
Accurate evaluation of parameters of lattice clocks

Andrei Derevianko∗
Physics Department, University of Nevada, Reno, Nevada 89557-0058

Sergey G. Porsev
Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300, Russia

and Physics Department, University of Nevada, Reno, Nevada 89557-0058
(Dated: April 11, 2007)
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I. INTRODUCTION

Atomic clocks based on ultranarrow 3P0 −1S0 transition in divalent atoms may offer a new level of time-keeping
accuracy. In addition, they may facilitate tracking changes in fundamental constants over time, measuring gravita-
tional red shifts, and timing pulsars. Compared to microwave atomic clocks, such as the present-day Cs frequency
standard, the optical clocks have an advantage that optical transitions have a much higher frequency and potentially
much higher resonance quality factors.

In the Katori scheme [1] (see Chapter XXX Editor, please insert cross-reference ), ultracold atoms are confined
in an optical lattice, largely eliminating Doppler and recoil shifts. The lattice laser wavelength is selected in such
a way that the dominant perturbation of the clock frequency, the induced AC Stark shifts, for both clock states
exactly cancel. At this “magic” wavelength of the lattice laser, the clock frequency is relatively insensitive to laser
polarization and power. Although other effects still perturb the clock frequency, estimates [2, 3] indicate that the
projected fractional uncertainty of such clocks may be as low as 10−18. By comparison, a few 10−16 is the fractional
uncertainty of the current Cs standard realizing the SI definition of the unit of time. This advantage of the optical-
lattice clocks has motivated a number of recent proposals: the original Katori’s scheme [1] with fermionic Sr isotopes
has been extended to Mg [4], Ca [5], and Yb [3] atoms and to bosonic isotopes [6, 7]. In addition, various schemes
of probing the highly-forbidden nsnp 3P0 − ns2 1S0 clock transition have been proposed: three-photon transition,
electromagnetically-induced transparency, and transition assisted by magnetic field [6–8].

While most of these developments will be reviewed in other chapters of this book, the goal of this chapter is to
provide a rigorous theoretical background for evaluating various atomic-structure parameters affecting performance
and ultimate accuracy of the lattice-based atomic clocks. We start by giving an introduction to the correlation
problem for divalent atoms in Section II. In that Section we also describe a relativistic many-body code used in
our calculations and demonstrate its capabilities by computing energies, dipole-matrix elements, hyperfine-structure
constants and static polarizabilities. We further evaluate parameters of the lattice-based clocks: the magic wavelengths
and multipolar polarizabilities (Sec. III), hyperfine-induced natural width of the clock transitions (Sec.IV), vector
polarizabilities(Sec. V), hyperfine-induced electronic magnetic moments (g-factors, Sec. VI), and black-body radiation
shifts (Sec. VII). Numerical estimates are given for a number of divalent atoms presently under investigation, with a
particular emphasis on ytterbium clock.

Unless specified otherwise, we use atomic units (|e| = ~ = me ≡ 1) throughout this chapter. In these units, the
speed of light c = 1/α, where α ≈ 1/137 is the fine-structure constant. We use the Gaussian electromagnetic units.
Temperature is expressed in units of Eh/kB , where Eh is the Hartree (atomic unit of energy) and kB is the Boltzmann
constant.
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II. SOLVING ATOMIC MANY-BODY PROBLEM

The clockwork in lattice clocks takes advantage of the electronic structure of atoms with two valence electrons
outside a closed-shell core. Such systems include group II atoms, such as magnesium, calcium, and strontium, or
more complex divalent atoms such as ytterbium and mercury atoms. A typical level structure of such atoms is shown
in Fig. 1. The clock transition is between the ground ns2 1S0 state and the J = 0 component of the lowest-energy
triplet state fine-structure manifold, nsnp 3PJ . In the following presentation we will also need nuclear parameters for
the stable isotopes; these are compiled in Table I.
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FIG. 1: A diagram of the low-lying energy levels for Mg (n=3), Ca (n=4), Sr (n=5), and Yb (n=6). The relative position of the
levels above the 3PJ fine-structure manifold depends on the atom. This diagram reflects the Yb energy levels (the core-excited
states are not shown). The clock transition is between the ground and the lowest-energy 3P0 state.

TABLE I: Nuclear parameters of the stable fermionic isotopes of Mg, Ca, Sr, and Yb. Here I are the nuclear spins and µI/µN

are the nuclear magnetic moments expressed in units of the nuclear magneton µN .

Isotope I µ/µN
25Mg 5/2 -0.85546
43Ca 7/2 -1.31727
87Sr 9/2 -1.09283

171Yb 1/2 0.4919
173Yb 5/2 -0.6776

Most of the enumerated atoms are relatively heavy and the relativistic effects play an important role (for example,
the nuclear charge of Hg is Z = 80). Moreover, certain properties, e.g., hyperfine-induced decay rates depend on
the wave functions near the nucleus where the relativistic effects dominate. Because of this relativistic nature of the
problem, below we present a theoretical analysis that is uniformly based on the Dirac equation and ab initio relativistic
methods of atomic structure. In most cases we reduce the derived expressions to the more familiar nonrelativistic
formulas.

In addition, an accurate description of the atomic structure of the heavy neutral divalent atoms requires treating
the correlation problem. A variety of atomic-structure methods has been developed since the inception of quantum
mechanics. One of such methods is the multiconfiguration Hartree-Fock method with relativistic effects included
through the Breit-Pauli Hamiltonian [9]. Another method for solving the electronic-structure problem for divalent
atoms relies on the model-potential approximation, see e.g., Ref. [10]. In this method the one-electron eigenvalue
problem for a singly charged alkaline-earth ion with a single valence electron is solved first. Using the solutions
of the one-electron problem, one constructs two-electron basis functions and an effective two-electron Hamiltonian,
which fully incorporates valence-electron correlation. In this way, the eigenenergies and eigenvectors of the two-
electron valence shell can be obtained. One more approach (used in this paper) is to employ a systematic formalism
that combines advantages of methods of configuration interaction and many-body perturbation theory (CI+MBPT
method). Relativistic effects are included exactly, as the formalism starts from the Dirac Hamiltonian and employs
relativistic bi-spinor wave functions. A resulting theoretical accuracy of the CI+MBPT does not exceed a few percent
even for such a relatively-complex atom as ytterbium.
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A. CI+MBPT method

FIG. 2: Major correlation effects for the divalent atoms. Panel (a): strong repulsion between the two-valence electrons. Panel
(b): self-induced (or self-energy) core-polarization attraction. Panel (c) cross-induced (or screening) core-polarization effect.
We depict two valence electrons as dots above the closed shell core. Polarization of the core by the electrons is shown as
deformation of the core with the heavy arrow showing the direction of the polarization. The induced dipole field causes
attraction of either perturbing (panel (b)) or the spectator (panel (c)) electron. The formulas below the sketches represent an
approximation characteristic of model-potential treatments, αc being core polarizability and r1 and r2 being coordinates of the
valence electrons. Their many-body analogs are represented by the lowest-order (panel (a)) and second-order ( panels (b) and
(c)) Brueckner-Goldstone diagrams.

Many-body perturbation theory (MBPT) provides a systematic prescription for solving the atomic many-body
problem [11]. Basically, the interaction between the electrons is treated as a perturbation and one applies the
machinery similar to the textbook stationary perturbation theory. The MBPT produces excellent results for alkali-
metal atoms which have only one electron outside closed shells. Even for atoms as heavy as Cs (55 electrons), the
modern ab initio many-body relativistic techniques demonstrate an accuracy of 0.1% for energy levels, and a few 0.1%
for hyperfine structure constants and lifetimes [12].

One could easily see that bringing the MBPT techniques from univalent to divalent atoms requires substantial
revision of the methods. Indeed let us consider calculations for the ground state of Be atom (1s2 2s2 configuration). If
we start our perturbative treatment from the Coulomb wave functions, the 2s and 2p orbitals have the same energies
and because of the degeneracy, we immediately acquire infinitely large terms in the perturbative expansion. Even if
we start our analysis from the more accurate Hartree-Fock approximation, the levels remain nearly degenerate and
the perturbative treatment breaks down.

These near-degenerate cases have to be treated essentially non-perturbatively using the configuration interaction
(CI) or multiconfiguration Hartree-Fock methods. The accuracy of the CI is limited only by the completeness of the
set of configurations used. For a many-electron atom the number of possible configurations is enormous and one has
to select only a small fraction of them (this subspace is usually referred to as the model space). In our treatment the
model space is limited to valence excitations. The contributions of remaining configurations (i.e., the ones involving
excitations of core electrons) are treated within the MBPT. The convergence of the perturbative expansion involving
the core-excited states is sufficiently rapid, reflecting relatively large energy denominators.

To summarize, the accuracy of the MBPT and the (restricted) CI methods is limited in different sectors of the many-
body problem. MBPT is not accurate in describing valence-valence interactions, while the CI fails to fully account for
the core-valence and core-core correlations. For this reason it is natural to combine the two methods in an attempt to
reach higher accuracy for multi-valent atoms. A general treatment of the correlation problem along these lines can be
found, e.g., in the monograph on atomic MBPT [11]. In our case we employ the method combining the configuration
interaction and the many-body perturbation theory as implemented by Dzuba, Kozlov, and Flambaum [13]. It
was initially used for accurate calculations of low-lying energy levels of atoms and then extended to calculations of
various observables such as hyperfine structure constants, oscillator strengths, lifetimes, polarizabilities, and parity
non-conserving amplitudes [14–21]. In the following we refer to this method as the CI+MBPT method.
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TABLE II: Two-electron binding energies in a.u. and energy differences in cm−1 for low-lying levels of Sr [20].

