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Coupled-cluster calculations of properties of the boron atom as a monovalent system
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We present relativistic coupled-cluster (CC) calculations of energies, magnetic-dipole hyperfine constants,
and electric-dipole transition amplitudes for low-lying states of atomic boron. The trivalent boron atom is
computationally treated as a monovalent system. We explore performance of the CC method at various
approximations. Our most complete treatment involves single, double, and the leading valence triple excitations.
The calculations are done using several approximations in the CC method. The results are within 0.2%–0.4% of
the energy benchmarks. The hyperfine constants are reproduced with 1%–2% accuracy.
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I. INTRODUCTION

Atomic parity violation [1] (APV) provides powerful
constraints on new physics beyond the standard model of
elementary particles [2,3]. While the experiments are carried
out at low energies, the derived constraints are both unique
and complementary to those obtained from direct searches for
new physics with high-energy particle colliders. For example,
the latest APV results [4,5] set new mass bounds on exotic
new-physics particles, Z′ bosons, which are ubiquitous in
competing extensions of the standard model. These APV
bounds improve upon the earlier results of the Tevatron collider
and cut out the lower-energy part of the discovery reach of the
Large Hadron Collider.

Interpretation of APV experiments in terms of electroweak
observables requires input from atomic-structure calculations.
APV is a field where focus on the precision of both atomic
experiment and theory is of importance. As we look at
the entire body of experimental APV results with various
atoms, we find that the most accurate measurements have
been carried out with 133Cs atoms [6,7]. The second best
APV measurement has been done with 205Tl [8]. Ideally,
the uncertainty of calculations should match the experimental
error bars. For Cs, the 0.27% uncertainty of relativistic many-
body calculations [4,5] is better than the experimental 0.35%
error bar [6,7]. For Tl, however, the situation is reversed.
The experimental accuracy here is about 1% [8], while the
theoretical errors are estimated to be 2.5%–3% [9–11]. While
for Cs it took a little over a decade for the theory to match the
experimental accuracy, for Tl, even after almost two decades,
the state of the theory remains inadequate.

The goal of this paper is to start exploring the feasibility of
transferring high-precision many-body techniques developed
for Cs [4,5] to the Tl atom. There is a crucial distinction
between the Cs and Tl atomic structures. Cs has a single
6s1/2 valence electron outside the closed-shell core, while Tl
nominally has three valence electrons (6s2

1/26p1/2 ground-state
configuration). Since 6p1/2 is the only active electron involved
in the measured 6p1/2-6p3/2 PNC amplitude [8], it is natural
to wonder if the 6s2

1/2 shell could be considered as a part of
the core, thereby enabling reuse of the Cs techniques. The
relevant figure of merit is the energy gap between the core
and the valence subspaces. At the Dirac-Hartree-Fock (DHF)
level, this gap for Cs (6s1/2-5p3/2) is 156 479 cm−1, while in
Tl, when treated as a monovalent system, the gap between 6s1/2

and 6p1/2 is about 1.5 times smaller. Considering the smallness
of this gap, the interactions between the outer core-shell and
the valence electrons have to be treated in a nonperturbative
fashion.

Before proceeding to the computationally expensive 81-
electron thallium atom, in this paper we focus on a prototype
atom, boron. Boron belongs to the same IIIA group of
the periodic table but has only 5 electrons. The ground-
state configuration of boron reads 1s2

1/22s2
1/22p1/2, with three

valence electrons. Here, however, we have treated boron as
a monovalent atom by placing the two lower-energy valence
electrons (2s2

1/2) in the core. Such a treatment greatly simplifies
the underlying equations and calculations. Treating the boron
as a monovalent system is also justified by the fact that the 2p

electron is often the excited electron in optical transitions.
Notice that in the nonrelativistic Coulomb approximation,

the energies of the 2s and 2p electrons would be identical,
again strongly suggesting that the perturbative monovalent
approach would fail right from the onset. The mean-field
effects lift this degeneracy resulting in an energy gap of
131 292 cm−1 in the DHF approximation.

Another compelling feature of boron is that as a five-
electron system it lies at the applicability border of high-
accuracy variational methods [12]. In the case of few-body
systems, e.g., He and Li, the computational accuracies have
been substantial (see, e.g., Refs. [13–15].) Only very recently
Bubin and Adamowicz [12] have extended the reach of the
full-scale variational methods to boron. While such accurate
variational calculations have been carried out for boron, the
problem with variational methods is the impracticality of
extending them to even larger atoms, such as the 81-electron
Tl atom. That leaves many-body methods as the best hope for
accurate computations for Tl. Due to the strongly correlated
nature of these systems and the desired high accuracy, one
has to employ nonperturbative (all-order) methods, where
certain classes of diagrams are summed to all orders of many-
body perturbation theory in the residual Coulomb interaction
between electrons.

