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Divalent Rydberg atoms in optical lattices: Intensity landscape and magic trapping
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We develop a theoretical understanding of the trapping of divalent Rydberg atoms in optical lattices. Because
the size of the Rydberg electron cloud can be comparable to the scale of spatial variations of laser intensity, we pay
special attention to averaging optical fields over the atomic wave functions. The optical potential is proportional
to the ac Stark polarizability. We find that in the independent-particle approximation for the valence electrons,
this polarizability breaks into two contributions: the singly ionized core polarizability and the contribution from
the Rydberg electron. Unlike the usually employed free-electron polarizability, the Rydberg contribution depends
both on the laser intensity profile and on the rotational symmetry of the total electronic wave function. We focus
on the J = 0 Rydberg states of Sr and evaluate the dynamic polarizabilities of the 5sns(1S0) and 5snp(3P0)
Rydberg states. We specifically chose the Sr atom for its optical-lattice clock applications. We find that there are
several magic wavelengths in the infrared region of the spectrum at which the differential Stark shift between
the clock states [5s2(1S0) and 5s5p(3P0)] and the J = 0 Rydberg states [5sns(1S0) and 5snp(3P0)] vanishes. We
tabulate these wavelengths as a function of the principal quantum number n of the Rydberg electron. We find
that because the contribution to the total polarizability from the Rydberg electron vanishes at short wavelengths,
magic wavelengths below ∼1000 nm are “universal” as they do not depend on the principal quantum number n.
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I. INTRODUCTION

Quantum information processing (QIP) with neutral atoms
has a number of distinct and appealing advantages, such as
scalability, massive parallelism, long coherence times, and
reliance on well-established experimental techniques. His-
torically, the dominant fraction of QIP schemes with neutral
atoms has focused on alkali-metal atoms, which possess
a single valence electron outside a tightly bound atomic
core. The most successful experimental demonstration [1,2]
of a quantum two-qubit logic gate with neutral atoms has
been carried out using Rydberg gates, originally proposed in
Ref. [3]. These experiments employed Rydberg excitations
of 87Rb, an alkali-metal atom. In recent years, there have
been important new developments with cooling and trapping
divalent atoms, such as group-II atoms (e.g., Mg, Ca, and Sr)
and group-II-like atoms such as Yb, Hg, Cd, and Zn, which
can greatly benefit experiments. Considering the experimental
success of Rydberg gates with alkali-metal atoms, it is natural
to ask if the distinct properties of divalent atoms could
improve the experimental feasibility [4–8].

Optical trapping is essential for QIP experiments due
to the long coherence times that can be achieved. In QIP
experiments, the size of Rydberg atoms can easily be larger
than the lattice constant of the optical lattice. As we recently
demonstrated in [9,10], one-dimensional trapping potential for
an alkali-metal Rydberg atom is proportional to the expectation
value 〈cos(2kz)〉, where k = 2π/λ is the wave number of the
optical lattice laser whose wave vector is aligned with the z

axis. Here λ = 2πc/ω is the lattice laser wavelength, ω is
the frequency, and c is the speed of light. We have termed
αlsc

r (ω) = −〈cos(2kz)〉/ω2 the “landscaping polarizability” as
it modulates the free-electron polarizability αe(ω) = −1/ω2

according to the intensity profile of the optical lattice. The
factor 〈cos(2kz)〉 has a universal dependence on n2a0/λ

and in the limit of short wavelength λ (or high principal
quantum number n), n2a0/λ � 1 and αlsc

r (ω) → 0. In this

limit, the Rydberg atom is no longer trapped as the optical
trapping potential is directly proportional to the landscaping
polarizability. Divalent Rydberg atoms can still remain trapped
even in this limit.

Indeed, the divalent atoms have the advantage of a second
optically active valence electron, which contributes to the
total polarizability, making it easier to trap the atoms in a
tight optical lattice. Optical trapping of Rydberg atoms also
faces challenges associated with the small polarizability of
Rydberg states. In this sense, utilization of divalent atoms can
greatly simplify the trapping of Rydberg states because the
second (non-Rydberg) valence electron sizably contributes to
the trapping potential, which is proportional to the atomic
polarizability. Because of the resonant structure of the polar-
izability contributed by the non-Rydberg valence electron, the
lattice wavelength can also be tuned so as to make the total
trapping potential large [7].