CI CI+MBPT Experiment [22]
Config. Level Eval ∆ Eval ∆ Eval ∆

5s2 1S0 0.586538 — 0.614409a — 0.614601b —
5s 4d 3D1 0.497148 19619 0.532110 18063 0.531862 18159.1
5s 4d 3D2 0.497077 19635 0.531809 18129 0.531590 18218.8
5s 4d 3D3 0.496941 19664 0.531298 18242 0.531132 18319.3
5s 4d 1D2 0.494339 20235 0.522311 20213 0.522792 20149.7
5s 6s 3S1 0.460940 27566 0.481533 29162 0.482291 29038.8

5s 5p 3P o
0 0.529636 12489 0.548754 14410 0.549366 14317.5

5s 5p 3P o
1 0.528850 12662 0.547896 14598 0.548514 14504.4

5s 5p 3P o
2 0.527213 13021 0.546079 14997 0.546718 14898.6

5s 5p 1P o
1 0.491616 20833 0.515901 21621 0.515736 21698.5

a This value obtained with δ = −0.3 a.u. bFor the ground state Eval = IP (Sr)+IP (Sr+),
where ionization potential (IP) for Sr = 45925.6 cm−1 and IP (Sr+) = 88964.0 cm−1 [22].

A detailed description of the CI+MBPT method can be found in papers [13–21]. Here we only briefly recapitulate
its main features. We consider Mg, Ca, Sr and Yb as atoms with two valence electrons outside the closed-shell
core. The strong repulsion between the two valence electrons is treated non-perturbatively using the configuration-
interaction method. The core-valence and core-core correlations are taken into account with the help of the many-body
perturbation theory method.

The atomic spectrum is found from the equation for the valence electrons:

Heff(En)|Ψn〉 = En|Ψn〉, (1)

where the effective Hamiltonian consists of two parts

Heff(E) = HFC + Σ(E).

Here HFC is the Hamiltonian in the frozen core approximation and Σ is the energy-dependent correction, which takes
into account virtual core excitations. Representative diagrams entering the operator Σ are shown in panels (b) and
(c) of Fig.2. It is worth emphasizing that the underlying calculations are ab initio relativistic and are based on the
Dirac equation and involve relativistic bi-spinors with large and small components of the electronic wave function.

At this stage we are able to fully account for the second order of the perturbation theory and partially for the
high-order corrections of the MBPT. The latter requires special discussion. The second order corrections to the
Hamiltonian include both the one-electron (self-energy diagrams in panel (b) of Fig.2) and the two-electron ones (see
the screening diagrams in panel (c) of Fig.2). This latter are specific for atoms with several valence electrons. A
number of the two-electron diagrams is very large and their calculation is extremely time-consuming. In the higher
orders the calculation of two-electron diagrams becomes impractical. Respectively, it is more promising to account
for the high-orders of the MBPT indirectly. One of such methods was suggested in Ref. [16], where it was shown
that a proper choice of the optimum initial approximation for the effective Hamiltonian can substantially improve the
agreement between calculated and experimental spectra of a multielectron atom. One introduces an energy shift δ
and makes the replacement Σ(E) −→ Σ(E − δ). This leads to the equation

Heff(En − δ)|Ψn〉 = En|Ψn〉.
By solving this equation with different δ, we obtain En(δ). If we choose δ=0, we have the Brillouin-Wigner variant of
the MBPT. Other choices of δ can give us different variants of the perturbation theory. In particular, the Rayleigh-
Schrödinger variant of the MBPT corresponds to δ = En − E

(0)
n , where E

(0)
n is the zero order energy of the level n.

For few electron systems an intermediate value of δ is optimal. This value can be found by fitting of energy levels.
As an example we present in Table II numerical results for the low-lying energy levels of atomic Sr. The results

are given for the cases of the pure CI and the CI+MBPT. As is seen from the table the two-electron binding energies
are reproduced very well. Already at the CI stage the agreement of the calculated and experimental energies is on
the level of 5%. Account for the MBPT corrections allows us to improve the accuracy by approximately an order of
magnitude and the use of the optimal δ gives the final accuracy of ∼ 0.1-0.2%.

After the optimized effective Hamiltonian is constructed and wave functions of the ground and the low-lying excited
states are found they can be used for calculations of other atomic quantities such as hyperfine structure constants, E1
transition amplitudes, and polarizabilities. For calculation of the matrix elements we apply the technique of effective
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TABLE III: Magnetic-dipole hyperfine structure constants A for the nsnp 3P1 and nsnp 3P2 states. The computed CI+MBPT
values [24] are compared with the experimental data.

A(3P o
1 ) (MHz) A(3P o

2 ) (MHz)
25Mg CI+MBPT -146.1 -129.7

Experiment -144.977(5) a -128.445(5) a

43Ca CI+MBPT -199.2 -173.1
Experiment -198.890(1) b -171.962(2) c

87Sr CI+MBPT -258.7 -211.4
Experiment -260.083(5) d -212.765(1) d

171Yb CI+MBPT 3964 2704
Experiment 3957.97(47) e 2677.6 f

173Yb CI+MBPT -1092 -745
Experiment -1094.20(60) e -737.7 f

a Lurio [25], b Arnold et al. [26], c Grundevik et al. [27], d Heider and Brink [28], e Clark et al. [29], f Budick and Snir [30].

TABLE IV: Reduced matrix elements for transitions from the low-lying nsnp 3,1P o
1 states to the ground ns2 1S0 state are

presented in a.u. The computed values are compared to the values known from the experiments.

|〈ns2 1S0||D||nsnp 3P1〉| |〈ns2 1S0||D||nsnp 1P1〉|
CI+MBPT Experiment CI+MBPT Experiment

Mg 0.0064(7) a 0.0053(3) b 4.03(2) a 4.12(6) c

0.0056(4) d 4.06(10) e

Ca 0.034(4) a 0.0357(4) f 4.91(7) a 4.905(22) g

0.0352(10) h

Sr 0.160(15) a 0.1555(16) i 5.28(9) a 5.249(2) j

Yb 0.54(8) k 0.549(4) l 4.4(8) k 4.148(2) m

a Porsev et al. [20], b Godone and Novero [31], c Smith and Gallagher [32], d Kwong et al. [33], e Lundin et al. [34], f Husain
and Roberts [35], g Degenhardt et al. [36], h Drozdowski et al. [37], i Husain and Schifino [38], jYasuda et al. [39], kPorsev

et al. [18], lBowers et al. [40], mTakasu et al. [41].

all-order (“dressed”) operators. Technically, we employ the random-phase approximation (RPA). The RPA sequence
of diagrams describes a shielding of externally applied field by the core electrons. We additionally incorporate smaller
corrections: Brueckner corrections to core orbitals, subtraction and two-particle corrections, correction to structural
radiation and normalization. The detailed discussion of these corrections can be found elsewhere [21]. Note that the
most-important contributions to matrix elements are associated with the RPA corrections.

To demonstrate the quality of the constructed wave functions and the accuracy of the effective-operator approach,
we present in Tables III and IV the calculated magnetic-dipole hyperfine structure constants A for the 3P1,2 states
and the reduced matrix elements 〈ns2 1S0||D||nsnp 3,1P1〉 of electric dipole operator D for the transitions from the
low-lying odd-parity 3,1P1 states to the ground state [20]. As seen from Table III the differences between the calculated
and the experimental values for the constants A, even for heavy Yb, do not exceed 1%. For the heaviest and more
computationally demanding Yb, the corrections to the effective hyperfine operator tend to cancel [17], and we have
simplified the calculations for Yb by omitting “dressing” and using the bare hyperfine operator.

The results presented in Table IV demonstrate the increasing importance of correlations when progressing from
lighter to heavier atoms. For heavier atoms the MBPT corrections to the matrix elements grow larger and as a result
the accuracy of calculations becomes worse. For example, for the 〈ns2 1S0||D||nsnp 1P1〉 electric-dipole matrix element
the accuracy of the CI+MBPT method is 0.5% for Mg but only 18% for Yb. This is hardly surprising because we
fully account for only the second order of the perturbation theory. For heavy atoms the higher orders of the MBPT
play a significant role. In Ref. [23] a similar relativistic approach was used for calculating E1 transition amplitudes
for divalent atoms and the obtained results are in a fair agreement with our results [20].

B. Sternheimer-Dalgarno-Lewis method

A usual problem encountered in evaluating atomic properties relevant to lattice clocks is a computation of second-
order sums over a complete set of atomic many-body states. One of such properties is the dynamic polarizability of
atomic states entering Stark shift of the levels in the laser field. The problem of determining the complete set of states
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needed for summations becomes quickly impractical for divalent atoms. It is more convenient to lump contributions of
the intermediate states into a single “perturbed” state. This method is conventionally referred to as the Sternheimer-
Dalgarno-Lewis method [42, 43]). Below we recapitulate the main features of this method, its implementation in
the CI+MBPT framework, and illustrate the technique by computing static polarizabilities of divalent atoms. The
presented static polarizabilities are relevant to evaluating black-body radiation shifts, see Sec. VII.

We would like to evaluate a second-order sum F that depends on matrix elements of operators A and B,

F =
∑

k

〈Ψ0|A|Ψk〉〈Ψk|B|Ψ0〉
Ek − E0

. (2)

States Ψk are the eigenfunctions of atomic Hamiltonian, H, with energies Ek. Instead of direct summation over the
intermediate states one can find an intermediate-state “lumped” wave function |δΨ〉 from an inhomogeneous equation

(H − E0)|δΨ〉 =
∑

k

|Ψk〉〈Ψk|B|Ψ0〉 = B|Ψ0〉. (3)

With the computed |δΨ〉, the quantity of interest, Eq. (2), is obtained simply as

F = 〈Ψ0|A|δΨ〉 . (4)

This approach is generalized in a straightforward way to higher orders of the perturbation theory, i.e., when Eq. (2)
includes more than two operators and several summations over intermediate states.

To illustrate an implementation of the Sternheimer-Dalgarno-Lewis method in the CI+MBPT framework we present
in Table V the results of computing the static scalar electric-dipole polarizabilities of the ns2 1S0 and nsnp 3P0 clock
states which are needed, for instance, for evaluating black-body radiation shifts, see Sec. VII. The details of calcula-
tions can be found in [44]. Here we only briefly describe the main points. In the frame of the CI+MBPT method
all electrons are separated into two groups: valence and core electrons. The intermediate states in Eq. (2) can be
separated accordingly into valence-excited states and core-excited states. The first group of states is obtained by
promoting valence electrons to other valence shells. As a result the intermediate state remains in the model (CI)
space of the effective Hamiltonian Eq. (1). The second group of states may, in addition, involve real excitations of
the core electrons. These excitations necessarily live in the space complementary to the model space.