In this paper we employ arguably the most popular all-order
method: the coupled-cluster (CC) method; this method has
been at the heart of high-accuracy APV calculations for
Cs [4,5] and other heavy atoms [16]. We use an ab initio
relativistic formulation. Qualitatively, various CC methods
are distinguished by the maximum number of simultaneously
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excited electrons from the reference DHF Slater determinant.
Here we include single and double excitations of core electrons
and single, double, and triple excitations of the core and
valence electrons. We refer to this scheme as the CCSDvT
method.

With respect to the previous CC-type calculations for boron,
highly accurate nonrelativistic calculations are reported in
Ref. [17]. These authors include excitations of all five electrons
(i.e., CC with single, double, triple, quadruple, and quintuple
excitations) and also use the Slater-type geminals at the CCSD
levels to correct for the incompleteness of their necessarily
very limited computational basis. They then add relativistic
corrections to their calculations in an ad hoc manner. These
authors compute the ionization potential of the ground state
of boron and other atoms. Less complete (CCSD truncation
level), albeit fully relativistic calculations are carried out in
Ref. [18]. The focus of that work is on the convergence
of iteration method for solving linearized CCSD (LCCSD)
equations. Here we use the convergence techniques developed
in that work, but employ a more sophisticated CCSDvT
framework.

This paper is organized as follows: In Sec. II we discuss
the CCSDvT method and justify the use of the convergence
method already implemented for LCCSD in Ref. [18]. In
Sec. III we present calculated energy levels of many of the
low-lying states of boron and their electric-dipole transition
amplitudes and hyperfine constants. We also compare our
results with other computational methods and experimental
data. Finally, in Sec. V we draw conclusions.

II. METHOD

A. Coupled-cluster method and approximations

Here we briefly describe the CC method and approxima-
tions used in our computations. We use CC formalism for
systems with one valence electron outside the closed-shell
core. The reader may find more detailed descriptions of what
follows in Refs. [19–21].

In our treatment of the atomic Hamiltonian for one-valence-
electron systems, we employ the frozen-core DHF potential.
In the second-quantization notation, the atomic Hamiltonian
in the DHF basis, ignoring a common energy offset, reads

Ĥ = Ĥ0 + Ĝ =
∑

i

εiN [â†
i âi] + 1

2

∑
ijkl

gijklN [â†
i â

†
j âl âk] .

(1)

Here Ĥ0 is the one-electron lowest-order Hamiltonian and Ĝ is
the residual Coulomb interaction. εi is the single-particle DHF
energy and gijkl is the two-body Coulomb matrix element.
N [· · ·] indicates that the operators are in normal form with
respect to the quasivacuum core state, |0c〉. Operators â† and
â are, respectively, creation and annihilation operators.
In our implementation of the CC method the exact atomic
wave function of a monovalent atom with the valence electron
in state v is written as

|�v〉 = �̂
∣∣�(0)

v

〉
, (2)

where |�(0)
v 〉 = â†

v|0c〉 is the lowest-order DHF wave function.
The wave operator �̂ maps the DHF solution onto the exact

wave function, |�v〉. The ansatz for the wave operator is

�̂ = N [exp(Ĉ)], (3)

where Ĉ is called the cluster operator. For a system of N

electrons it is expanded as

Ĉ =
N∑
1

Ĉi , (4)

where i indicates the number of excitations of core and valence
electrons. For example, the operator Ĉ1 may be split into two
classes of core and valence excitations:

Ĉ1 = Ŝc + Ŝv, Ŝc =
∑
ma

ρmaâ
†
mâa, Ŝv =

∑
mv

ρmvâ
†
mâv .

(5)

The coefficients ρma and ρmv above are referred to as cluster
amplitudes and are to be found. Here and elsewhere in this
paper, the indices a,b, . . . are reserved for core orbitals;
m,n, . . . are designated as virtual or excited orbitals; v,w, . . .

indicate valence states; and i, j , k, and l are arbitrary orbitals.
We subsequently equate Ĉ2 with D̂ and Ĉ3 with T̂ . Explicitly,

D̂c = 1

2!

∑
mnab

ρmnabâ
†
mâ†

nâbâa, (6)

D̂v =
∑
mna

ρmnvaâ
†
mâ†

nâaâv, (7)

T̂c = 1

3!

∑
mnrabc

ρmnabâ
†
mâ†

nâ
†
r âcâbâa, (8)

T̂v = 1

2!

∑
mnrab

ρmnrvabâ
†
mâ†

nâ
†
r âbâaâv. (9)

Expanding the exp(Ĉ) leads to various powers and products
of different cluster operators. Approximate solutions to the
wave function |�v〉 are then found by keeping only a certain
number of terms. As an example, the linearized LCCSD
method keeps only the Ŝ and D̂ terms:

|�v〉 = (1 + Ŝ + D̂)|�v〉 = �̂LCCSD|�v〉. (10)

Another approximation, CC single-double 2 (CCSD2), keeps
only up to the second-order terms in Ŝ and D̂ and discards
higher orders:

|�v〉 = (
1 + Ŝ + D̂ + 1

2 Ŝ2 + 1
2 D̂2 + ŜD̂

)|�v〉
= �̂CCSD2|�v〉. (11)

We use a combination of the above approximations with the
addition of certain contributions of the triple term, T̂ . Below
we discuss the approximate method we use in more detail.

