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Abstract-An improved semiclassical theory of Stark broadening of spectral lines emitted by 
hydrogen-like ions is developed in spirit of our previous papers. Compared to the standard 
theories, the improvement is achieved by taking into account on equal footing a “dynamic” 
splitting of Stark sublevels caused by one of the components of the electron microfield and 
a quasistatic splitting of Stark sublevels caused by ion microfield (only the latter was allowed 
for in the standard theories). The presented generalized theory is developed analytically to the 
same level as the standard theories and embraces the latter as one of its limiting cases 
corresponding to relatively low densities of a plasma. However, for dense plasmas the 
predictions differ: e.g., for lines with intense central Stark components (such as L,, L,, H,, 
etc.) the standard theories noticeably underestimate Stark broadening for high density 
plasmas. For conditions of the experiment by Griitzmacher and Johannsen previous calcu- 
lations ended up with halfwidths of the H, line of He11 that were drastically smaller (by factor 
of two) than the observed halfwidth of this line. Calculations by our generalized theory result 
in a better agreement with the experiments. 

1. INTRODUCTION 

In our previous paperslm3 we had developed a series of generalized impact broadening theories 
that are more accurate than the Standard Semiclassical Theories (SST) of impact broadening.4-6 
From the physical point of view, the enhanced precision was achieved using the lowering of the 
spherical symmetry of the unperturbed Hamiltonian to the axial symmetry and treating the 

projection of the dynamic electric field onto the symmetry axis “preferentially’‘-more accurately 
than two other components. 

In Refs. l-3 we considered electron or ion impact broadening of spectral lines of neutral 

hydrogen and therefore dealt with rectilinear trajectories of perturbers. In the present paper we 
develop a generalized theory of electron impact broadening of spectral lines of hydrogen-like ions 
and therefore deal with hyperbolic trajectories of perturbing electrons employed in the correspond- 
ing SST.4*7-‘2 In Sec. 2 we present the gist of all the generalized theories focusing on what is actually 
more general in them when compared to the SST. In Sec. 3 we specify our analytical results for 
electron impact broadening of hydrogen-like lines. In Sec. 4 we show that our numerical results 
compare better with experiments than calculations in the framework of previous theories and finally 
we draw conclusions in Sec. 5. 

2. OUTLINE OF THE GENERALIZED DYNAMIC BROADENING THEORIES 

Let us first review the structure of the SST. In the SST one deals with a quantum system described 
by the Hamiltonian 

H(t) = Z& + l’(t), v(t) = -dE(t), (1) 

where H,, is a time-independent atomic Hamiltonian, v(t) is an interaction with the electric 
microfield. The key part of the formula for the lineshape Zab(Ao) is the impact broadening operator 
Gab. The latter is expressed through the scattering matrix S: 

(2) 
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The scattering matrix is calculated via the Dyson perturbation expansion: 

s 

+CC 
S = Texp[-ih-’ dtq*Vq], q = exp[-ih-‘H,,t]. 

-m 
(3) 

So in the SST only the unperturbed Hamiltonian H,, is accounted for exactly, by its diagonalization 
in some coordinate system (usually-in the spherical quantization), while the entire interaction V(t) 
is treated as a perturbation. 

The central idea of the generalized theories’-’ is to break down the interaction V(t) in two parts 

k-(t) = V,(t) + Vz(r) (4) 

and to rearrange the terms in Eq. (1) in such a way, i.e., 

H(t) = H,(r) + VI(l), H, 0) = & + V(t), (5) 

that the extended “unperturbed” Hamiltonian H,(t) can be diagonalized at any instant of time 
(at least, in a subspace of a fixed principal quantum number n). Then the following modified 
Dyson expansion is used for the calculation of the scattering matrix: 

S=exp[-ih,~~~dtY,(r)]Texp[ih’~~~dte*Y,e], 

Q.exp[-ihlSl~d~‘H,(r.)]=exp[ihl(H,I+Sl~dr.Y,(r.))]. (6) 

Equation (6), which can be technically obtained by rearranging terms of the standard Dyson 
expansion allows one to take into account the interaction V, (t) on equal footing with the atomic 
Hamiltonian H,, , beyond the perturbation expansion. 