If an initial state |Ψ0〉 is the state with the total angular momentum J = 0 the static scalar electric dipole
polarizability of a state |Ψ0〉 is defined as

α
(E1)
0 (0) = 2

∑

k

〈Ψ0|D0|Ψk〉〈Ψk|D0|Ψ0〉
Ek − E0

. (5)

Apparently the polarizabilities can be computed with the help of Eqs. (2-4) with A = B ≡ D0, where D0 is the
z-component of the operator of the electric dipole moment. For brevity in this subsection we denote α ≡ α

(E1)
0 (0).

Following the approach suggested in [45] and briefly discussed above we decompose the polarizability, Eq. (5), into
three parts

α = αv + αc + αcv . (6)

Here αv is a traditional term encapsulating excitations of the valence electrons. This part gives dominant contribution
to the polarizability. Once the wave functions of the valence electrons |Ψ0〉 are found from the eigenvalue equation,
Eq. (1), the valence polarizabilities αv are computed with the formally exact Sternheimer-Dalgarno-Lewis method
implemented in the CI+MBPT framework. From Eq. (3) we find

|δΨ〉 =
1

Heff − E0

∑

k

|Ψk〉〈Ψk|D0|Ψ0〉

=
1

Heff − E0
D0|Ψ0〉, (7)

and finally obtain for the valence part of the polarizability

αv = 2 〈Ψ0|D0|δΨ〉 . (8)
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TABLE V: Static electric dipole polarizabilities in a.u. for the ground 1S0 and the lowest-energy 3P0 excited states of Mg, Ca,
Sr, and Yb atoms [44]. Theoretical uncertainties are indicated in parentheses.

Mg Ca Sr Yb
α1S0 71.3(7) 157.1(1.3) 197.2(2) 120.5(3.1)
α3P0 101.2(3) 290.3(1.5) 458.3(3.6) 266(15)

Contribution of core-excited states to the polarizability denoted by αc has to be added separately. Here we follow
the work [45] and use the relativistic random-phase approximation [46] to determine the core polarizability as

αc =
∑

ωµ>0

fµ

ω2
µ

, (9)

where the summation is over particle-hole excitations from the ground state of the atomic core; ωµ are excitation
energies and fµ are the corresponding electric-dipole oscillator strengths. Accounting for core excitations is essential
in our accurate calculations, especially for heavier atoms. Finally, a small counter term αcv is related to excitations
of core electrons to occupied valence states. Because we include the Pauli-principle-forbidden excitations in the
calculations of core polarizabilities, we have to introduce the counter term.

Table V summarizes our numerical results for the static scalar electric polarizabilities. First we discuss the results
for the ground-state polarizabilities. Values for Mg, Ca, and Sr were obtained in Ref. [47] and for Yb in Ref. [44].
To estimate their uncertainties we use the fact that the intermediate state nsnp 1P1 contributes to the polarizability
at the level of 95-97 %. Taking this into account we can single out the contribution to (5) that characterizes the E1
transition from the ground state to the lowest-lying nsnp 1P1 state and makes the major contribution to the electric
dipole polarizability of the ground state ns2 1S0. We can then write αv as the sum of two terms

αv = αp
v + αv′ , (10)

where

αp
v ≡ 2

|〈nsnp 1P1|D0|ns2 1S0〉|2
E1P1 − E1S0

, (11)

and αv′ includes all the other terms of the sum over k in Eq. (5).
For calculating the polarizabilities the best-known literature values of the reduced matrix elements

〈ns2 1S0||D||nsnp 1P1〉 tabulated in [47] were used. For instance, for Sr it was obtained from a high precision measure-
ment of the lifetime of the 5s5p 1P1 state [39]: |〈5s2 1S0||D||5s5p 1P1〉| = 5.249(2) a.u. leading to the 0.1% uncertainty
in αv(1S0). Contribution of the core corrections to the polarizability for this case (αc + αcv = 5.4 a.u. [47]) is less
than 3%. Because the uncertainty of the latter can be roughly estimated as 1% [48] the final uncertainty of the
polarizability α is at the level of 0.1%. The uncertainties in the remaining polarizabilities were estimated as one half
of the difference between two predictions obtained with δ = 0 and with δ determined with the best fit to the experi-
mental energies (thus mimicking omitted higher-order many-body corrections). The uncertainties in the ground-state
polarizabilities range from 0.1% for Sr to 3% for Yb.

For the 3P0 states the uncertainties range from 0.3% for Mg to 6% for Yb. Unlike in the case of the ground state,
the polarizability of the 3P0 states is accumulated due to several transitions: the lowest-energy 3D1 states contribute
only at the level of 50-60 %. In Mg the contribution of the 3s4s 3S1 state is even larger than the contribution of the
3s3d 3D1 state. Generally, the accuracy of the calculations becomes worse for heavier atoms. This follows the general
trend of many-body calculations, where the correlations, and thus the omitted higher orders of perturbation theory,
become increasingly important as the number of electrons grows. The results presented in Table V for the ground
states of divalent atoms are in good agreement with other calculations (see, e.g., [49, 50]) and with experimental
results [34, 36, 51]. Unfortunately, the existing experiments are not sufficiently accurate to test our predictions.

In this section we briefly described the main features of the CI+MBPT method that couples the configuration
interaction technique with the many-body perturbation theory. We presented the results of calculations of different
quantities (energies of the low-lying levels for Sr, hyperfine structure constants and E1 transition amplitudes for
divalent atoms) in the CI+MBPT framework. We also discussed evaluation of sums over a complete set of intermediate
states using the Sternheimer-Dalgarno-Lewis method and random-phase approximation. We illustrated our technique
by evaluating the static scalar electric-dipole polarizabilities of the clock states for Mg, Ca, Sr, and Yb. In general,
we find that the CI+MBPT approach is capable of reliably and accurately predicting a wide variety experimental
observables, ranging from hyperfine constants to lifetimes and energies.
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III. MAGIC WAVELENGTH

In the following Sections, we evaluate lattice clock-related parameters. In the lattice clocks, the atoms are confined
to sites of an optical lattice (formed by a standing-wave laser field). We start off with analyzing a quantity central
to the Stark-free spectroscopy, the selection of the wavelength of the lattice laser. At a certain, “magic”, value of the
wavelength, the laser-induced perturbations of both clock levels are identical and the atom responds spectroscopically
as if it were placed in an artificial vacuum. The determination of the magic wavelength does not, fortunately, require
magic: it involves computation of dynamic polarizabilities. While usually knowing the dominant electric-dipole
polarizability is sufficient, the higher-multipole (e.g., magnetic-dipole, electric-quadrupole, . . . ) polarizabilities may
introduce additional corrections to the Stark shifts and affect values of the magic wavelength. Therefore, based on the
Floquet approach and multipolar expansions we derive in this Section the general multipolar dynamic polarizabilities.
Further we illustrate the derived expressions by numerically determining the magic wavelength for ytterbium clock.

A. Second-order dynamic response

In this section first we review the formalism of quasi-energy states (Floquet formalism) and then apply it to
deriving atomic properties relevant to the design of lattice clock. The Floquet formalism, as it applies to the atom-
laser interaction was reviewed, for example, by Manakov et al. [52]. One considers an interaction of a quantum system
with a monochromatic perturbation

V (t) = v(−)e−iωt + v(+)e+iωt. (12)

This perturbation drives a system characterized by the time-independent Hamiltonian H0 and the “bare” eigen-
spectrum {ψa, Ea}, so that

H0ψa = Eaψa.

In the Floquet formalism, the entire Hamiltonian is replaced by

H → H − i
∂

∂t
,

and the inner product is extended to include the time-averaging over the period of the perturbation T = 2π/ω,

〈〈φi|φk〉〉 =
1
T

∫ T

0

〈φi|φk〉dt, (13)

〈φi|φk〉 being the traditional inner product. In the lowest order we deal with the “dressed” atomic states

φa,k = ψa eikωt, k = 0,±1,±2, ... (14)
Ea,k = Ea + kω , (15)

where the functions φa,k satisfy the modified Schrodinger equation
(

H0 − i
∂

∂t

)
φa,k = Ea,kφa,k.

Since the time-derivative is already incorporated in the formalism, one may show that the expressions from the station-
ary perturbation theory may be employed to describe the response to the monochromatic V (t). In the “upgraded”
expressions all the “bare” eigenfunctions and energies are replaced by their “dressed” counterparts and the inner
products are extended according to the prescription (13). For example, the lowest-order correction reads

E(1)
a = 〈〈φa,0|V |φa,0〉〉.

This correction vanishes for the electric-dipole interactions and the atomic states of definite parity, and the second-
order expression will be of particular interest to us

E(2)
a =

∑

b,k

〈〈φa,0|V |φb,k〉〉〈〈φb,k|V |φa,0〉〉
Ea − Eb,k

.
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Explicit evaluation of the extended inner products limits the sums to single-photon transitions (k = ±1) leading to
the familiar result

E(2)
a =

∑

b

∣∣〈ψa|v(+)|ψb〉
∣∣2

Ea − (Eb − ω)
+

∑

b

∣∣〈ψa|v(−)|ψb〉
∣∣2

Ea − (Eb + ω)
. (16)

While the above second-order result can be recovered in the more traditional secular approximation (see, e.g., Sec. VII)
of the time-dependent perturbation theory, the advantage of the Floquet formalism is that one could employ the higher-
order expressions from the less complicated time-independent perturbation theory and readily derive corresponding
high-order corrections (such as hyperpolarizability) to the energy shift in the oscillating fields. We will employ this
technique for deriving hyperfine-induced light shifts in Sec. V.