In order to find the cluster amplitudes, ρ’s, one uses a set
of generalized Bloch equations; see Ref. [21] for equations
specific to a monovalent system. There are two such sets of
equations for the core and valence states. The first set involves
only the core-related operators. This set can be written as

(εv − Ĥ0)�̂core
∣∣�(0)

v

〉 = ({Q̂Ĝ�̂}conn.)
core

∣∣�(0)
v

〉
. (12)

Here Q̂ = 1 − |�(0)
v 〉〈�(0)

v | is a projection operator and εv is
the Hartree-Fock energy of the valance electron. The subscript
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“conn.” indicates that the retained Brueckner-Goldstone dia-
grams have no disconnected parts except for the valence lines.
The above core equation does not depend on the valence state.

The other set of Bloch equations is formulated for valence
amplitudes:

(εv + δEv − Ĥ0)�̂val
∣∣�(0)

v

〉 = ({Q̂Ĝ�̂}conn.)
val

∣∣�(0)
v

〉
. (13)

Here δEv = 〈�(0)
v |Ĝ�̂|�(0)

v 〉 is the correlation energy. It
should be noted that the right-hand side of Eq. (13) contains
both core and valence amplitudes.

In order to solve the Bloch equations (12) and (13), one
could devise an iterative approach. Doing this we obtain the
recursive relation:

[εv + (δEv) − Ĥ0]�̂(n+1)
∣∣�(0)

v

〉 = ({Q̂Ĝ�̂(n)}conn.)
∣∣�(0)

v

〉
,

(14)

with �̂(0) = 1. In the above equation (δEv) means that the
δEv should only be kept in the valence equation, Eq. (13).
Equations (12) to (14) are general and one can substitute
different states in them.

The core equations are solved by using the CCSD ap-
proximation, Eq. (11). In the present work, we used the
nonlinear terms in Eq. (11) in addition to some leading terms
of the valence triples of Eq. (17). All single and double
contributions of the CCSD method (including the CCSD2
terms) are spelled out in detail in Ref. [22] and the triple terms,
including some we have discarded, are shown graphically in
Ref. [23]. Therefore, here we only discuss such contributions
qualitatively.

Both core and valence Bloch equations can be further
separated into equations for single, double, and triple cluster
amplitudes. Such equations have only single, double or triple
cluster amplitude terms on their left-hand-sides, but contain
coupled terms with single, double and triple cluster amplitudes
on their right-hand-sides. From this point on, we simply
refer to them as singles, doubles, and triples. For example,
the topological structure of the valence singles equation
becomes [23]

−[Ĥ0,Ŝv] + δEvŜv = CCSD2 + Ŝv[T̂v], (15)

where the notation Ŝv[T̂v] stands for the effect of valence
triples (T̂v) on the right-hand side of valence singles (Ŝv)
equation. It should be noted that in the equation above and what
follows δEv = δECCSD2 + δEv[T̂v] is the correlation energy.

The equation for valence doubles reads

−[Ĥ0,D̂v] + δEvD̂v ≈ CCSD2 + D̂v[T̂v] . (16)

Finally the approximation used for the valence triple equation
reads

−[Ĥ0,T̂v] + δEvT̂v ≈ T̂v[D̂c] + T̂v[D̂v] + T̂v[T̂v] . (17)

In the present work we use two different approximations for
the right-hand side of the triple equation, Eq. (17). If we keep
only the two first terms on the right-hand-side of Eq. (17), we
call the method CCSDvT2, and if we additionally include the
T̂v[T̂v] terms, the method is called CCSDvT3. The reason for
such a distinction is that the inclusion of T̂v[T̂v] terms on the
right-hand side of Eq. (17) greatly increases the computational
demands.

We further simplify Eqs. (15)–(17) by taking advantage of
the spherical symmetry of atoms and analytically summing
over the magnetic quantum numbers. This results in a reduced
form of cluster amplitudes and Coulomb integrals. We use a
different notation for such reduced amplitudes. For example,
the reduced valence amplitudes of singles are denoted as
ρ(mv), doubles as ρk(mnva), and triples as ρk1k2h(mnrvab).
Here k1 and k2 are integer coupling momentum numbers and h

is a half-integer coupling angular momentum. As an example,
the relationship between the ordinary and the reduced triples
maybe represented as [22]

ρmnrvab =
k1k2h

ρk1k2h (mnr vab) ,

(18)

where the diagram subsumes various 3j symbols [19]. Inter-
ested readers can find complete discussions of angular reduc-
tion in Refs. [19,24] for single and double term reductions and
in Ref. [22] for triple term reductions.