Physically the split of the spherically symmetric interaction V(t) into two axially symmetric parts 
V, (t), V*(t) and the preferential treatment of V, (t) requires a justification: the atomic Hamiltonian 
Ho should have a symmetry lower than the spherical symmetry (e.g., the axial symmetry). Let us 
enumerate some situations where the spherical symmetry may get lowered to the axial symmetry 

(1) H,, contains an interaction with a static (or quasistatic) electric field. We studied this 
situation in Ref. 1. 

(2) H, contains an interaction with a static (or quasistatic) magnetic field. We studied this 
situation in Ref. 2. 

(3) H,, is characterized by a motional anisotropy. We studied this situation in Ref. 3. 

Now let us focus on common features of the generalized theories and answer why they are more 
general than the corresponding SST. First, the generalized theories may be characterized by the 
following controlling parameter 

y s (Hanis)/RW(Vl)3 (7) 

where Hanis is the anisotropic part of the atomic Hamiltonian Ho = Hi,, + Hanis; &,( V,) is the 
Weisskopf frequency characterizing the dynamic interaction V, (t). (Specifically for the generalized 
theory of electron broadening at the presence of the quasistatic electric field this parameter Y is 
given by Eq. (18) below or by Eq. (35) of Ref. 1.) The important point is that in the limit Y+O 
we recover the corresponding SST. In other words, the generalized theories embrace the 
corresponding SST as the limiting cases. 

Second, all the generalized theories are convergent at small impact parameters while the 
corresponding SST for neutral radiators were divergent. Physically the difference from the SST may 
be explained as follows. The generalized theories deal with virtual transitions, caused by the 
interaction V,(t), between atomic sublevels “dressed” by the interaction Vz(t). It is the allowance 
for this “dressing” that eliminates the divergence and enhances the accuracy of the results. 

Third, the scattering matrix, Eq. (6), (and consequently, the impact broadening operator) consists 
of two physically different terms: 

s=s,+s,,. (8) 
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The first term 

S, rexp [ -i)i- ’ [_+I W(I)] (9) 

represents a purely adiabatic contribution, similar to what is usually referred as the “Old Adiabatic 
Theory” of broadening (see e.g. Ref. 6). As a rule, the main contribution to the broadening 
originates from the second term S,, 

S,,, = exp[ -ih-’ l:I dtV,]{Texp[ihl j:I dtQ*V2Q] - l}, (10) 

where after the expansion of T exp[ . * * ] and the angular averaging, the first nonvanishing term 
is usually of the second order with respect to Vz . The term S,, is essentially non-adiabatic: it would 
vanish if there were not non-adiabatic virtual transitions caused by the interaction V*(t) between 
sublevels dressed by the interaction V,(t). 

Fourth, it turns out that the generalized theories can be developed analytically to the same level 
as the corresponding SST. This is unexpected because the starting formulas for the generalized 
theories are more complicated than for the SST. 

3. ANALYTICAL RESULTS FOR ELECTRON BROADENING OF 
HYDROGEN-LIKE LINES 

We represent the Hamiltonian of a hydrogen-like ion (radiator) under the influence of 
an ion-produced quasistatic field F and an electron-produced dynamic field E(t) in the form of 
Eq. (5), with 

H,, = H, - dF, V,(t) = --d&(t), V*(t) = -d,E,(t) = -d,E, - d,.E,., (11) 

where H, is the Hamiltonian of an isolated radiator, the axis z of the parabolic quantization is 
chosen along the field F. Then the truncated Hamiltonian H,(t) = Ho + V, (t) is diagonal in any 
n-subspace. 

The detailed starting formulas are described by Eqs. (2)-( 19) of our previous paper’ and we will 
not reproduce them here. Then, in distinction to Ref. 1, we now use a hyperbolic trajectory of a 
perturbing electron with the usual parametrization:4*7 

r(7) =R {f;.(7) .e,+fp(7). e,} 

r(7)=p .(Kcosh(z)-a) 

f,,(r) = a(K - a cash(z)) + sinh(r) 

f,(7) = K - a(cosh(7) + sinh(r)) 

er(7) 
E(7) = -- 

r3(7) 

t = 6 (K sinh(z) - ar). (12) 