QIP with neutral trapped atoms comes at a price: Trapping
optical fields strongly perturb atomic energy levels such that
there are uncontrollable accumulations of differential phase
between qubit states as atoms move in the traps [11,12].
In addition, the underlying Stark shift is proportional to the
local intensity of the trapping lasers; the shift is nonuniform
across the atomic ensemble and it is also sensitive to laser
intensity fluctuations. This problem is elegantly mitigated
using so-called “magic” traps [13]. At the magic trapping
conditions, two atomic levels of interest are shifted by exactly
same amount by the trapping fields; therefore the differential
effect of the trapping fields simply vanishes for that qubit
transition. The idea of such magic trapping has also been
crucial for establishing a new class of atomic clocks: the
optical-lattice clocks [13–16]. In a recent experiment [17],
Li et al. demonstrated entanglement between a light field and
Rb atoms in superpositions of the ground and Rydberg states
using magically trapped atoms in optical lattices. Owing to
the multitude of experiments relying on optically trapped
cold Rydberg atoms, there are extensive experiments and
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calculations in the literature for trapping Rydberg atoms in
ponderomotive lattices [18–20].

When we go back to neutral alkali-metal atoms and
review the literature, we easily find a large body of work on
optical trapping and utilization of Rydberg states in quantum
information experiments [21–25]. However, the situation is
different for divalent atoms and the ideas on involving
them in experiments are in their infancy. To our knowledge,
two papers so far have considered divalent systems in this
setting. Mukherjee et al. in Ref. [7] considered the possibility
of studying many-body physics using alkaline-earth atoms
trapped in optical lattices. They found magic wavelengths
for simultaneous trapping of 5sns(1S0) Rydberg states with
the 5s2 ground state for the Sr atom. In their treatment, the
polarizability in the Rydberg state is evaluated by adding the
polarizability of the Sr+ ion to the free-electron polarizability,
representing the contribution from the Rydberg electron. This
treatment neglects the averaging of the laser intensity profile
over the Rydberg wave function. Also in Ref. [7], the splitting
into core (Sr+) and Rydberg polarizabilities was carried out
in an ad hoc manner. Our rigorous derivation presented
below shows that indeed for the 5sns(1S0) states, the total
polarizability splits into independent contributions from the
valence and the Rydberg electrons. We show in this paper
that the situation is more complicated in the more general
case, and even in the independent-particle approximation,
the extent to which the Rydberg electron can contribute to
the total polarizability is dictated by the angular momentum
J of the entire atom. Furthermore, in a recent paper [9],
we demonstrated that the free-electron polarizability of the
Rydberg electron is modulated by the intensity distribution in
an optical lattice, and it is this “intensity-landscape-modulated
polarizability” that plays a role in trapping the Rydberg state.
It can have both positive and negative values and, in contrast
to the treatment of Ref. [7], we did not simply treat it as the
free-electron polarizability. In another paper [26], Ovsiannikov
et al. proposed using optically trapped Sr atoms in Rydberg
states to probe ambient temperature at the 10 mK level in
clock experiments. To this end, they showed that the ac Stark
shift experienced by the Rydberg electron is modulated by the
intensity distribution. In their treatment, the contribution from
the Sr+ ionic core was neglected. Here we unite the comple-
mentary treatments of Refs. [7,26] and rigorously derive and
evaluate the ac polarizabilities of divalent Rydberg atoms.

In alkali-metal atoms, one can always find magic wave-
lengths above a certain n [9], and we find that the same
holds true for divalent atoms. We find and tabulate several
wavelengths at which magic trapping conditions can be
attained for the clock states 5s2(1S0) and 5s5p(3P0) of Sr with
J = 0 Rydberg states.

The paper is organized as follows: In Sec. II we start by
briefly reviewing optical trapping of alkali-metal Rydberg
atoms and develop a theoretical understanding using second-
order perturbation theory for divalent Rydberg atoms. We
break down the atomic polarizability into individual contri-
butions from the valence and the Rydberg electrons, taking the
rotational symmetry of the many-body state into account. In
Sec. III A, we evaluate the landscaping polarizability of the Ry-
dberg electron in an ns state and contrast it with the 5s ground-
state polarizability of the Sr+ ion. In order to find magic

wavelengths for the 5s2(1S0)-5sns(1S0), 5s2(1S0)-5snp(3P0),
5s5p(3P0)-5sns(1S0), and 5s5p(3P0)-5snp(3P0) transitions, we
need to accurately calculate the 5s2 and 5s5p(3P0) state
polarizabilities. We perform these calculations in Sec. III B and
show that we can recover the well-known magic wavelength at
814 nm at which Sr optical-lattice clocks are operated. We then
discuss and calculate the Rydberg-state polarizabilities for the
5sns(1S0) and 5snp(3P0) states using that for the Sr+ ion and
the contributions from the Rydberg electron individually in
Sec. III C. Finally, we demonstrate that the magic trapping
conditions for these Rydberg states with the clock states
can be satisfied at several wavelengths in the IR range and
below ∼1400 nm. Universal (n-independent) magic trapping
is shown to exist for λ < 1000 nm. We conclude in Sec. IV
with final remarks. Unless specified otherwise, atomic units
|e| = � = |me| ≡ 1 are used throughout the paper. We also use
the Gaussian system of units for electromagnetic quantities.