As a familiar example, consider a perturbation by a linearly polarized electric field

V (t) ≡ VE1 (t) = −DzE0 cos ωt = −1
2
DzE0

(
eiωt + e−iωt

)
,

where Dz is the component of the atomic electric dipole moment along the electric field. By comparing with Eq.(12)
we identify v(+) = v(−) = −DzE0/2, and from Eq.(16) we immediately recover the well-known result

E(2)
a = −1

4
E2
0 αE1

a (ω) , (17)

αE1
a (ω) = 2

∑

b

Eb − Ea

(Eb − Ea)2 − ω2
|〈ψa|Dz|ψb〉|2 , (18)

with αE1
a (ω) being the dynamic (a.c.) electric-dipole polarizability of the state a.

B. Dynamic multipolar polarizabilities

Here we apply the Floquet formalism to derive the expressions for the dynamic multipolar polarizabilities. We use
the relativistic approach. Incidentally, compared to the nonrelativistic treatment, the relativistic formulation leads to
more concise derivations, as the couplings are linear in the vector potential. An interaction of an electron with the
EM field reads (to unclutter notation, here we consider only a single electron, the generalization for the many-electron
case being straightforward)

V = α ·A (r, t)− Φ (r, t) ,

where A and Φ are the magnetic and electric potentials, respectively and α represents a collection of the conventionally
defined Dirac matrices [53]. For an electromagnetic wave in the transverse gauge (where Φ ≡ 0), the perturbation
reduces to V = (α ·A) with the vector potential

A =
1
2
ε̂A0e

i(k·r)e−iωt + c.c.,

where ε̂ is the polarization vector (this may include circular and linear polarizations) and c.c. stands for the complex
conjugate. The amplitude A0 is related to the laser intensity I as I = ω2

8πc |A0|2 and the corresponding amplitude of
the electric field E0 = A0ω/c. The wavevector k = ω/c = αω in atomic units. We identify,

v(−) =
1
2
A0 (α · ε̂) ei(k·r), v(+) =

1
2
A0 (α · ε̂∗) e−i(k·r).

1. Multipolar expansion

At this point we focus on multipolar fields. We will use the outlined multipolar formalism in this Section and later
in Section VII. The reader is referred to Ref. [54, 55] for additional details.

We make use of the multipolar expansion of εei(k·r) in vector spherical harmonics Y(λ)
JM [56]

εei(k·r) = 4π
∑

JMλ

iJ−λ
(
Y(λ)

JM

(
k̂
)
· ε̂

)
a(λ)

JM (r) , (19)



10

where λ = 0 is for magnetic (MJ) and λ = 1 is for electric (EJ) 2J -polar amplitudes. Explicit expressions for the
expansion amplitudes a(λ)

JM (r) in terms of the spherical Bessel functions can be found in Ref. [55]; since no expansion
is made in powers of k · r, the retardation is built in into the formalism from the onset. We may introduce a similar
multipolar expansion for the coupling

t (ω, r) = (α · ε̂) eik·r = 4π
∑

JMλ

iJ−λ
(
Y(λ)

JM

(
k̂
)
· ε̂

)
τ

(Jλ)
M , (20)

where the tensors τ
(Jλ)
M =

(
α · a(λ)

JM (r)
)
.

The irreducible tensor operators τ
(Jλ)
M of rank J may be related to the conventional multipolar operators q

(Jλ)
M as

τ
(Jλ)
M = i(−1)λ+1

(
(2J + 1) (J + 1)

4πJ

)1/2
kJ

(2J + 1)!!
q
(Jλ)
M .

Relativistic expressions with retardation for matrix elements of q
(Jλ)
M can be found in Ref. [55]. Neglecting retardation

effects q
(J1)
M become the conventional frequency-independent EJ moments (in the length gauge)

q
(J1)
M ≈ rJCJM (r̂) ,

where CJM (r̂) are the normalized spherical harmonics. In the case of magnetic-dipole transitions in the nonrelativistic
limit

q
(1,0)
M ≈ −α

2
(L + 2S)M .

This expression is essentially the nonrelativistic atomic magnetic moment µ = −µB(L+2S), with the Bohr magneton
µB = |e|~/(2mec) expressed in the Gaussian/atomic units. Further, the retardation brings correction in the order of
(αω)2 to these expressions and it may be safely discarded for transitions between low-lying states of neutral systems.
For example, neglecting retardation, for the E1 tensor

τ
(1,1)
M ≈ i

k√
6π

DM ,

where DM ≡ q
(1,1)
M are the spherical components of the traditional electric-dipole operator.

Now we turn our attention to the effect of the multipolar fields on the second-order shift of the atomic energy level

E(2)
a =

1
4
A2

0

{∑

b

|〈ψb|t (ω, r) |ψa〉|2
Ea − (Eb − ω)

+
∑

b

|〈ψa|t (ω, r) |ψb〉|2
Ea − (Eb + ω)

}
. (21)

The problem can be solved in general, by substituting expansion (20) in the above expression. Because of our particular
emphasis on the lattice clocks, we limit our consideration to spherically-symmetric (Ja = 0) atoms. Then only the
rotationally-invariant (scalar) component is of relevance.

Below we demonstrate that various multipoles contribute to the light-shift (16) incoherently: E
(2)
a may be repre-

sented as a sum over individual multipolar contributions. Indeed, a typical summation in Eq.(16) reduces to

|〈ψb|t (ω, r) |ψa〉|2 = (4π)2
∑

JMλ

1
(2J + 1)

δJJb
δMMb

∣∣∣Y(λ)
JM

(
k̂
)
· ε̂

∣∣∣
2 ∣∣∣〈ψb||τ (Jλ)||ψa〉

∣∣∣
2

,

where we used the Wigner-Eckart theorem. To simplify this expression further, we choose the z-axis along the
wavevector k and fix the linear polarization along the x-axis (ε̂ = êx). The result for the scalar polarizability would not

depend on the polarization direction. Then for λ = 0, 1, we arrive at Y(λ)
JM (êz) · êx =

√
2J+1
16π

(
δM,−1 + (−1)λ

δM,+1

)
.

The final result may be represented as a sum over multipolar a.c. polarizabilities,

E(2)
a (Ja = 0) =

E2
0

4

∑

Jλ

α(Jλ)
a (ω) , (22)

each being defined as
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α(Jλ)
a (ω) =

J + 1
J

k2J−2

[(2J − 1)!!]2
∑

b

{
Ea −Eb

(Ea − Eb)
2 − ω2

}∣∣∣〈ψb|q(Jλ)
0 |ψa〉

∣∣∣
2

. (23)

In the lattice clocks the frequency of the lattice laser is chosen in such a way that the a.c. Stark shifts of the two
clock levels are exactly the same (“magic” frequency.) To the leading order the E1 polarizability overwhelms the a.c.
Stark shift . Compared to the E1 contribution, the higher-order multipole polarizabilities are suppressed by a factor
of (αω)2J−2 for EJ and by a factor of α2(αω)2J−2 for MJ multipoles. Nevertheless, the higher-order multipolar a.c.
shifts may modify the value of the magic frequency. From the general formula, Eq.(23), we immediately obtain for
the magnetic-dipole polarizability,

α(M1)
a (ω) = 2

∑

b

{
Ea − Eb

(Ea − Eb)
2 − ω2

}∣∣∣〈ψb|q(1,0)
0 |ψa〉

∣∣∣
2

, (24)

and for the electric-quadrupole a.c. polarizability,

α(E2)
a (ω) =

1
6

(αω)2
∑

b

{
Ea − Eb

(Ea − Eb)
2 − ω2

}∣∣∣〈ψb|q(2,1)
0 |ψa〉

∣∣∣
2

. (25)

C. Ytterbium magic wavelength

Now we illustrate the developed formalism by presenting numerical results for Yb lattice clock [3]. First we
compute the E1 a.c. polarizabilities, Eq. (18), with the CI+MBPT method,as described in Section II. The results
of the calculations for both 6s2 1S0 and 6s6p 3P0 states are shown in Fig. 3. According to our calculations the two
dynamic polarizabilities intersect at the “magic” wavelength λ∗ ≈ 752 nm. This result is in a good agreement with
the experimental value 759.25(2) nm obtained recently in [57]. It is worth noting that at ω∗ the sum (18) for the
ground state is dominated by the 6s6p 1P1 state and for the 6 3P0 level by the 6s7s 3S1 state. We estimate that the
computed scalar a.c. polarizabilities are a few per cent accurate.
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P
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FIG. 3: Electric dipole a.c. polarizabilities for 6 1S0 (solid line) and 6 3P0 (dashed line) states of Yb. The polarizabilities are
shown as a function of lattice laser wavelength λ.

We verified that at the magic frequency there are no resonant contributions for the next-order E2 and M1 polar-
izabilities and we expect α(E2,M1) . 10−6α(E1), similar to the case of Sr [58]. At the same time we notice that a
core-excited state 4f13(2F7/2)5d5/26s2 J = 5 may become resonant with an excitation from the 6 3P0 level. The rele-
vant M5 polarizability is highly suppressed, and we anticipate that the magic frequency will be only slightly shifted
by the presence of this state.

Higher-order correction to the a.c. Stark frequency shift arises due to terms quartic in the field strength E0. This
fourth-order contribution is expressed in terms of a.c. hyperpolarizability. The expression for hyperpolarizability [52]
has a complicated energy denominator structure exhibiting both single– and two–photon resonances. While for the
ground state there are no such resonances, for the 6 3P0 a two-photon resonance may occur for 6s8p 1P1 and 6s8p 3PJ
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intermediate states. We can not predict if the two-photon resonances would occur, but the experiments [57] indicate
that these are not an issue at least presently. For Sr [58] the hyperpolarizability shifts the energy levels by a few mHz
at a trapping laser intensity of 10 kW/cm2.

IV. HYPERFINE QUENCHING OF THE 3P0 STATES

The lifetime of the 3P0 state determines the natural width of the clock transition between the ground and the 3P0

state. For all bosonic isotopes of Mg, Ca, Sr, and Yb, the nuclear spin I vanishes and these isotopes lack hyperfine
structure. For bosonic isotopes the 3P0 state may decay only via very weak multi-photon transitions. However, for the
fermionic isotopes, I 6= 0, a new radiative decay channel becomes available due to the hyperfine interaction (HFI).
The HFI admixes J = 1 atomic states opening a fast E1 decay route. The resulting HFI-induced decays determine
the lifetimes of the 3P0 states and set the natural width of the clock transition.

