.gov/systems/gps/space/#content

5. Dwyer, D. (2000, April). How Atomic Clocks Work. Retrieved April 2, 2016, from

http://science.howstuffworks.com/atomic-clock.htm

6. Griffiths, D. (2005). Introduction to Quantum Mechanics (2nd ed.). Upper Saddle River, NJ

07458: Pearson Education.

7. Hecht, E. (2002). Optics (4th ed.). San Francisco, CA: Pearson Education.

8. Base unit definitions: Second. Retrieved April 2, 2016, from

http://physics.nist.gov/cuu/Units/second.html

9. Walpole, R., Myers, R., Myers, S., & Ye, K. (2007). Probability and Statistics for Engineers and

Scientists (8th ed.). Upper Saddle River, NJ 07458: Pearson Education. Retrieved from

https://drive.google.com/file/d/0B6ZNdXkCQbsuZDJkNDQ1YTItMjQxMy00

ZTVhLTk0YTMtYmJjNWYwYTRjYzNj/view?usp=drive_web&ddrp=1&usp=embed_

facebook

10. Riley, W. J. (2008). Handbook of Frequency Stability Analysis. Retrieved from

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication

1065.pdf

11. Smith, S. (1999). The Scientist and Engineer’s Guide to Digital Signal Processing (2nd ed.). San

Diego, California: California Technical Publishing.

Rollings 36

12. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical Recipes in Fortran

(2nd ed.). Cambridge University Press.

13. Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences. Cambridge, New

York: Cambridge University Press.

14. Noise and Noise Rejection. Retrieved from

https://engineering.purdue.edu/ME365/Textbook/chapter11.pdf

15. Barnes, J. et al. (1971). Characterization of Frequency Stability. IEEE Transactions on

Instrumentation and Measurement, 20(2). Retrieved from

http://tf.nist.gov/general/tn1337/Tn146.PDF

16. The Science of Timekeeping. (1997). Retrieved from

http://itsabouttimebook.com/wp-content/uploads/2016/02/science-

of-keeping-time.pdf

 37

Appendices

These source codes are available for the GPS.DM

collaboration in the shared directory:

https://www.dropbox.com/home/GPS.DM/Students/AlexRollings

Appendix A

Mathematica Code for Gaussian White Noise

Gaussian White Noise Sampled at
Discrete Time Intervals

Define Parameters

Choose Total duration of time the signal is sampled for (seconds).

T = 1;

Choose Sampling Frequency: Samples per second (Hz). Must be a power of 2 to
compute.

sf = 2^10;

Sampling Period: Time interval between samples (seconds).

τ0 = 1 / sf;

Total number of data points generated.

npts = T * sf;

Nyquist Frequency (Hz).

nyq = npts / 2;

Choose the Mean value of the data.

mean = 0;

Choose the Standard Deviation of the data.

σ = 7;

A.1

White Noise Spectrum.nb | 1

Generate Gaussian White Noise in Time Domain

Generate Normally Distributed Random Data

xlst = RandomReal[NormalDistribution[mean, σ], npts];

Plot as time series

ListPlot[xlst, PlotRange → All, AxesLabel → {"Sample Number", "X"},
LabelStyle → Directive[Black, 18], ImageSize → Large, PlotStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

200 400 600 800 1000
Sample Number

-30

-20

-10

10

20

X

A.2

White Noise Spectrum.nb | 2

Show histogram of data

hist = Histogram[xlst, 100, ChartStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18]];

pdf = Plot[(npts / 2) * PDF[NormalDistribution[mean, σ], x],
{x, -Max[xlst], Max[xlst]}, PlotStyle → Directive[Thick, Black]];

Show[{hist, pdf}, ImageSize → Large]

-20 -10 0 10 20
0

10

20

30

40

Analyze Frequency Spectrum

Take Discrete Fourier Transform of data

dft = Fourier[xlst, FourierParameters → {1, -1}];
flst = Abs[dft];

A.3

White Noise Spectrum.nb | 3

Plot the magnitude of the frequency spectrum

ListPlot[flst, PlotRange → All,
AxesLabel → {"Frequency [Hz]", "X"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