II. FORMALISM

In this section, we develop a formalism for computing
adiabatic trapping potentials for divalent atoms. The formalism
requires understanding both of how Rydberg-electron wave-
function averages over the lattice laser intensity (landscaping
polarizability) and of the many-body character of the two-
electron states of specific rotational symmetry. In Sec. II A,
we start by reviewing the main ideas behind the landscaping
polarizability for alkali-metal Rydberg atoms introduced in
Refs. [9,10]. In Sec. II B, we discuss atomic structure for
two-electron states and then move on to derive a second-
order perturbative expression for the polarizability of divalent
Rydberg atoms in the velocity gauge. We particularly pick the
Sr atom due to its widespread use in optical-lattice clocks and
the well-developed experimental techniques for its cooling and
trapping in the ground state.

A. Optical trapping and alkali-metal atoms

In a recent paper [9], we demonstrated that the trapping
potential Ur (Z) experienced by alkali-metal Rydberg atoms in
an optical lattice formed along the z axis can be decomposed
into a position-dependent term, which varies as the position
of the atom Z changes along the optical lattice, and an offset
term U 0

r , which shifts the potential energy by a fixed amount
everywhere along the lattice:

Ur (Z) = U 0
r + UZ

r sin2(kZ). (1)

Here k = ω/c = 2π/λ is the lattice laser wave vector. It is
the Z-dependent piece of the potential Ur (Z) that provides
confinement in the z direction, because only this part of the
potential can exert force on the atom. For a Rydberg state
|r〉 = |nlmz〉, the position-dependent term UZ

r and the offset
U 0

r in the trapping potential can be written as

UZ
r = F 2

0

4ω2
〈nlmz| cos(2kz)|nlmz〉 ≡ −αlsc

nlmz
(ω)

F 2
0

4
, (2)

U 0
r = F 2

0

4ω2
〈nlmz| sin2(kz)|nlmz〉, (3)

where z is the position of the Rydberg electron relative to the
nucleus and F0 is the laser field strength. We termed αlsc

nlmz
(ω)
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the landscaping polarizability because it convolutes the free-
electron polarizability αe(ω) = −1/ω2 with the laser intensity
profile:

αlsc
r (ω) = 〈cos(2kz)〉αe(ω). (4)

In the limit 〈r〉 ∼ a0n
2 � λ, U 0

r → 0 and UZ
r →

−αe(ω)F 2
0 /4. Away from this limit, however, αlsc

nlmz
(ω) exhibits

oscillatory behavior and changes sign several times as λ is
increased before eventually the free-electron character takes
over.

The landscaping polarizability can be evaluated by expand-
ing cos(2kz) in terms of irreducible tensor operators (ITOs)
t

(K)
MK

of rank K:

cos(2kz) =
∑

K=even

t
(K)
MK=0(r), (5)

t
(K)
MK

(r) = (−1)K/2(2K + 1)jK (2kr)C(K)
MK

(r̂). (6)

Here C
(K)
MK

(r̂) = √
4π/(2K + 1)Y (K)

MK
(r̂) are the normalized

spherical harmonics and jK (2kr) are the spherical Bessel
functions. Application of the Wigner-Eckart theorem results in

αlsc
nlmz

(ω)

≡ − 1

ω2
〈nlmz|

∑
K=even

t
(K)
MK=0|nlmz〉 (7)

= − 1

ω2

∑
K=even

(−1)l−mz

(
l K l

−mz 0 mz

)
〈nl||t (K)||nl〉,

(8)

where the reduced matrix element is given by

〈nl||t (K)||nl〉 = 〈nl||CK ||nl〉
∫ ∞

0
drP 2

nl(r)jK (2kr). (9)

Here Pnl(r) are radial orbitals and the reduced matrix elements
〈nl||CK ||nl〉 can be expressed in terms of the 3-j symbols [27].
We have shown in [9] that as a function of ω, the landscaping
polarizability αlsc

nlmz
(ω) for Rydberg states exhibits sizable

oscillations in the infrared region, changing sign several times
before the free-electron character −1/ω2 starts to dominate it.
This enables magic trapping conditions for the Rydberg and
the ground states of alkali-metal atoms, where αlsc

nlmz
(ω) and

the ground-state polarizabilities match. Since αlsc
nlmz

(ω) has to
vanish in order to change sign, there are also wavelengths at
which αlsc

nlmz
(ω) vanishes, which are referred to as the tune-out

wavelength [10]. The Rydberg atom does not experience the
optical trap in lattices tuned to these tune-out wavelengths.