Below we derive the hyperfine-induced decay rates for fermionic isotopes and compute the decay rates with the
accurate CI+MBPT method. We find that the resulting natural widths of the 3P0−1S0 clock transition are 0.44 mHz
for 25Mg, 2.2 mHz for 43Ca, 7.6 mHz for 87Sr, 43.5 mHz for 171Yb, and 38.5 mHz for 173Yb [24].

A. Derivation of hyperfine quenching rates

In the presence of nuclear moments, the total electronic angular momentum J no longer remains a good quantum
number. The atomic energy levels are characterized instead by the total angular momentum F = J + I. We develop
the formalism in terms of the hyperfine states |γ(IJ)FMF 〉. Here the angular momenta I and J are conventionally
coupled to produce a state of definite total momentum F and its projection MF , and γ encapsulates all other atomic
quantum numbers. To the lowest order in the hyperfine interaction, HHFI, the correction to the hyperfine level
|γ(IJ)FMF 〉 reads

|γ(IJ)FMF 〉(1) =
∑

γ′J′
|γ′(IJ ′)FMF 〉 〈γ

′(IJ ′)FMF |HHFI|γ(IJ)FMF 〉
E (γ′J ′)− E (γJ)

, (26)

where E (γJ) are the energies of atomic states.
In general, a nucleus may posses a number of magnetic and electric multipole moments. These moments couple to

the internal atomic fields and give rise to the hyperfine structure. In this Chapter we are mainly concerned with the
properties of the J = 0 states. For all the considered properties, only the magnetic-dipole moment of the nucleus,
µI is relevant (this comes from angular selection rules and more general analysis). The magnetic-dipole hyperfine
Hamiltonian, HHFI, may be represented by a rotationally-invariant expression

HHFI =
(
M(1) · T (1)

)
. (27)

Here M(1) is the nuclear magnetic moment operator, with the conventional nuclear moment defined as an expectation
value of M(1) in the stretched nuclear state

µI ≡ 〈IMI = I|M(1)
0 |IMI = I〉 . (28)

We list the moments for the isotopes of interest in Table I. The electronic part of the coupling for a point-like
nucleus is given by

T (1)
λ = i

√
2

(
α ·C(0)

1λ (r̂)
)

/r2, (29)

where C(0)
1λ (r̂) = (4π/3)1/2 Y(0)

1λ (r̂) is the normalized vector spherical harmonic.
Using the Wigner-Eckart theorem, the matrix element of the hyperfine interaction in Eq. (26) may be simplified to

〈γ′ (IJ ′) ; FMF |HHFI|γ (IJ) ; FMF 〉 = δFF ′δMF M ′
F
× (30)

(−1)I+J′+F 〈I ||M(1)|| I〉〈n′J ′||T (1)||nJ〉
{

I I 1
J J ′ F

}
.
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Now we turn to the derivation of the hyperfine quenching rate. The rate of spontaneous emission for an E1 transition
is given by the Fermi golden rule

Aa→b =
4α3

3
ω3

ab |〈a|D|b〉|2 , (31)

where ωab = Ea − Eb is the transition frequency. Summing over all possible Fb and magnetic quantum numbers Mb

of the final state, while disregarding small F -dependent energy correction, one obtains the rate

Aa→b =
4α3

3
ω3

ab

1
2Fa + 1

∑

Fb

|〈a||D||b〉|2 . (32)

For the case at hand, the initial state is the HFI-perturbed nsnp 3P0 state decaying to the ground ns2 1S0 state. Taking
into account Eq.(26), we arrive at the hyperfine quenching rate

AHFI

(
nsnp 3P0 → ns2 1S0

)
=

4α3

27
ω3

0µ2
I

I + 1
I

∣∣∣∣∣∣
∑

γ′

〈ns2 1S0||D||γ′J ′〉〈γ′J ′||T (1)||nsnp 3P0〉
E (γ′J ′)− E (nsnp 3P0)

∣∣∣∣∣∣

2

. (33)

Notice that due to the angular selection rules the total electronic angular momentum of the intermediate state is
limited to J ′ = 1.

B. Results and conclusions

We carry out numerical evaluation of the HFI-induced rate, Eq.(33) in several logical steps. First, we solve the
CI+MBPT eigenvalue problem (see Section II) and determine the ground and the nsnp 3P0 state wave functions and
energies. At the next step, we evaluate the sum over the intermediate states using the Dalgarno-Lewis method, as
discussed in Section II B.

The values of the sums over intermediate states grow larger for heavier atoms. This is due to increasing matrix
elements of the hyperfine interaction (see Table III). Further, a direct investigation of the sums shows that the
contributions of both nsnp 3P1 and nsnp 1P1 intermediate states are comparable. Qualitatively, the triplet state is
separated from the metastable states by a small fine-structure interval, but its E1 matrix element with the singlet
ground state vanishes nonrelativistically. For the singlet state, the situation is reversed: compared to the triplet
contribution, the involved energy denominator is much larger, but the electric-dipole matrix element is allowed.

TABLE VI: The hyperfine E1-quenching rates for the metastable 3P0 states in sec−1. The rates are compared with values from
the literature. Our CI+MBPT results were previously published in Ref. [24].

Atom F CI+MBPT Other
25Mg 5/2 4.44× 10−4 4.2× 10−4 a

43Ca 7/2 2.22× 10−3

87Sr 9/2 7.58× 10−3 6.3× 10−3 b

171Yb 1/2 4.35× 10−2 5.0× 10−2 c

173Yb 5/2 3.85× 10−2 4.3× 10−2 c

a Garstang [59], b Katori et al. [58], c Porsev et al. [3].

In Table VI we present our ab initio relativistic CI+MBPT results for the transition rates. Based on a better
than 1% accuracy of the ab initio hyperfine constants (Table III) and energy levels [17, 20] we expect that the
computed hyperfine quenching rate is accurate within at least a few per cent. In Table VI, the CI+MBPT values
are also compared with the results from the literature. For Mg the hyperfine quenching rates for the 3P0 state were
estimated more than four decades ago by Garstang [59] (this was motivated by astrophysical applications). Our result
is in a reasonable agreement with his values and with previous, less complete, estimates for 87Sr, Ref. [58], and Yb
isotopes [3].

It is worth mentioning one more process that can potentially lead to a shortening of lifetimes of the metastable
states. As demonstrated by Yasuda and Katori [60], the blackbody radiation (BBR) induced decay rate of the 5s5p 3P2

state for Sr is equal to 8.03×10−3 s−1 at 300 K. Our order-of-magnitude estimate of the BBR quenching for Mg, Ca,
and Yb shows that at room temperature (T = 300 K) the BBR quenching is negligible compared to the rates caused
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by the vacuum fluctuations of the electromagnetic field (T = 0). The reader, however, should be cautioned that the
BBR rate strongly depends on the ambient temperature and it may become important, for example, if a hot oven is
used as a source of atoms.

To summarize the main result of this section, the resulting natural widths of the 3P0−1S0 clock transition are 0.44
mHz for 25Mg, 2.2 mHz for 43Ca, 7.6 mHz for 87Sr, 43.5 mHz for 171Yb, and 38.5 mHz for 173Yb. These narrow
widths translate into the high resonance quality factors characteristic of the lattice-based optical clocks.

V. HYPERFINE-INDUCED VECTOR LIGHT SHIFT IN THE 3P0 STATE

The second order light shift involves two interactions with the laser field. The product of two interactions (D ·
E)(D · E∗) may be re-coupled into the scalar, vector (axial), and tensor components of the dynamic polarizability.
The rotational properties are determined by the respective tensors of rank 0,1, and 2 acting in the electronic space.
Because of the angular selection rules, for the J = 0 clock states only the scalar polarizability is of relevance and it
was the focus of our discussion in Section III. The hyperfine interaction, nevertheless, removes the spherical symmetry
of the atoms and leads to residual vector, αA

γF (ω), and tensor, αT
γF (ω) a.c. polarizabilities. These may affect the

performance of the clock: vector light shift can cause a small Stark-shift dependence on the polarization of the trapping
light.

To determine the effect of the HFI on the a.c. polarizability we carry out an analysis in the third-order perturbation
theory. We apply the Floquet formalism (Section III A) with respect to a combined operator

V = VHFI + VE1 (t) .

The third-order energy shift of the atomic energy level reads

E(3)
a =

∑

b,c6=a

VabVbcVca(
E

(0)
b − E

(0)
a

) (
E

(0)
c − E

(0)
a

) − Vaa

∑

b6=a

VabVba(
E

(0)
b − E

(0)
a

)2 ,

where matrix elements are evaluated with respect to the dressed basis and inner products involve time-averaging. The
relevant terms (involving two E1 laser-atom interactions and one HFI coupling) are

E(3)
a =

∑

b,c 6=a

(VHFI)ab (VE1)bc (VE1)ca(
E

(0)
b − E

(0)
a

)(
E

(0)
c −E

(0)
a

) +
∑

b,c 6=a

(VE1)ab (VHFI)bc (VE1)ca(
E

(0)
b − E

(0)
a

)(
E

(0)
c − E

(0)
a

) +

∑

b,c 6=a

(VE1)ab (VE1)bc (VHFI)ca(
E

(0)
b − E

(0)
a

)(
E

(0)
c −E

(0)
a

) − (VHFI)aa

∑

b 6=a

(VE1)ab (VE1)ba(
E

(0)
b − E

(0)
a

)2 .