200 400 600 800 1000
Frequency [Hz]

100

200

300

400

500

X

Proof of Parseval’s Theorem

energy1 = Sum[xlst[[n]]^2, {n, 1, npts}];
energy2 = (1 / npts) * Sum[flst[[n]]^2, {n, 1, npts}];
StringForm["Total energy in time domain = ``", energy1]
StringForm["Total energy in frequency domain = ``", energy2]

Total energy in time domain = 48604.77548521312`

Total energy in frequency domain = 48604.77548521318`

Estimate Power Spectral Density (PSD)

psd1 = (τ0 / npts) * flst^2;

A.4

White Noise Spectrum.nb | 4

Plot Power Spectrum

ListPlot[psd1, PlotRange → .2,
AxesLabel → {"Frequency [Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

0 200 400 600 800 1000
Frequency [Hz]

0.05

0.10

0.15

0.20
S(f)

Wiener–Khinchin Theorem

Generate auto-correlation function (ACF) by taking the inverse DFT of the PSD
(the real part of the transform is taken because Mathematica introduces minor
error in the form of negligibly small imaginary terms)

acf1 = (1 / T) * Re[Fourier[psd1, FourierParameters → {1, 1}]];

A.5

White Noise Spectrum.nb | 5

Plot the ACF

ListPlot[acf1, PlotRange → All,
AxesLabel → {"Lag", "r(τ)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●●
●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●●●

●●
●
●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●●

●
●

●

●
●

●

●

●

●●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●
●

●

●
●
●
●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●●

●●

●●

●

●

●
●

●●

●

●
●
●

●

●

●●

●

●

●
●

●

●
●
●

●●

●

●

●

●●
●
●

●

●●●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●●●

●

●
●
●●

●

●

●

●●

●
●
●

●

●
●

●

●

●●

●

●

●
●
●

●

●●

●
●

●

●

●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●●●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●
●●

●●

●

●

●

●
●

●

●
●

●●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●
●
●●

●●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●
●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

200 400 600 800 1000
Lag

10

20

30

40

50
r(τ)

Check by computing the ACF directly

acf2 =

Table[(1 / npts) * Sum[(xlst[[n]] - mean) * (xlst[[n + lag]] - mean), {n, 1, npts - lag}],
{lag, 0, npts - 1}];

A.6

White Noise Spectrum.nb | 6

Plot the new ACF

ListPlot[acf2, PlotRange → All,
AxesLabel → {"Lag", "r(τ)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●●●
●●

●
●●●

●

●
●

●
●
●

●

●

●

●

●
●

●●
●●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●●
●●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●●●

●
●

●●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●●

●

●

●●

●●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●●

●
●●●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●
●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●●
●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●
●●
●

●

●
●

●

●

●
●

●●

●

●

●●●●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●
●

●

●
●●
●●

●

●●
●

●
●

●●

●

●
●

●
●
●

●
●●

●

●

●●

●
●

●

●
●●●

●

●

●

●
●
●●

●

●
●

●

●
●

●

●

●
●
●●
●
●●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●●

●●●
●●
●●
●●

●
●
●

●●●●

●

●

●●

●

●
●

●●

●●

●

●

●
●●

●

●●
●

●

●

●

●

●●
●

●

●

●●

●
●●

●
●

●

●●●
●

●
●

●●

●
●
●
●

●●

●

●

●●

●
●

●

●●

●●●

●
●
●
●
●●●●

●

●
●

●
●
●●
●●
●
●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●●●
●●
●
●
●

●●
●●
●
●
●

●

●

●

●

●
●
●
●

●
●
●●●●
●●
●●●
●

●●
●●

●●
●
●
●

●●●

●
●●
●
●
●
●
●●
●

●

●
●●●●●
●●

●
●
●

●

●●

●

●
●●●●

●

●
●
●
●

●●

●

●

●●

●●
●
●●●
●●
●

●●
●●●●

●

●
●●●●
●●●●
●
●●●●
●●●
●
●

●●
●●●

●
●●
●
●
●
●●
●●●●●●●●●●●●

●●
●●
●●●●●●●

●
●
●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●

200 400 600 800 1000
Lag

10

20

30

40

50
r(τ)