The angularly reduced equations have numerous terms on
their right-hand sides and are composed of the summation of
products of cluster amplitudes, ρ’s with each other and with
two-body Coulomb matrix elements [g’s in Eq. (1)]. The right-
hand-side terms can be found in Refs. [22,25,26] and we do
not reproduce them here. After the angular reduction, the three
valence Bloch equations, Eqs. (15)–(17), can be represented
in a general form as

(εm − εv + δEv)ρ(mv) =
∑

n

AS · ρ(nv) +
∑
nak

BS · ρ̃k(mnva) +
∑

nrabkk′h

CS · ρ̃k1k2h(mnrvab) +
∑

DS, (19a)

(εmn − εva + δEv)ρ̃k(mnva) =
∑

n

AD · ρ(nv) +
∑
nak

BD · ρ̃k(mnva) +
∑

nrabkk′h

CD · ρ̃k1k2h(mnrvab) +
∑

DD, (19b)

(εmnr − εvab + δEv)ρ̃k1k2h(mnrvab) =
∑
nak

BT · ρ̃k(mnva) +
∑

nrabkk′h

CT · ρ̃k1k2h(mnrvab) +
∑

DT , (19c)

where the amplitudes with tilde signs (ρ̃) are antisymmetrized
combinations of the reduced amplitudes. In the above equa-
tions, εijk = εi + εj + εk and the A’s, B’s, C’s, and D’s
are constants with their subscripts denoting to which set of
equations they belong, for example, S for singles, etc. It must

be emphasized that the right-hand sides of the above equations
are linear in terms of valence cluster amplitudes and the
constants include already known core cluster amplitudes and
Coulomb matrix elements, g’s. On the left-hand side, however,
the terms are not linear in terms of valence cluster amplitudes
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due to the presence of δEv terms, which also depend on the
valence cluster amplitudes. Despite this fact, in each iteration
the δEv’s are taken from the previous iteration and substituted
to find a new set of cluster amplitudes and δEv’s. In this sense
the above equations are overall treated as if they were linear at
each iteration.

B. Convergence

Simply iterating the CC recursive equation, Eq. (14), at
times proves to be insufficient as it could lead to slow conver-
gence, nonconvergence, or even convergence to nonphysical
solutions. In Ref. [18], we discuss two convergence methods
developed in quantum chemistry [27] and their effectiveness
in application to the LCCSD method. Here we apply one of
the methods, the direct inversion of iterative space (DIIS) to
our CCSDvT2 and CCSDvT3 methods.

To see how the DIIS is applied, we rewrite Eq. (19a) in a
more streamlined fashion:

t =

⎛
⎜⎝

ρ(mv)
ρ̃k(mnvb)

ρ̃k1k2h(mnrvab)

⎞
⎟⎠

and

a =
⎛
⎝

∑
DS∑
DD∑
DT

⎞
⎠ , D =

⎛
⎜⎝

εv − εm + δEv

εvb − εmn + δEv

εvba − εmnr + δEv

⎞
⎟⎠ .

Then the combined three sets of Eq. (19a) can be written as

D · t = a + 	 · t, (20)

where 	 is a matrix including all the coefficients in front of
cluster amplitudes on the right-hand side of Eq. (19a). The
above equation can be solved iteratively by rewriting it as

t(m+1) = D−1(a + 	 · t(m)). (21)

The iterative equation above is initiated by letting t (0) = 0 on
the right-hand side and finding t (1) and so on.

The DIIS method works in two steps. First, a few iterative
solutions t (i) of Eq. (21) are found. Next, a linear combination
of the said t (i) is used to find the next best solution to the
equation. For example, after accumulating m iteratively found
solutions, t (1), t (2), . . ., t (m), the next best approximation can
be found as their linear combination,

t(m+1) =
m∑

i=1

σit(i) = σ · T . (22)

Here σi is the weight assigned to t (i). In the case of the DIIS
method, the σ coefficients are determined by applying an error
minimization scheme and solving the resulting system of linear
equations [18]:

TT (	 − D)T a + TT (	 − D)T (	 − D)Tσ = 0 . (23)

The new answer thus found, t (m+1), is then fed back to the
right-hand side of Eq. (21) and the two steps are repeated until
some parameter, i.e., the δEv , stops changing (up to a specified
accuracy) between two consecutive iterations.

C. Matrix elements

After finding the cluster amplitudes and correlation en-
ergies, we can calculate matrix elements of a one-particle
operator,

Ẑ =
∑
ij

zij â
†
i âj , (24)

where zij is the single-particle matrix element. Notice that
in deriving the CC equations one uses the intermediate
normalization scheme 〈�v|�(0)

v 〉 = 1. The matrix elements
then have the form

Mwv = 〈�w|Ẑ|�v〉√〈�w|�w〉〈�v|�v〉
. (25)

As discussed in Ref. [25], this matrix element could be
separated into two parts, leading to the expression

Mwv = δwv(Z0)conn + (Z1)conn√
[1 + (δNw)conn][1 + (δNv)conn]

.