Notice that we work in the dressed atom picture, i.e., the states a, b, c are products of atomic and photonic states.
Also (VE1)aa = 0 due to the parity/angular/photon number selection rules leading to a simplification of the last term.
Explicitly, after the time averaging, Eq.(13), (now a, b, c are the “bare” atomic states and the matrix elements are
computed using the traditional inner products)

E(3)
a (ω) = Ta (ω) + Ca (ω) + Ba (ω) + Oa (ω) ,

Ta (ω) =
∑

b,c 6=a

(VHFI)ab v
(+)
bc v

(−)
ca(

E
(0)
b − E

(0)
a

)(
E

(0)
c − ω − E

(0)
a

) +
∑

b,c6=a

(VHFI)ab v
(−)
bc v

(+)
ca(

E
(0)
b − E

(0)
a

)(
E

(0)
c + ω − E

(0)
a

) ,

Ca (ω) =
∑

b,c 6=a

v
(+)
ab (VHFI)bc v

(−)
ca(

E
(0)
b − ω − E

(0)
a

)(
E

(0)
c − ω − E

(0)
a

) +
∑

b,c6=a

v
(−)
ab (VHFI)bc v

(+)
ca(

E
(0)
b + ω − E

(0)
a

)(
E

(0)
c + ω − E

(0)
a

) ,

Ba (ω) = [Ta (ω)]∗ ,

Oa (ω) = − (VHFI)aa

∑

b 6=a

v
(+)
ab v

(−)
ba(

E
(0)
b − ω − E

(0)
a

)2 − (VHFI)aa

∑

b6=a

v
(−)
ab v

(+)
ba(

E
(0)
b + ω − E

(0)
a

)2 .

We refer to Ta (ω), Ca (ω), and Ba (ω) contributions as the top, center, and bottom diagrams, respectively. The
naming convention reflects the position of the HFI in the diagram. Oa (ω) combines other, corrective terms; for the
case at hand the Oa (ω) term is irrelevant since the expectation value (VHFI)aa = 0 for J = 0 states.
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We carry out the angular reduction of these diagrams. We find that the magnetic-dipole HFI does not bring in
neither the scalar nor the tensor contribution: there is only the vector component of the a.c. polarizability. In
principle, the tensor contribution to J = 0 polarizability might appear due to the electric-quadrupole moment of the
nucleus; the strength of this interaction is typically two orders of magnitude smaller than that of the magnetic HFI
and we neglect this effect. The final result simplified for the J = 0 states reads

δEa = −
(

1
2
E
)2

A αA
γF (ω)

MF

2I
,

MF being the projection of F (i.e., the projection of the nuclear spin I for J = 0). The conventional degree of
the circular polarization is defined in terms A = sin 2θ for an electromagnetic wave E = Eex cos θ cos (ωt− kz) +
Eey sin θ sin (ωt− kz). The shift is expressed in terms of the vector polarizability

αA
γF (ω) = −

√
2
27

{
C

(1)
1,1 (γJ, ω) + 2T

(1)
1,1 (γJ, ω)

}
,

where the dynamic reduced sums are expressed in terms of the reduced matrix elements of the dipole operator and
the HFI coupling

T
(K)
J ′J′′ (γJ, ω) = µI

∑

γ′

∑

γ′′ 6=γ

〈γJ ||T (1)||γ′′J ′′〉〈γ′′J ′′||D||γ′J ′〉〈γ′J ′||D||γJ〉 ×
(

1
E − E′′

1
E − E′ + ω

+ (−1)K (ω → −ω)
)

,

C
(K)
J ′J ′′ (γJ, ω) = µI

∑

γ′γ′′
〈γJ ||D||γ′J ′〉〈γ′J ′||T (1)||γ′′J ′′〉〈γ′′J ′′||D||γJ〉 ×

(
1

E − E′ + ω

1
E − E′′ + ω

+ (−1)K (ω → −ω)
)

.

In these formulas E is the energy of the state of interest. Notation (−1)K (ω → −ω) means that the preceding term
is multiplied by (−1)K and ω is replaced by −ω. For J = 0, the selection rules require J ′ = J ′′ = 1 for both reduced
sums.

Analyzing these expressions numerically in the CI+MBPT approach, we find that the vector polarizability of the
63P0 state of Yb is much larger than that for the ground state, as in the case of Sr [58]. For Sr, Katori et al. [58]
estimated the vector polarizability by adding HFS correction to the energy levels of intermediate states. Our analysis
is more complete and we find that the dominant effect is not due to corrections to the energy levels, but it is rather
due to perturbation of the 63P0 state by the HFS operator. The resulting values of αA

63P0
(ω∗) are −0.10 a.u. for 171Yb

and 0.075 a.u. for 173Yb. Experimentally this translates to requiring A < 10−6 at laser intensities of 10 kW/cm2 for
keeping the induced clock shifts below the mHz level.

VI. ZEEMAN EFFECT

When an atom is placed in the magnetic field, magnetic moments of its electrons and nuclei interact with the
magnetic field, leading to the familiar Zeeman effect. The advantage of the J = 0 levels used in the lattice clocks is
that because of their scalar nature, to the lowest order in the field strength, they are not Zeeman-shifted. However,
if we include the nuclear spin into the analysis, the linear Zeeman shift does appear, because the total angular
momentum F no longer vanishes in general. Qualitatively, the linear Zeeman shift appears for I 6= 0 because of the
nuclear magnetic moment. This moment contributes both directly (through the coupling of the magnetic moment
with the B-field) and indirectly. The indirect contribution is due to the mechanism of the HFI mixing which brings
in contribution of J 6= 0 levels with a large electronic magnetic moment. The two corrections are of the same order
of magnitude.

We will present the discussion in terms of the so-called Lande g-factors gF . It is introduced by considering the
lowest-order perturbation by a sufficiently weak B-field,

δEMF = 〈FMF |HB |FMF 〉 = µB gF B MF ,
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the direction of the B-field being chosen as the quantization axis.
The direct contribution of the nuclear moment to the atomic g-factor is well known (see, e.g., Ref.[61]). For the

J = 0 level it simplifies to

δgn
F=I = −1

I

(
me

mp

)(
µI

µN

)
,

and involves the ratio of the electron and proton masses. The ratio µI/µN is simply the nuclear magnetic moment
expressed in nuclear magnetons. Notice that the textbook derivation of the above expression implies that the magnetic
field acting on the nuclear magnetic moment is the same as the externally applied field. Generally this is not the case,
as the currents induced inside the atom by external fields tend to shield the fields. This effect is usually parameterized
in terms of the shielding constant σ: Bnuc = (1 − σ)Bexternal. Values for the shielding factors σ for closed-shell are
listed in Ref. [62], indicating that the δgn

F=I may be modified by as much as a few per cent. The shielding depends
on the electronic state and should be different for the two clock states. This parallels the “chemical shift” effect in
nuclear magnetic resonance. We are not aware of evaluation of the shielding correction for any of the atoms of interest
to the lattice clocks. Considering that even the current clock experiments [63] can measure the differential g-factors
to a 0.5%-level accuracy, such calculations may become of relevance.

Now we turn to the indirect contribution of the nuclear magnetic moment to the atomic g-factor. We consider an
atom placed in the uniform magnetic field B. The vector potential due to this field A = (B× r) /2 determines the
coupling

HB = (α ·A) =
∑

λ

(−1)λ S(1)
λ B−λ,

with the irreducible tensor operator of rank 1 defined as

S(1)
λ =

i√
2

(
α ·C(0)

1λ (r̂)
)

.

Nonrelativistically, the interaction HB reduces to

H
(NR)
B = µB B · (L + geS) , (34)

where ge ≈ 2.0023 is the g-factor of the electron (the quoted value also includes radiative QED corrections which are
beyond the present consideration).

Neglecting coupling of the nuclear spin to the B-field, we obtain

ge
F =

1
µBMF

〈FMF |S(1)
0 |FMF 〉 .

Non-vanishing correction to the g-factor arises due to HFI induced admixture to wave functions. This is the same
mechanism that causes the 3P0 state to decay radiatively (see Section IV). The first-order correction | (IJ) ; FMF 〉(1)
to the wave function is given by Eq.(26), leading to the correction to the g-factor

δge
F µBMF = 2

∑

γ′J′

〈γ (IJ) ; FMF |S(1)
0 |γ′ (IJ ′) ; FMF 〉〈γ′ (IJ ′) ; FMF |HHFI|γ (IJ) ; FMF 〉

E (γ′J ′)− E (γJ)

When restricting the summation over intermediate states we took into account the scalar character of HHFI. The
operator S(1)

λ involves only electronic degrees of freedom; this restricts the intermediate electronic momentum to
|J − 1| ≤ J ′ ≤ J + 1. For the J = 0 state, F = I and the non-vanishing HFI matrix element

〈(I, J = 1) ; FMF |HHFI| (I, J = 0) ; FMF 〉 =
(

µI

µN

)(
I + 1
3I

)1/2
α

2mp
〈γ′J ′ = 1||T (1)||3P0〉.

The matrix elements of the interaction with the external B-field is most easily evaluated in the nonrelativistic approx-
imation. The nonrelativistic operator is diagonal with respect to the radial part of the wave function, implying that
the only intermediate state that would admix to the nsnp 3P0 state is the state nsnp 3P1 of the same fine-structure
multiplet. This leads to

δge
F = −2

√
2

3 I
(ge − 1)

(
µI

µN

)
α

2mp

〈nsnp 3P1||T (1)||nsnp 3P0〉
E (nsnp 3P1)− E (nsnp 3P0)

. (35)
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While using this expression, one should be careful with the relative phase convention between the 3P1 and 3P0 states:
both states are assumed to nominally arise from the traditional coupling of S and L to their respective J with the same
radial part of the total wave function. We emphasize that Eq.(35) was obtained using the nonrelativistic expression
for the B-field coupling, Eq.(34), while the relativistic calculations are required for the HFI coupling which is primarily
accumulated near the nucleus.

Now we illustrate the above formulas with numerical estimates for Yb. Here the CI+MBPT value of the HFI
matrix element is α

2mp
〈3P1||T (1)||3P0〉 = 6522 MHz and the fine-structure splitting has the value of 703.6 cm−1.

Numerical results for the nuclear δgn
F and the electronic δge

F corrections to the g-factor are given in Table VII. One
should observe that both corrections are of a comparable size. When analyzing the differential g-factors for the clock
transition, one should keep in mind that δgn

F factors are essentially the same for the ground and the excited state (the
only difference is due to the “chemical shift” for the two levels), while in the nonrelativistic approximation the ge

F of
the ground state vanishes. The computed values imply that mHz shifts would be produced by µG magnetic fields.
Fields can readily be calibrated and stabilized to this level using magnetic shielding.