Estimate PSD from the DFT of the ACF

psd2 = Re[Fourier[acf2, FourierParameters → {-1, -1}]];

A.7

White Noise Spectrum.nb | 7

Plot the new PSD

ListPlot[psd2, PlotRange → .2,
AxesLabel → {"Frequency [Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●
●

●●

●
●

●

●

●●●

●

●

●
●

●●

●
●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

0 200 400 600 800 1000
Frequency [Hz]

0.05

0.10

0.15

0.20
S(f)

Check that each spectra converges to the same value

StringForm["Mean of first PSD = ``", Mean[psd1]]
StringForm["Mean of second PSD = ``", Mean[psd2]]

StringForm"σ2τ0 = ``", σ2 τ0 // N

Mean of first PSD = 0.046353126034939934`

Mean of second PSD = 0.04635312603493989`

σ2τ0 = 0.0478515625`

Generate New Signal From the Existing Power Spectrum

Produce a random time series of the same length as number of frequency bins (the
data can have any statistical properties)

rdata = RandomReal[{-1, 1}, Length[psd1]];

A.8

White Noise Spectrum.nb | 8

Take DFT of the new random data

fdata = Fourier[rdata, FourierParameters → {1, -1}];

Divide the transformed data by its conjugate to produce random phase data

conj = Conjugate[fdata];
phase = fdata / conj;

Take square root of PSD to get the amplitude spectrum

amplitude = Sqrt[psd1];

Multiply the amplitude spectrum by the random phase data to produce a new
frequency spectrum

newfreq = amplitude * phase;

Take inverse DFT to reproduce a new time series (take real part to eliminate
imaginary terms introduced through roundoff errors)

newdata = Re[Fourier[newfreq, FourierParameters → {1, 1}]];

Plot new data

ListPlot[newdata, PlotRange → All, AxesLabel → {"Sample Number", "X"},
LabelStyle → Directive[Black, 18], ImageSize → Large, PlotStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

200 400 600 800 1000
Sample Number

-20

-10

10

20

X

A.9

White Noise Spectrum.nb | 9

Check that the statistical properties of the reconstructed data match the original
data

StringForm["Mean of original data = ``", Mean[xlst]]
StringForm["Mean of reconstructed data = ``", Mean[newdata]]
StringForm["σ of original data = ``", StandardDeviation[xlst]]
StringForm["σ of reconstructed data = ``", StandardDeviation[newdata]]

Mean of original data = -0.333742

Mean of reconstructed data = 0.333742118537928`

σ of original data = 6.884802598152638`

σ of reconstructed data = 6.884802598152637`

Check that new PSD equals the original PSD

newpsd = (τ0 / npts) * Abs[Fourier[newdata, FourierParameters → {1, -1}]]^2;
StringForm["Mean of original PSD = ``", Mean[psd1]]
StringForm["Mean of new PSD = ``", Mean[newpsd]]

Mean of original PSD = 0.046353126034939934`

Mean of new PSD = 0.04635312603493991`

A.10

White Noise Spectrum.nb | 10

Plot the new PSD

p1 = ListPlot[newpsd, PlotRange → .2,
AxesLabel → {"Frequency [Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
Filling → Axis, FillingStyle → Directive[Thick, Red],
ImageSize → Large, PlotMarkers → Style["●", 3, Red],
AxesStyle → Black, TicksStyle → Directive[Black, 18]]

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

0 200 400 600 800 1000
Frequency [Hz]

0.05

0.10

0.15

0.20
S(f)

A.11

White Noise Spectrum.nb | 11

Appendix B

Mathematica Code for Reconstructing Power Law Noise

Reconstruct a Time Series from a
Given Power Law PSD

Generate the Power Spectrum
In[93]:= Clear["Global`*"]

Create a list of distinct frequencies that will go up to the Nyquist frequency (in
Hz).

In[94]:= nyq = 512;
freq = Range[1, nyq];

Raise the frequencies to a power, α, in accordance with the noise type.

In[96]:= freqExp = freq^α;

Choose an initial amplitude h0 for the power spectrum.