(26)

Here Z0 = 〈0c|�̂†Ẑ�̂|0c〉 and the remaining contributions of
Zwv = 〈0c|âw�̂†

wẐ�̂vâ
†
v|0c〉 are encapsulated into Z1. In a

similar way

Nw = 〈�w|�w〉 = N0 + δNw, N0 = 〈0c|�̂†�̂|0c〉 = 1,

with δNw containing the rest of the contributions to the
normalization. Z0 contributions vanish for nonscalar operators
Ẑ, so we can ignore them here. In Refs. [25,28] the con-
tributions to matrix elements in the LCCSD approximation
are explicitly listed. Reference [29] further discusses all
the leading nonlinear contributions and the contributions of
connected triple excitations to matrix elements.

When the CC exponent of Eq. (3) is expanded in Eq. (25),
an infinite number of terms are produced. The resulting series
may be partially summed so that it subsumes an infinite
number of terms. This procedure is called “dressing” and is
explicitly explained in Ref. [29]. In short, it is built on the
expansion of the products of the CC amplitudes into a sum
of n-body insertions. Two types of insertions are considered:
particle (hole) line insertion and two-particle (two-hole)
random-phase-approximation-like insertion. It must be noted
that this procedure is specialized for the CCSD approximation
in monovalent systems.

Due to the approximate nature of the CCSDvT method,
certain correlation effects are lost. To partially account for the
missing contributions in the calculation of the matrix elements,
we correct the wave functions using a semiempirical procedure
suggested in Ref. [30]. In this procedure the valence singles are
rescaled by the ratio of experimental and theoretical correlation
energies. In the present paper we refer to the results obtained
by such a procedure as “scaling.”
In the next section we discuss the results obtained with
different approximations and present valence energies, matrix
elements, and hyperfine constants for the boron atom. We also
compare our results with previous experimental and theoretical
results.
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FIG. 1. (Color online) The five largest reduced single excitation
coefficients ρ(mv) are compared in different CC approximations.
Here v is the valence orbital 2p1/2 and m is the excited orbital
indicated on the x axis of the graph.

III. RESULTS AND DISCUSSION

So far we have recapitulated various CC approximations.
We have also described how we apply the DIIS converging
method to the iterative solutions of the LCCSD, CCSD,
and CCSDvT equations. In this section we present ab initio
numerical calculations for properties of several low-lying
levels of the boron atom.

Atomic boron has three valence electrons, with the ground-
state configuration 1s22s22p1. In our calculations, we start by
assigning the two-electron 2s2 valence orbitals of the ground
state to the core orbitals. Therefore, we approximate the boron
atom as a monovalent system.

We employ the dual-kinetic balance B-spline basis set,
obtained by solving the frozen core DHF equations [31]. This
basis set numerically approximates a complete basis for the
single-particle atomic states. The basis set was generated in
a cavity of radius 40 a.u. and contains 40 orbitals per partial
wave for energies above the Dirac sea.

The CC core equations are solved in the CCSD
approximation. The core amplitudes are computed with partial
waves summed up to and including the angular momentum
lmax = 6. The single and double core excitation coefficients
are then fed into the valence equations. The valence equations
are initially solved in the LCCSD approximation. The
resulting LCCSD wave functions are then used to initiate the
nonlinear CCSD method. The valence CCSD result, in turn,
becomes the reference point for the CCSDvT computations.
In calculating the valence wave function, basis functions with
lmax = 6 are still used for singles and doubles. However, due
to the computational expense of the triple terms, we employed
a more limited basis set with lmax = 3 for the triples. Initial
calculations with lmax = 4 for all triple terms showed very
little change in energies at a great expense in time. Therefore,
to keep consistency of the data, we only present results with
lmax = 3 for the triple terms. Also, to keep the computational
cost lower, we employed 35 out of 40 positive energy basis
functions for the single and double terms, while we reduced
this number to 25 for the triple terms. Again, calculations of
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FIG. 2. (Color online) The five largest antisymmetrized reduced
double amplitudes, ρ̃k(mnva), of the ground state of boron are
compared in different CC approximations. Here v is the valence
orbital 2p1/2 and a is the core orbital 2s. The excited orbitals m and
n and the angular momentum value k of the reduced amplitudes are
shown on the x axis.

triple terms with 35 basis functions showed very little change
in the outcome. We further introduced basis extrapolation
corrections, lmax → ∞, which is discussed in Sec. III A.

In the present work we use two different approximations
for triple equations. If we only keep the T̂v[D̂c] and T̂v[D̂v]
terms on the right-hand side of Eq. (17), we call the method
CCSDvT2. On the other hand, if we keep all the terms in
Eq. (17) we call the method CCSDvT3, with T̂v[T̂v] being
the difference with CCSDvT2. The inclusion of T̂v[T̂v] terms
on the right-hand side of Eq. (17) greatly increases the
computational cost of triple calculations.