First we calculate the non-adiabatic contribution O,, . It turns out to be feasible, just as in our 
previous paper’ to perform all three angular integrations analytically and to arrive at the 
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generalized broadening function C(x, Y, r, Z) expressed in terms of elementary functions: 

3 m dx 
s s 

.‘I’ dx CkYAZ)=* _m I _~ 
exp{iZ(K(sinh x, - sinh x2) - ~(x, - x2)} 

2 
((K cash x, - ~1) (K cash x2 - CI))’ 

x 

1 

fplfp2 .&J(E) + (?LL2 -r,,f,,) .JL!9 
t 

-((f,,_L2 -f,,fp2) . a, 3 x2) + (L&* +fp,fl.2) 

x tlz(x, 3 x2)) ’ vz(x,, x2+9} 

?I (x, , x2) = - f f 0, (tanh(x,/2)) - 0, (tanh(x,/2)) + 2 i 

~2 (XI , x2) = gf O2 (tanh(x, /2)) - 0, (tanh(x, /2)) + 2 3 

2U +i(l -U’) 2au - f (1 - U’) 

@,(U)=(K+a)u2+(K-ar); @(“)=(K+a)u2+(K-cc) 

5 
as-; 

Z 
K=dm. (13) 

Note that spherical Bessel functions j,,(c), j, (E), j2(6) in (13) are indeed elementary functions: 

j,(E)=6-‘sin6, j,(6)=6-‘(sin~-~cos~), 

j,(6) = ~~~(3 sin c - 3c cos E - c2 sin 6). (14) 

Parameters Z and < are standard notations of the SST. The first one is defined as 

Zk = P&A, (PA = ~~lW)kFl~ k = a, P; 

(WJ = (d:),, - M),,. 7 Wfl) = VA?, - M),.,. . (15) 

The second parameter is expressed as 

<k = A/(& pc = (Z, - l)e2/(mo2), k = a, P. (16) 

Compared to the SST, there are two new parameters that enter the generalized broadening 
function (just as in Ref. 1). The first one 1 stands for 

x. = [sign&k >IX.~ ln or xs = [sign(bds)]XUB/n’, Xas G nq - n’q’. (17) 

The second new parameter Y is expressed as 

Y, = [3n,h/(2Z,m,v)]2F/e = pw/ps, k = a, 8. (18) 

It is the controlling parameter previously described in Eq. (7) that provides a connection between 
our results and the SST. It can be shown that in the limiting case Y-+0 corresponding to low- and 
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Fig. 1. The real part of broadening functions C calculated for n = 2, Z, = 2, x = 0, { = 0.37, and Y = 0.5. 
The abscissa scale is logarithmic with respect to the reduced impact parameter Z, so that the non-adiabatic 
width yna [see Eq. (20)] is proportional to the area under the curve Re C. 1, Our theory, Eq. (13); 2, the 

SST, Eq. (19); 3, a unitarity-caused cutoff, Eq. (26) (shown only for our theory). 

medium-density plasmas, from the generalized broadening function, Eq. (13) we recover the 
broadening function of the SST:? 

1 Oa 

s s 

-VI 
C(x,OLZ)=2 _m dx, 

dx exp(iZ(K(sinh x, - sinh x2) - a(x, - x2)} 
_-oo 2 

((K cash x, - a)(K cash x2 - a))2 

x (K* + sinh x, sinh x2 + a2 cash x, cash x2 - aK(cosh x, + cash x2)}. (19) 

However, the higher the density, the greater this parameter Y and the inaccuracy of the SST 
becomes. 

A final expression for diagonal matrix elements of the non-adiabatic term of the impact 
broadening operator has the form: 

(@“& = -4?rhrN,/(3m,Za;) 
s 

md~W,(O-’ ~(Ix,,~12+l~ol,~12) 
0 [ a’ 

X 

s 
m dZ,Z,Wil, Y,, L, Z,) + 1 (a+/?, a’+b’)* ; 

0 B 1 
W,(v) = 4n-“*u2Ui3 exp(-u2/ui), u. = (2T,/m,)“*. (20) 

Matrix elements of x and y operators in Eq. (20) differ from zero only for transitions between 
adjacent (by energy) Stark sublevels-due to peculiar selection rules for the parabolic quantization. 