In[97]:= h0 = 5;

Generate the power spectrum.

In[98]:= psd1 = h0 * freqExp;

Take square root of power spectrum to get the amplitude spectrum.

In[99]:= sqrtpsd = Sqrt[psd1];

Create Random Frequency Data

Generate a list of random data in the time domain that is twice as long as the

B.1

Reconstruct A Time Series From a Given Power Law PSD.nb1

power spectrum.

In[100]:= xlst = RandomReal[{-1, 1}, 2 * nyq];

Take the DFT of the random data.

In[101]:= flst = Fourier[xlst, FourierParameters → {1, -1}];

Divide the frequency spectrum by its conjugate to get random phase data.

In[102]:= conj = Conjugate[flst];
phase = flst / conj;

The frequency spectrum is symmetric about the Nyquist frequency. Divide the list
into the two halves. Note: the first frequency component and the Nyquist
frequency only show up once.

In[104]:= leftSide = phase[[1 ;; nyq]];
rightSide = phase[[nyq + 1 ;;]];

Generate the Time Series

The left hand side should be proportional to the amplitude spectrum. The right
hand side will be proportional to the mirror of the amplitude spectrum.

In[106]:= leftFreq = leftSide * sqrtpsd;
rightFreq = rightSide * Reverse[sqrtpsd];

Re-join both halves to get the new frequency spectrum.

In[108]:= totalFreq = Join[leftFreq, rightFreq];

B.2

Reconstruct A Time Series From a Given Power Law PSD.nb2

Inverse DFT to get the new time series (take real part to eliminate imaginary
terms introduced through roundoff error).

In[109]:= newData = Re[Fourier[totalFreq, FourierParameters → {1, 1}]];

Fourier::fftl : Argument 2.23607 + 0. ⅈ, (1.59838 + 1.56371 ⅈ) 2α , (1.17277 + 1.90384 ⅈ) 3α , (0.5274

+ 2.17298 ⅈ) 4α , (-0.295376 + 0.955381 ⅈ) 51+α , (1.91712 - 1.15093 ⅈ) 6α , (1.90532

+ 1.17036 ⅈ) 7α , 37, (-0.612171 - 0.790726 ⅈ) 51+α 9α , (-1.99495 + 1.01004 ⅈ) 46α , (0.608733

+ 2.15161 ⅈ) 47α , (2.23606 + 0.00448652 ⅈ) 48α , (2.16574

- 0.556392 ⅈ) 49α , (-0.545005 - 0.838433 ⅈ) 2α 51+2α , 974

is not a non-empty list or rectangular array of numeric quantities. 

Check that the power spectrum of the new data is equal to the original power
spectrum.

In[110]:= psd2 = Abs[Fourier[newData, FourierParameters → {-1, -1}]]^2;

Fourier::fftl : Argument ReFourier2.23607 + 0. ⅈ, (1.59838 + 1.56371 ⅈ) 2α , (1.17277 + 1.90384 ⅈ) 3α , (0.5274

+ 2.17298 ⅈ) 4α , (-0.295376 + 0.955381 ⅈ) 51+α , (1.91712 - 1.15093 ⅈ) 6α , (1.90532

+ 1.17036 ⅈ) 7α , 37, (-0.612171 - 0.790726 ⅈ) 5Plus[2] 9α , (-1.99495 + 1.01004 ⅈ) 46α , (0.608733

+ 2.15161 ⅈ) 47α , (2.23606 + 0.00448652 ⅈ) 48α , (2.16574

- 0.556392 ⅈ) 49α , (-0.545005 - 0.838433 ⅈ) 2α 5Plus[2] , 974, FourierParameters → 1

is not a non-empty list or rectangular

array

of

numeric

quantities.



B.3

Reconstruct A Time Series From a Given Power Law PSD.nb3

Plot the Results

Run the code for the frequency powers from -2 to 2.