A brief analysis of the largest valence amplitudes (ρ ′s,)
follows in the next section (Sec. III A). Results for removal
energies are presented in Sec. III B and results for dipole
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FIG. 3. (Color online) The five largest reduced triple amplitudes,
ρk1k2h(mnrvab), for the ground state of boron are compared in
different CC approximations. Here v is the valence orbital 2p1/2 and
a and b are the core orbital 2s. The excited orbitals m, n, and r and the
coupling angular momentum values k1 and k2 plus the half-integer h

of the reduced triple amplitudes are shown on the x axis.
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FIG. 4. (Color online) The large component, P , of the orbitals
2p1/2, 3p1/2, and 10p1/2 for boron is shown as a function of the dis-
tance from the nucleus. The 10p1/2 wave function is squeezed by the
cavity wall (40 a.u. here.) This makes the value of the ρ(10p1/2,2p1/2)
amplitude comparable with that of the ρ(3p1/2,2p1/2) amplitude
(Fig. 1).

matrix elements and magnetic-dipole hyperfine constants are
presented in Sec. III C.

A. Largest contributions by cluster amplitude

Before we present the results of the numerical calculations,
we investigate the relative importance of individual valence
amplitudes (ρ’s) for each level of approximation. We run
the numerical code, extract the five largest reduced valence
amplitudes, and analyze how they change with each CC
approximation. The results are shown in Figs. 1–3. Here, we
only analyze the valence single, double, and triple amplitudes
for the ground state (2p1/2) of boron.

The valence states with the largest amplitudes remain for
the most part the same from one approximation to another.
For example, the CCSD approximation will render the same
five largest ρ̃k(mnva)’s as the CCSDvT2 approximation and
so on. As is seen in Figs. 1 and 2, in the CCSD approximation,
the largest reduced valence amplitudes are lower in value as
compared to their LCCSD counterparts. Including triples in
the CCSDvT2 and CCSDvT3 approximations brings these
values up to the region between the LCCSD and the CCSD
approximations.

Based on perturbation theory, the cluster amplitudes are
in general proportional to the ratio of Coulomb integrals (or
their products) to energy differences between the orbitals.
Therefore, we expect the orbitals with energies closer to the
valence state under study to have the largest contributions
to the valence amplitudes. However, as is evident from the
figures, some of the larger contributions belong to states with
high principal quantum numbers. For example, in Fig. 1,
the ρ(10p1/2,2p1/2) amplitude is the next largest after the
ρ(3p1/2,2p1/2) amplitude. In order to understand the unusually
large contributions from highly excited orbitals, we plot the
large component, P (r), of the 2p1/2, 2p3/2, and 10p1/2 orbitals
in Fig. 4, where r is the distance from the nucleus. Examination
of our DHF energies indicates that the continuum states start
from the 5p1/2 orbital. The cavity size and its boundary
conditions have the effect of compressing the continuum’s
10p1/2 wave function toward the nucleus. In effect the 10p1/2

orbital mimics the behavior of the 2p1/2 orbital in lower
r regions, which in turn results in large Coulomb integrals
between these states. The large contributions of other orbitals
with high principal quantum numbers to the amplitudes are
the result of such a cavity squeeze on the continuum wave
functions. If we were to choose a different cavity radius, some
other continuum states would see a similar effect.

B. Energies

The computed energies of the 2p1/2, 2p3/2, 3s1/2, 3p1/2,
3p3/2, and 4s1/2 valence states of neutral boron are com-
piled in Table I. We compare our results with the National
Institute of Standards and Technologies (NIST) recommended
values [32]. In Table I, we give a breakdown of the contribution
to the valence energies at each level of the CC approximation.
For example, the energy difference between the DHF and
the LCCSD methods is shown in the + LCCSD column,
while the energy difference between the LCCSD and the
CCSD approximations is written under the + CCSD column
heading and so on. The extrapolation values are calculated
using the results in the LCCSD approximation. We first run
the LCCSD code, limiting the angular momenta from lmax=1
to 6. Next we extrapolate the correlation energy difference
between each successive pair of angular momentum numbers
by using the model discussed in Ref. [33]. The values
labeled “Total” are equivalent to the CCSDvT3 values or
the addition of the contributions from all of the previous
columns. Most of the correlation energy is recovered in the

TABLE I. Contributions of each level of approximation to the valence energies of different B valence orbitals are shown and compared
with the NIST recommended values [36]. All energies are in cm−1 units.