That is why each sum (over a’ and over 8’) reduces to two terms: in the first term the integrand 
is C(x,, Y,, e,, Z,), in the second term the integrand is C( -_x~, Y,, <,, -Z,). 

Now we proceed to the calculation of the adiabatic contribution @,. Following the steps 
described by Eqs. (46)-(50) of our previous paper,’ we arrive to the same Eq. (51) of Ref. 1 for 

TSpeaking about this limit we emphasize again that it is not a part of the dynamic interaction V(r) with the electron field 
that goes to zero. What goes to zero is the anisotropic part I&, = -dF of the time-independent atomic Hamiltonian. 
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Fig. 2. The same as in Fig. 2, but for n = 3, Z, = 2, x = 0, c = 8.51 x 10e4 and Y = 9.33 x 10m4, where 
< and Y are calculated for the electron density N, = 9 x lO”cm- and temperature T, = 7.5 x 10’ K by 
Eq. (25) with the substitution F = 8.8eNfi3. The abscissa scale and the labels of the curves are the same 

as in Fig. 1. 

the so-called “collision volume” with the only difference that Z(R) in Eq. (51) should be substituted 
by Z(R,, R2) where 

s 

~72 

WC , RI) = dzz(1 -z sin z-‘) = G(R;‘) - G(R;‘), 
RI 

Here ci(x) is the cosine integral function, pD is the electron Debye radius. For the practically 
important range of R, % 1 it is sufficient to use an accurate asymptotic expression: 

Z(R,, R2) x [In R, + 1.26 + R:(cos R;’ - 3) + (2R: - R,)sin R;’ + ciR;‘]/6. (22) 

Note that in the limit pC+O (and consequently, R2 +O) we recover from Eqs. (21), (22), 
formulas (52), (53) of Ref. 1 for the neutral hydrogen case.? 

A final expression for the adiabatic contribution to the width has the form 

(Y& = - Re(@& = 27% 
s 

m dvW,(v)v[pw,(v)12Z[R,(v), R,(u)l. (23) 
0 

Taking into account that the function v -’ W,(v) has its maximum at v = (T,/m,)“’ E v_, and 
that 

s 
m dvW,(v)v-’ = (2m,)“2(nT,)-‘/2, 

0 

tWe would like to emphasize that for the neutral hydrogen case we had obtained in Ref. 1 the adiabatic contribution @” 
convergent at small impact parameters while in the Old Adiabatic Theory it was divergent6 Physically it was achieved 
here by allowing for the vector character of summation of contributions from individual perturbers (while performing 
the angular averaging). In the Old Adiabatic Theory a scalar summation of perturber contributions was used. 
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Fig. 3. Halfwidths of the H, line of He11 vs the electron density.0, Experiment by Grtitzmacher and 
Johannseni’ in a helium plasma of the temperature r, = 7.5 x lo3 K; +, calculations by Giinter et alI4 
(Stark broadening only); 0, calculations by Giinter et alI4 (Stark + fine structure + Doppler broadening); 
*, calculations by Greenei (no ion dynamics); A, calculations by Greene’s (ion dynamics included); 

x , our calculations. 

we can shortcut the integration over u by factoring the function I[R, (K,), R,(u_ ,)I out of the 
integral in Eq. (23). Thus we arrive at the following expression for the total (non-adia- 
batic + adiabatic) impact width: 

~olg = 81 c k~12 + I~a,,l’) s m d&Z,‘C(xar (Yak Cl,), Z) 
n 0 

+I (a +/II, a’+p’)* 
II 

9 + ~~vJ%WR, >, CR2 >I, 

B 

q = 3dt2Ne(2Z~m~)-'(2m,/nTe)"2, (24) 

where 

<Y,c) =9&oeFl(4ZfT), (5k) = 3n,e2F(Z,- l)(ao/T:)/(Z), 

(RI) = ZT,/(3&&+h (Rz) =e'z,(z,- l)(m,lT,)"'l(3X,,~). (25) 