TABLE VII: Lande g-factors for the 3P0 state of fermionic isotopes of Yb. The values are from Ref. [3]. δgn
F are the nuclear

and δge
F are the electronic corrections, respectively. The total, δg, is the sum of the two g-factors.

Isotope µI/µN I δge
F δgn

F δg,Total
171 0.4919 1/2 −2.9 × 10−4 −5.4× 10−4 −8.3× 10−4

173 −0.6776 5/2 7.9× 10−5 +1.48× 10−4 2.27× 10−4

VII. BLACK-BODY RADIATION SHIFT

Considering advantages of optical lattice clocks, here we investigate an important systematic effect of the black-body
radiation (BBR) on the frequency of the 3P0 −1S0 clock transition. Indeed, the current SI definition of the second
explicitly involves atomic clock operating at the absolute zero of temperature [64]. While the present definition of the
second is based on the microwave Cs clock, one may anticipate that the rapidly-progressing optical lattice clocks may
be used to redefine the unit of time in the future. Beyond the metrologically-important BBR correction to the clock
frequency, the BBR shifts also affect the error balance of the clocks: the non-uniform distribution of the temperature
inside the clock chamber may lead to the effective broadening of the lines [2, 63].

In a laboratory environment with an ambient temperature T , one needs to introduce the T -dependent BBR correc-
tion to the observed frequency. Even in Cs the value of the BBR shift was a subject of a recent controversy [65–67].
Here we setup the relativistic multipolar theory of the BBR shifts and using techniques of many-body relativistic
atomic structure, we compute the BBR shift for Mg, Ca, Sr, and Yb and evaluate uncertainties of the calculations.
This Section is based on our paper [44] and provides additional details.

As summarized in Table VIII, the resulting fractional uncertainties in the clock frequencies at T = 300 K are large,
ranging from 1× 10−17 for Mg to 3× 10−16 for Yb.

The main conclusions of this Section are (i) the present uncertainty in our computed BBR shift is an obstacle on
the way towards the projected 10−18 accuracy goal; (ii) due to T 4 scaling of the BBR shift, it may be beneficial to
operate at cryogenic temperatures; (iii) if operating at room temperatures, high-precision (0.02%-accurate for Sr)
measurements of the BBR shifts or related quantities are required; (iv) Mg-based clock is the least susceptible to
BBR; compared to Sr, the Mg BBR shift is an order of magnitude smaller (see Table VIII). Additionally, we develop
a general relativistic theory of the BBR shift caused by multipolar components of the radiation field.

TABLE VIII: Black-body radiation shift for clock transitions between the lowest-energy 3P0 and 1S0 states in divalent atoms.
δνBBR is the BBR shift at T = 300K with our estimated uncertainties. ν0 is the clock transition frequency, and δνBBR/ν0 is the
fractional contribution of the BBR shift. The last column lists fractional errors in the absolute transition frequencies induced
by the uncertainties in the BBR shift.

Atom δνBBR, Hz ν0, Hz δνBBR/ν0 uncertainty
Mg −0.258(7) 6.55× 1014 −3.9× 10−16 1× 10−17

Ca −1.171(17) 4.54× 1014 −2.6× 10−15 4× 10−17

Sr −2.354(32) 4.29× 1014 −5.5× 10−15 7× 10−17

Yb −1.25(13) 5.18× 1014 −2.4× 10−15 3× 10−16
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A. Multipolar theory of the black-body radiation shift

The BBR shift is caused by perturbation of the atomic energy levels by the oscillating thermal radiation. Both
atomic levels involved in the clock transition are perturbed and the overall BBR correction is a difference of the
BBR shifts for the two levels. We find that determining shift for the upper 3P0 level requires certain care. This
level is a part of the 3PJ fine-structure manifold, J = 0, 1, 2. The separation between the levels in the manifold is
comparable to the characteristic wavenumber of the BBR radiation, 208.51 cm−1, at T = 300 K, and contributions of
the BBR-induced magnetic-dipole and electric-quadrupole transitions to the levels of the manifold may be enhanced.
Taking these induced transitions into account requires going beyond the conventional electric-dipole approximation,
Ref. [68].

Considering a potential importance of the multipolar contributions, here we derive the relevant formulas for BBR-
induced energy shifts. Although we show that the M1 and E2 contributions can be neglected at the present level of
uncertainty for the dominant E1 shift, incorporating M1 multipoles will be required if the lattice-clocks reach their
projected 10−18 accuracy level.

We start with the usual box quantization for the photon field and expand the magnetic potential inside the box of
side L over the plane waves (see, e.g. Ref.[69])

A (r, t) =
∑

λ

qλAλe−iωλt + c.c.

with

Aλ =
1

L3/2
ελei(kλ·r) .

A periodic boundary condition is imposed on A (r, t), effectively quantizing the modes, kλ = ωλ/c. In the Gaussian
units and the Coulomb gauge, the electron-field interaction Hamiltonian reads

H ′ = (α ·A) =
1

L3/2

∑

λ

qλv
(−)
λ e−iωλt +

1
L3/2

∑

λ

q∗λv
(+)
λ e+iωλt

with v
(±)
λ = (α · ελ) e∓i(kλ·r). We are interested in the time-evolution of atomic states caused by these oscillating

fields. To this end we expand the atomic wave function ψ (t) over the complete set of stationary states |k〉 of the atom

|ψ (t)〉 =
∑

k

ck (t) e−iEkt |k〉 ,

where the time-dependent amplitudes satisfy a set of coupled equations

i
d

dt
ck (t) =

∑
p

eiωkptH ′
kp (t) cp (t) .

Here ωkp = Ek − Ep and H ′
kp ≡ 〈k|H ′|p〉 are the matrix elements of the Hamiltonian H ′.

To solve this set of equations we employ the secular approximation. Indeed, the perturbing field is weak and we
assume that it does not lead to large population transfer from the initial (perturbed) state ψg (t). On the r.h.s. of
the equation for the excited (perturbing) state amplitude we may neglect contributions of other excited states

i
d

dt
ck 6=g (t) ≈ eiωkgtH ′

kg (t) cg (t) =

1
L3/2

∑

λ

{
qλ

[
v
(−)
λ

]
kg

ei(ωkg−ωλ)t + q∗λ
[
v
(+)
λ

]
kg

ei(ωkg+ωλ)t

}
cg (t) .

We expect that the reference state amplitude follows cg (t) = cg (0) exp [−iδEgt], where the light shift δEg ¿
(ωkg ± ωλ). Under this assumption we may disregard the time-dependence of cg (t) while integrating the above
equations. The resulting amplitudes for the excited states adiabatically follow the reference state amplitude

ck 6=g (t) = Xkgcg (t) ,

Xkg =
1

L3/2

∑

λ





qλ

[
v
(−)
λ

]
kg

ωgk + ωλ
ei(ωkg−ωλ)t + q∗λ

[
v
(+)
λ

]
kg

ωgk − ωλ
ei(ωkg+ωλ)t




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We substitute this solution into the time-dependent equation for the cg (t) amplitude, arriving at

i
d

dt
cg (t) = δEgcg (t) ,

δEg =
∑

k

eiωgktH ′
gk (t)Xkg.

As a next step we carry out statistical averaging of the above expression over the field amplitudes qλ and q∗λ. The
only non-vanishing combinations are

〈qλq∗λ〉 =
2π

α2

1
ωλ

n̄ωλ
,

where the mean occupation number for photons

n̄ω =
1

exp (ω/T )− 1
.

Therefore,

δEg =
α

4π2
P.V.

∫ ∞

0

dω ω n̄ω

∑
ε

∫
dΩk

∑
p

{[
v(+)

]
gp

[
v(−)

]
pg

ωgp + ω
+

[
v(−)

]
gp

[
v(+)

]
pg

ωgp − ω

}
,

where we made a transition
∑

λ →
(

L
2π

)3 ∑
ε

∫ ∫
dΩkk2dk in the limit of L →∞. P.V.

∫
dω stands for the Cauchy’s

principal value of the integral; as elucidated in Ref. [68] it is required for a proper treatment of nominally divergent
resonant contributions.

So far the derivation paralleled the method discussed, for example, in Ref. [68] for the electric-dipole transitions.
At this point we focus on multipolar fields. While evaluating matrix elements of operators v(±), we make use of the
multipolar expansion of εei(k·r) in vector spherical harmonics

εei(k·r) = 4π
∑

JMλ

iJ−λ
(
Y(λ)

JM

(
k̂
)
· ε

)
a(λ)

JM (r) ,

where λ = 0 is for magnetic (MJ) and λ = 1 is for electric (EJ) multipolar amplitudes (see Section III). To simplify
the light-shift expression we employ the following property of the harmonics

∑
ε

∫
dΩk

(
Y(λ′)∗

J′M ′

(
k̂
)
· ε

) (
Y(λ)

JM

(
k̂
)
· ε

)
= δJJ ′δλλ′δMM ′ ,

As a result, we find that the BBR shift is a sum over independent multipolar contributions

δEg =
∑

Jλ

δE(Jλ)
g , (36)

where λ = 0 is for magnetic (MJ) and λ = 1 is for electric (EJ) multipolar amplitudes. The individual multipolar
shifts are

δE(Jλ)
g = −π

J + 1
J [(2J − 1)!!]2

α2(J−1)P.V.