B 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2 4s1/2

DHF − 60 546.22 − 60 528.30 − 25 137.94 − 17 258.14 − 17 256.30 − 11 368.93
+ LCCSD − 6538.07 − 6537.01 − 1966.28 − 1244 − 1243.46 − 155.37
+ CCSD 800.41 800.14 378.87 228.44 228.34 − 284.29
+ CCSDvT2 − 273.05 − 272.39 − 129.89 − 37.24 − 40.14 − 62.92
+ CCSDvT3 − 245.35 − 244.97 − 143.8 − 55.3 − 55.5 − 65.38
Extrapolation − 84.3 − 84.3 − 1.16 − 13.46 − 13.44 − 12.53
Total − 66 886.58 − 66 866.83 − 26 993.76 − 18 379.7 − 18 380.5 − 11 949.42
NIST [32] − 66 928.04 − 66 912.75 − 26 888.35 − 18 316.17 − 18 314.39 − 11 971.81
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TABLE II. Comparison of atomic energy levels of B, computed in different CC approximations, with NIST benchmark values [36] and
two theoretical results: computational (multiconfiguration Hartree-Fock (MCHF) [34] and Gaussian-Correlated (GC) [12]). All energies are in
cm−1 units. The GC method’s results are nonrelativistic and do not resolve the fine-structure splitting; therefore there is only one GC value per
total angular momentum, j .

State LCCSD CCSD CCSDvT2 CCSDvT3 MCHF [34] GC [12] NIST [32]

2p1/2 0 0 0 0 0 0 0
2p3/2 18.98 18.71 19.33 19.75 15.39 – 15.29
3s1/2 40 069.65 39 648.11 39 791.23 39 892.82 40 005.27 40 048.20 40 039.69
3p1/2 48 652.99 48 081.02 48 316.79 48 506.88 49 011.74 48 619.04 48 611.87
3p3/2 48 655.39 48 083.32 48 316.19 48 506.08 49 013.49 – 48 613.65
4s1/2 55 631.76 54 547.06 54 757.15 54 937.16 4642.89a 55 017.55 55 010.23

aReference [35].

LCCSD method. Generally, as the complexity of the method
grows, the respective correlation energy contributions become
smaller. However, as can be seen from Table I, the energy
contributions of the CCSDvT2 and CCSDvT3 methods are
comparable to each other. The percentage difference between
our final CCSDvT3 results and the NIST values is between
0.2% and 0.4%.

In Table II, the same results are shown again, but this
time the valence energies are tabulated with respect to the
2p1/2 ground state. The results in Table II are compared with
the NIST recommended values, as well as two other the-
oretical calculations. The Gaussian-correlated (GC) method
of Ref. [12] is a nonrelativistic approach; therefore, it does
not resolve the fine-structure splitting for the p states. The
multiconfiguration Hartree-Fock (MCHF) results of Ref. [34]
were calculated relativistically by using the Breit-Pauli Hamil-
tonian. The MCHF result for the 4s1/2 state, however, was not
included in Ref. [34]; therefore, an older MCHF result [35] by
the same group was used for comparison.

The most accurate CC calculation for the ground state of
boron to date has been carried out by Klopper et al. [17]. The
starting point of their method is known in the literature as
the CCSD(F12) method. In their computational approach, the
single-particle basis sets are substantially truncated and are,
in effect, incomplete. The incompleteness of the basis set is
compensated by accounting for additional double excitations
into Slater-type geminals (which are indicated by the F12
qualifier) at the CCSD level of approximation. At this level
of approximation our two methods should be equivalent to
each other, since we saturate our basis sets by carrying out
extrapolations to higher partial waves. However, comparison
of our results and the results of Ref. [17] at individual

levels of approximations is meaningless, since the starting
point of the CC method, the independent-particle approxima-
tion, in our respective approaches is different. To obtain their
high-accuracy results, Klopper et al. [17] include CC up to
fivefold connected excitations. In addition, they add relativistic
corrections to their nonrelativistic calculation results in an
ad hoc manner. Their final result for boron’s 2p1/2 state is
−66 934.4 cm−1. Nevertheless our CSDvT result without
extrapolations is about 100 cm−1 and with extrapolation
40 cm−1 off the experimental value, while the final result of
Ref. [17] recovers the experimental value. This indicates the
important role of omitted higher-order terms (quadrupole and
quintuple excitations).

C. Electric-dipole amplitudes and hyperfine constants

After computing the wave functions as described in the
previous section, we proceed to calculate the electric-dipole
transition amplitudes and the magnetic-dipole hyperfine-
structure (HFS) constants. We tabulate the results for the
2p1/2, 2p3/2, 3s1/2, and 4s1/2 states of atomic boron. Here we
discuss our results and compare them with the MCHF values
of Refs. [34,35].

In Table III, we present the reduced electric-dipole matrix
elements, 〈3s||D̂||2pj 〉 and 〈4s||D̂||2pj 〉, computed in the
length form [37]. Here, D̂ is the electric-dipole operator and
j = 1/2 and 3/2. In the columns under the CC heading, we
list our results in order of the increasing complexity of the
employed CC approximations. The corrections to the transition
amplitudes, using the dressing and the scaling procedures, are
in the next two columns. Our final results for the electric-dipole
transition amplitudes are written in the total column. These

TABLE III. The reduced electric-dipole transition-matrix elements 〈a||D̂||b〉 in the length form in atomic units.