4. NUMERICAL RESULTS 

In Fig. 1 we present the real part of our generalized broadening function, Eq. (13), calculated 
for n = 2, Z, = 2, x = 0, 5 = 0.37, and Y = 0.5. The abscissa scale is logarithmic with respect to 
the reduced impact parameter Z, so that the non-adiabatic width yna [see Eq. (20)] is proportional 
to the area under curve 1 in Fig. 1. A comparison with the corresponding result of the SST 
(curve 2) shows that the SST significantly underestimates the electron impact broadening. Even 
after truncating the solid curve by curve 3 originating from the requirement of the unitarity of the 
S matrix (IS, - 11 < 2), the remaining difference between the areas is about a factor of two.? 

fCurve 3 is drawn in accordance to the formula below that follows from letting IS, - 11 = 1: 

Re C,(Z) = {3Zf/[(n* - 92 - m2 - 1)Y2]}Z2. (26) 
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In order to find out how our theory and the SST compare with experiments, we calculated the 
halfwidth of the Ha line of He11 for conditions of the experiment by Griitzmacher and Johannsen.” 
In Fig. 2 we present the real part of our generalized broadening function, Eq. (13), calculated for 
n = 3, 2, = 2, x = 0, c = 8.51 x 10d4, and (Y,(F)) = ( Y,(8.8eNfi3)) = 9.33 x 10e4 at the electron 
density N, = 9 x IO” cmm3 and temperature T, = 7.5 x lo3 K (all notations are the same as in 
Fig. 1). Again it is seen that the SST underestimates the electron impact broadening though not 
by a factor of two as in Fig. 1. 

For the electron density N, = 9 x 10” cme3 and temperature T, = 7.5 x lo3 K previous calcu- 
lations from Ref. 14 and from the “no-ion-dynamics” part of Ref. 15 ended up with halfwidths 
that were significantly (by a factor of two) smaller than the observed halfwidth of this line (see 
Fig. 3). Our generalized theory brings up the halfwidth closer to the experimental one by 20-25%. 
(The spread is caused primarily by the uncertainty of the unitarity cutoff.) If we would add up the 
dynamic ion contribution in accordance with Ref. 15, the discrepancy with the corresponding 
experimental result would be significantly reduced (see Fig. 3). 

5. CONCLUSIONS 

In the concluding discussion let us address some questions that may arise in conjunction with 
the generalized theories of the electron impact broadening. First, it might seem that in our previous 
paper’ we claimed that for some plasma conditions the SST overestimates the broadening for 
neutral hydrogen while in the present paper we show that the SST underestimates the broadening 
for hydrogen-like ions. So the question might be asked: Why does it work in the opposite directions 
for hydrogen and for hydrogen-like ions? To begin with, in Ref. 1 we have shown that the most 
significant overestimation by the SST occurs for lateral components of the neutral hydrogen 
spectral lines; consequently, the most affected by that should be hydrogen lines without the central 
Stark components, like the H, line. As for the central Stark components, for neutral hydrogen 
(i.e., 5 = 0) the situation strongly depends on plasma parameters, particularly on the controlling 
dimensionless parameter Y. It can be seen from Fig. 1 of Ref. 1 that the difference between the 
SST and the generalized, more accurate theory may be both ways: for some values of Y the SST 
overestimates the broadening while for some other values of Y the SST underestimates the 
broadening for neutral hydrogen. For hydrogen-like ions (i.e., < # 0) it seems that the SST 
practically always underestimate the broadening of the central Stark components to some extent, 
thus affecting the most significantly the hydrogen-like lines with intense central Stark components, 
like the H, line. 

Second, the question might arise concerning the central Stark components resulting from 
radiative transitions between the unshifted Stark sublevels q = q’ = 0 (q = n, - n2 and q’ = n; - n; 
are parabolic quantum numbers). Namely, since (nqld,lnq) = 0 for q = 0, does it mean that the 
dressing by the interaction V,(t) = -d,&(t) will be irrelevant for the central Stark components? 
The answer is: no. Indeed, the central Stark components are broadened due to virtual transitions 
between the unshifted and two adjacent Stark sublevels. However, the adjacent sublevels are 
dressed by V,(t). That is why Stark broadening of both the lateral and the central components 
is described in the generalized theories more accurately than in the SST. Note that the dressing 
become increasingly important for high-density plasmas. 

Thus, both analytical and numerical results of the generalized theory of Stark broadening of 
hydrogen-like spectral lines presented in this paper demonstrate that the corresponding SST 
become increasingly inaccurate for high-density plasmas. 
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