∫ ∞

0

dω ω2(J−1) uω(T ) ᾱ(Jλ)
g (ω) . (37)

Here α
(Jλ)
g (ω) are the generalized dynamic multipolar scalar polarizabilities

ᾱ(Jλ)
g (ω) =

2
2J + 1

∑

p,M

| 〈p|Q(λ)
JM |g〉 |2

{
ωpg

ω2
pg − ω2

}
. (38)

Here the transition operator was expressed in terms of the multipole moments q
(λ)
JM of Sec. III. The polarizabilities

ᾱ
(Jλ)
g (ω) are proportional to the scalar polarizabilities, Eq.(23) of Section III. Here for convenience we pulled out

frequency-dependent prefactor for clarifying the following derivation.
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A cursory examination of Eqs.(37,38) reveals that compared to 2J multipole, the contribution of 2J+1 multipole
is suppressed by a factor of α2. Also for the same J the magnetic contribution is α2 weaker than that of the EJ
photons. As in the theory of multipolar radiative transitions E(J+1) and MJ contributions are of the same order in
α. To illuminate the T -dependence of contributions of individual intermediate states we recast the BBR shifts into
a form (Jg is the total angular momentum of the reference state, 〈g||q(λ)

JM ||p〉 is the reduced matrix element, and we
separate out factor of α2 for MJ matrix elements )

δE(λJ)
g = − (αT )2J+1

2Jg + 1
(α2)λ−1

∑
p

(α2)1−λ
∣∣∣〈g||Q(λ)

J ||p〉
∣∣∣
2

FJ

(ωpg

T

)
, (39)

with universal functions (x = ω/T )

FJ (y) =
1
π

J + 1
J (2J + 1)!! (2J − 1)!!

P.V.

∫ ∞

0

(
1

y + x
+

1
y − x

)
x2J+1

ex − 1
dx . (40)

The universal functions FJ (y) are multipolar generalizations of function F (y) introduced by Farley and Wing [68]
in the E1 case. We computed FJ functions using standard integration routines built-in into Mathematica. A plot
of FJ(y) for several J may be found in Ref. [44]. FJ rapidly change around y ∼ 1 and slowly fall off for y À 1.
Depending on the value of excitation energy, ωpg = y T , a particular intermediate state may introduce either negative
or positive BBR shift. FJ are broad distributions and have comparable values for |y| . 20.

The limit y À 1 corresponds to the case when the transition energy is much larger than T . Here |y| À 1,
FJ(y) ∝ 1/y. If all virtual transitions satisfy this requirement, then the leading contribution to the multipolar BBR
shift can be expressed in terms of static polarizabilities

δE(Jλ)
g = −ζ(2J + 2)(2J + 2)!

2πJ [(2J − 1)!!]2
α2J+1T 2J+2ᾱ(Jλ)

g (0), (41)

where ζ is the Riemann zeta-function. As the scaling factor, α2J+1T 2J+2 , is expressed in atomic units, we observe
that as multipolarity J increases by one, in addition to the usual α2 suppression, there is a temperature suppression
factor of (kBT/Eh)2. For T = 300K this suppression is sizable, as (kBT/Eh)2 ≈ 9.0× 10−7.

B. BBR shift for the clock transition in divalent atoms

Below we apply the developed formalism to computing the BBR shift for the 1S0 −3P0 clock transition in divalent
atoms. We will assume that the atoms are at the ambient temperature of T = 300 K. Both clock levels experience
the BBR shift and the total shift is the difference between the individual shifts, δνBBR = δνBBR(3P0)− δνBBR(1S0).

Consider first the BBR shift of the ground 1S0 state. Here transition energies of various multipolar transitions to
the upper levels are much larger than T , i.e., we are in the y À 1 limit. Here compared to the dominant E1-induced
shift, the contribution of M1 transitions is suppressed by α2 ∼ 10−4 and E2 by α2 (kBT/Eh)2 ∼ 10−10. Higher-order
multipoles are suppressed even more. As to the retardation effects in E1 matrix elements, we expect that they would
be suppressed by a factor of α2 (kBT/Eh)2 ∼ 10−10. Nevertheless, since the fractional contribution of the BBR shift
to the clock frequency is at 5 × 10−15 level (see Table VIII), one would need to introduce the M1 corrections at the
projected accuracy of 10−18.

For the 3P0 levels, the characteristic thermal photon frequency is comparable to the fine-structure intervals for the
3PJ manifold. The 3P0 level is connected by M1 transition to the 3P1 level and by E2 transition to the 3P2 level.
For these transitions the values of the relevant functions FJ ∼ 1, thus δE

(M1)
g ∼ α2 (αT )3, δE

(E2)
g ∼ (αT )5, while

δE
(E1)
g ∼ α3(T )4/ω3D1−3P0 . Qualitatively, we anticipate that M1 and E2 contributions are suppressed by factors of

10−3 and 10−11, respectively. (Notice that ω3D1−3P0 ≈ 2×10−2Eh.) Our numerical estimate, based on the transitions
inside the fine-structure manifold lead to the following values of the BBR shifts for Sr: δE

(M1)
g = 2.4× 10−5 Hz and

δE
(E2)
g = 2.5× 10−8 Hz. Since the E1 BBR shift for Sr is ∼ 2Hz, the M1 and E2 contributions can be neglected at

the present 1%-level of accuracy of our calculations.
We find that although the thermal photon energy is close to the fine-structure intervals, the induced multipole

BBR shifts are not amplified. The main reason is that the BBR energy distribution is broad: the functions FJ have
comparable values for a wide range of excitation energies, |ω| . 20 T . For example, for Sr 3P0 − 3D1 E1 transition
F1 ≈ 0.16, while for the 3P0 − 3P1 M1 transition F1 ≈ −0.41 and for the 3P0 − 3P2 E2 transition F2 ≈ −0.36.
For such a broad distribution, the multipolar BBR shift is determined by the prefactor in Eq. (39) resulting in a
suppression of multipoles beyond E1.
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Based on the above discussion, we may exclusively focus on the electric-dipole (J = 1, λ = 1) contribution to the
BBR shift. From our general expressions we obtain an approximate formula,

δE(E1)
g ≈ − 2

15
(απ)3T 4α(E1)

g (0)× [1 + η] , (42)

η =
(80/63)π2

α
(E1)
g (0)T

∑
p

|〈p||Q(1)
1 ||g〉|2

(2Jg + 1)y3
p

(
1 +

21π2

5y2
p

+
336π4

11y4
p

)
. (43)

Here yp = ωpg/T and α
(E1)
g (0) is the traditional static dipole polarizability. To arrive at the above equation, we used

asymptotic expansion

F1 (y) ≈ 4π3

45y
+

32π5

189y3
+

32π7

45y5
+

512π9

99y7
,

which has an accuracy better than 0.1% for |y| > 10. η represents a “dynamic” fractional correction to the total shift.

C. Numerical results

The leading contribution to the BBR shift is determined by the static E1 polarizability. We have evaluated them
in Section II using a relativistic many-body procedure. The results of calculations for the static electric dipole
polarizabilities for the ns2 1S0 and nsnp 3P0 states were presented in Table V. The discussion of the accuracy of our
results is given in Section II B.

With the computed polarizabilities we find the BBR shifts with Eq.(42). The “dynamic” correction η is negligible
for the 1S0 states, but is needed for the 3P0 calculations. Indeed, for the ground state, the smallest excitation energy
E1P o

1
− E1S0 is equal to 21698 cm−1 for Sr. At T = 300K the characteristic value of y ∼ 100 for all the atoms.

By contrast, for the 3P0 clock level, the transitions to the nearby 3D1 level (see Fig. 1) involve smaller energies. For
Sr, the relevant energy is only 3841 cm−1 corresponding to characteristic value of y ∼ 20. At this value, the “static
polarizability” approximation has only a few percent accuracy. While evaluating η we find it sufficient to truncate
the summation over intermediate states at the lowest-energy excitation. This “dynamic” correction contributes to
the BBR shift of the 3P0 state at 0.1% level in Mg, 1% in Ca, 2.7% in Sr, and 0.7% in Yb. Notice that since the clock
BBR shift is obtained by subtracting BBR shifts of the individual levels, the “dynamic” correction contributes at an
enhanced 5% level in Sr.

Finally, we combine the BBR shifts of the individual clock levels and arrive at the overall BBR corrections summa-
rized in Table VIII. Our computed BBR shift for Sr, −2.354(32) Hz is in agreement with an estimate [2] of −2.4(1)
Hz. The uncertainties are better than 3%, except for Yb where the uncertainty is 10%. These uncertainties are large
compared to the projected 10−18 fractional accuracy of the lattice-based clocks (see Table VIII).

At room temperatures, the uncertainties in BBR shifts seem to be a major factor in the error budget of these clocks.
At the projected 10−18 fractional accuracy, the required accuracies (e.g., 0.02% for Sr) in determining BBR shifts are
beyond the presently demonstrated capabilities of atomic calculations and related polarizability measurements.

If any experimental (theoretical) progress is achieved (for instance, if sufficiently accurate values of the dipole matrix
elements such as 〈3 P0|D|3 D1〉 become available ) the uncertainties in the BBR shifts due to E1-polarizabilities can
be reduced. In this case the accurate calculation of the BBR shift contributions from M1- and E2-transitions will be
needed using the formalism developed in this Section. At present the uncertainties of the E1-polarizabilities are so
large that the projected 10−18 fractional accuracy of the optical-lattice clocks seem to be difficult to attain (if the
future definition of the second involves atoms at T = 0 K). In any case the BBR contribution has to be taken into
account when evaluating uncertainties due to either spatial or temporal fluctuations of the thermal radiation.

VIII. SUMMARY

In this Chapter we presented a detailed evaluation of a number of important atomic-structure parameters affecting
design and ultimate accuracy of lattice clocks involving optical 3P0 −1 S0 transition in divalent atoms. The calcula-
tions were carried out using ab initio relativistic many-body methods of atomic structure. Overall we find that the
calculations of this sort are reliable and the underlying formalism provides a clear systematic way on improving theo-
retical accuracy further. In particular, we evaluated the hyperfine-induced transition widths of the clock transitions,
multipolar and vector a.c. polarizabilities, static polarizabilities, “magic” trapping wavelengths, hyperfine-induced
g-factors, and black-body radiation shifts. Among the remaining parameters one of the important systematic effects
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is due to hyperpolarizability, i.e., contribution to the Stark shifts quartic in the atom-laser interaction [58]. Evaluation
of this quantity is discussed in details in Chapter YYY Editor, please insert cross-reference to Palchikov’s
chapter.
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