Coupled cluster Corrections

|a〉 |b〉 LCCSD CCSD CCSDvT2 CCSDvT3 	(dressing) 	(scaling) Total MCHF

3s 2p1/2 1.2454 1.1772 1.1623 1.1542 − 0.0097 − 0.0077 1.1368 1.1345a

2p3/2 1.7618 1.6656 1.6444 1.6330 − 0.0143 − 0.0105 1.6082 1.6047a

4s 2p1/2 0.3736 0.4420 0.4498 0.4480 − 0.0027 − 0.0067 0.4386 0.4399b

2p3/2 0.4791 0.6251 0.6359 0.6331 − 0.0037 − 0.0093 0.6201 0.6222b

aReference [34].
bReference [35].
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TABLE IV. Changes in the valence magnetic-dipole HFS con-
stants of the 2p1/2, 2p3/2, and 3s1/2 states of boron (in MHz) are
shown for different CC approximations. A comparison with the
experimental values of Ref. [39] and the MCHF results of Ref. [38]
is presented in the bottom bracket.

A 2p1/2 2p3/2 3s1/2

DHF 317.1 63.3 146.9
LCCSD 354.3 87.0 263.2
CCSD 358.6 78.0 235.3
CCSDvT2 364.1 75.0 240.2
CCSDvT3 368.0 74.8 242.8
	 (Scaling) 0.7 0.2 − 3.2
	 (Dressing) 4.7 − 2.3 − 4.1
	 (Extrapolation) − 0.2 0.3 1.5
Final result 373.3 72.7 235.6
MCHF [38] 366.1 73.24 234.83
Experimental [39] 366.076 5 73.3470 –

values are the addition of the corrections to the results obtained
with the CCSDvT3 approximation. The MCHF results of
Refs. [34,35] are tabulated in the last column. As can be seen
from Table III, our final results and the MCHF results are in
reasonable agreement with each other (about 0.3%.)

In Ref. [34], the stated values are in the line strength form,
Sl , which is the reduced transition amplitude squared. The
older reference, Ref. [35], contains nonrelativistic results for
the reduced transition amplitudes between the 4s state and the
ground state, 2p. In the LS coupling scheme, the relativistic
and nonrelativistic reduced matrix elements, between s and p

states, are related as

|〈n′s1/2||D̂||np1/2〉| =
√

2

3
|〈n′s||D̂||np〉|, (27a)

|〈n′s1/2||D̂||np3/2〉| =
√

4

3
|〈n′s||D̂||np〉|. (27b)

Therefore, we used the above relation to convert the
nonrelativistic results of Ref. [35] to relativistic ones.

A useful test of the self-consistency of our results is
to check the ratio of the reduced transition amplitudes,
|〈n′s||D̂||np1/2〉/〈n′s||D̂||np3/2〉|. This ratio should be equiv-
alent to the ratio of the right-hand side of Eqs. (27a) and (27b),
or 1/

√
2 	 0.7071. The ratio of the first pair of amplitudes in

our different approximations is about 0.7068 andthe ratio of

the second pair is 0.7076. These differences can be explained
by relativistic corrections.

In Table IV, we compile the results of the calculations of
the magnetic-dipole HFS constants, A, for the 2p1/2, 2p3/2,
and 3s1/2 states of boron. Here we list the HFS constants for
each level of the CC approximation. The corrections made to
each HFS constant by the dressing, scaling, and extrapolation
procedures follow the CCSDvT3 approximation’s results. Our
final results, the MCHF method’s A constants [38], and
the experimental results [39] are shown at the bottom of
Table IV. Our 2p1/2 hyperfine constant is off by 2% from
the experimental result, while for the 2p3/2 state the difference
is about 1%. There are no experimental literature values for
the 3s1/2 state of boron, so we compare our result with Jönsson
et al.’s [38] MCHF value. The percentage difference with
MCHF calculation for the 3s1/2 orbital’s HFS constant is about
0.3%.

IV. CONCLUSION

To reiterate, we examined the application of various CC
approximations for atomic boron. We treated the trivalent
boron atom as a monovalent system, taking into account
that the 2p valence electron is often the excited electron
in optical transitions. We tabulated the results for a few
valence energies, electric-dipole transition amplitudes, and
magnetic-dipole HFS constants of boron in the previous
section. Furthermore, we compared our results with other
computational and experimental benchmarks. The results for
the energies were found to be within 0.2% to 0.4% of the
NIST recommended values. The results for the electric-dipole
transition amplitudes had about 0.3% difference with the
MCHF benchmarks, while our HFS constants differed with
the experimental values by 1% to 2%. Considering that
0.1% accuracies are typical for true monovalent systems
(alkali-metal atoms,), the attained 1% accuracies for boron
indicate deficiencies in treating it as a monovalent system.
Indeed the comparison of our results with the more accurate
CC computations of Ref. [17] shows that the way forward
may be employing higher-rank CC amplitudes, quadruples
and quintuples.
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