In[111]:= For[α = -2, α ≤ 2, α++,
p1 = ListLinePlot[psd1, PlotRange → All,

AxesLabel → {"[Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
PlotStyle → Red, AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Original PSD, α =``", α], 18],
Filling → Axis, FillingStyle → Red];

p2 = ListLinePlot[newData, PlotRange → All, AxesLabel → {"Time", "X"},
LabelStyle → Directive[Black, 18], PlotStyle → Red,
AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Reconstructed Time Series, α =``", α], 18]];

p3 = ListLinePlot[psd2[[1 ;; nyq]], PlotRange → All,
AxesLabel → {"[Hz]", "S(f)"}, LabelStyle → Directive[Black, 18],
PlotStyle → Red, AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Reconstructed PSD, α =``", α], 18],
Filling → Axis, FillingStyle → Red];

p4 = ListLogLogPlot[psd2[[1 ;; nyq]], PlotRange → All,
AxesLabel → {"Log[Hz]", "Log[S(f)]"}, LabelStyle → Directive[Black, 18],
PlotStyle → Red, AxesStyle → Black, TicksStyle → Directive[Black, 18],
PlotLabel → Style[StringForm["Log-Log Plot, α =``", α], 18]];

Print[GraphicsRow[{p1, p2}, ImageSize → Full],
GraphicsRow[{p3, p4}, ImageSize → Full]]]

B.4

Reconstruct A Time Series From a Given Power Law PSD.nb4

100 200 300 400 500
[Hz]

1
2
3
4
5
S(f)

Original PSD, α =-2

200 400 600 800 1000
Time

-2

2
4
6
8
10

X
Reconstructed Time Series, α =-2

100 200 300 400 500
[Hz]

1
2
3
4
5
S(f)
Reconstructed PSD, α =-2

1 5 10 50100 500
Log[Hz]10-5

10-4
10-3
10-2
0.1
1
10
Log[S(f)]

Log-Log Plot, α =-2

B.5

Reconstruct A Time Series From a Given Power Law PSD.nb5

100 200 300 400 500
[Hz]

1
2
3
4
5
S(f)

Original PSD, α =-1

200 400 600 800 1000
Time

-20
-10

10
20
30

X
Reconstructed Time Series, α =-1

100 200 300 400 500
[Hz]

1
2
3
4
5
S(f)
Reconstructed PSD, α =-1

1 5 10 50100 500
Log[Hz]10-2

0.05
0.10

0.50
1

5
Log[S(f)]

Log-Log Plot, α =-1

B.6

Reconstruct A Time Series From a Given Power Law PSD.nb6

100 200 300 400 500
[Hz]

2
4
6
8
10
S(f)

Original PSD, α =0

200 400 600 800 1000
Time

-200

-100

100

200
X

Reconstructed Time Series, α =0

100 200 300 400 500
[Hz]

2
4
6
8
10
S(f)
Reconstructed PSD, α =0

1 5 10 50100 500
Log[Hz]

2

5
10
20

Log[S(f)]
Log-Log Plot, α =0

B.7

Reconstruct A Time Series From a Given Power Law PSD.nb7

100 200 300 400 500
[Hz]

500
1000
1500
2000
2500

S(f)
Original PSD, α =1

200 400 600 800 1000
Time

-4000
-3000
-2000
-1000

1000
2000
3000

X
Reconstructed Time Series, α =1

100 200 300 400 500
[Hz]

500
1000
1500
2000
2500

S(f)
Reconstructed PSD, α =1

1 5 10 50100 500
Log[Hz]

10

100

1000

Log[S(f)]
Log-Log Plot, α =1

B.8

Reconstruct A Time Series From a Given Power Law PSD.nb8

100 200 300 400 500
[Hz]

200000
400000
600000
800000
1.0×106
1.2×106

S(f)
Original PSD, α =2

200 400 600 8001000
Time

-80000
-60000
-40000
-20000

20000
40000
60000

X
Reconstructed Time Series, α =2

100 200 300 400 500
[Hz]

200000
400000
600000
800000
1.0×106
1.2×106

S(f)
Reconstructed PSD, α =2

1 5 10 50100 500
Log[Hz]

10
100
1000
104
105
106
Log[S(f)]

Log-Log Plot, α =2

B.9

Reconstruct A Time Series From a Given Power Law PSD.nb9