B. Divalent atoms

As we move on to multivalent Rydberg atoms, a new effect
appears. The non-Rydberg (spectator) valence electron can
sizably contribute to the total polarizability of the atom. This
contribution to the total polarizability of divalent atoms was
taken into account in an ad hoc manner in Ref. [7]. Also,
in Ref. [7] the free-electron polarizability αe(ω) was used
to represent the contribution from the Rydberg electron. In
this section, we employ the more rigorous concept of the
landscaping polarizability to evaluate the contribution from
the Rydberg electron. Moreover, we develop a theoretical
framework which accounts for the overall rotational symmetry
of the wave function when the atom is in a given J state.
It turns out that for states with a Rydberg s electron [e.g.,
5sns(1S0) for Sr], individual contributions from the ground
(5s) and the Rydberg (ns) states simply add to give the total
polarizability of the atom. However, for states with a p electron
in the Rydberg state [e.g., 5snp(3P0) for Sr], the total rotational
symmetry (J = 0) imposes some restrictions.

1. Atomic structure

We begin with the two-electron wave function: For a
particular rotational symmetry the wave function can be
expanded in terms of two-particle basis functions as

�(πJMJ ) =
∑
k�l

ckl�kl(πJMJ ). (10)

Here J is the total angular momentum with projection MJ , and
π is the parity of the state �. The basis functions are defined
in the subspace of virtual orbitals,

�kl(πJMJ ) = ηkl

∑
mk,ml

C
JMJ

jkmkjlml
a
†
nkjkmk

a
†
nljlml

|0core〉

≡ |kl(J,MJ )〉, (11)

where η2
kl = 1 − 1

2δnknl
δjkjl

is a normalization factor, a†

are creation operators, and the quasivacuum state |0core〉
corresponds to the closed-shell core. The Clebsch-Gordan
coefficients C

JMJ

jkmkjlml
mix single-particle orbitals to form a

wave function with a well-defined rotational symmetry JMJ .
In general, the coefficients ckl in Eq. (10) are determined
from a configuration-interaction (CI) procedure involving
diagonalization of the entire atomic Hamiltonian. For two-
particle wave functions constructed in this way [Eq. (11)], the
reduced matrix elements 〈rs(JF )||T (J )||mn(JI )〉 of an ITO of
rank J can be written in terms of the single-particle orbitals
as [28]

〈rs(JF )||T (J )||mn(JI )〉 =
√

(2JI + 1)(2JF + 1)(−1)J
∑
m � n

r � s

ηrsηmncrscmn

×
[

(−1)jr+js+JI

{
J JI JF

js jr jm

}
〈r||t (J )||m〉δns + (−1)jr+jn

{
J JI JF

js jr jn

}
〈r||t (J )||n〉δms

+ (−1)JF +JI +1

{
J JI JF

jr js jm

}
〈s||t (J )||m〉δnr + (−1)jr+jn+JF

{
J JI JF

jr js jn

}
〈s||t (J )||n〉δmr

]
. (12)
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Here JF and JI are the total angular momenta of the
two-particle states |rs(JF )〉 ≡ |jrjs(JF )〉 and |mn(JI )〉 ≡
|jmjn(JI )〉 and t (J )(r) are the single-particle operators related
to T (J ) by T (J ) = ∑

j t (J )(rj ). For Rydberg excitations, we
will employ a simplified independent-particle approximation,
where only one of the CI coefficients remains nonzero.

2. Polarizability

The full interaction potential for the electrons in the
electromagnetic field in the velocity gauge (also the transverse
or Coulomb gauge) is

V = −
∑

j

AVG(rj ,t) · pj

c
+

∑
j

A2
VG(rj ,t)

2c2
. (13)

Here pj and rj are the linear momentum operator and the
coordinate of the atomic electron j , and we used the Gaussian
system of units. The vector potential of an optical lattice in the
velocity gauge is

AVG(rj ,t) = −2cF0

ω
ε̂ sin[k(Z + zj )] sin(ωt), (14)

where we separated out the nuclear coordinate Z. In diva-
lent atoms, there are two optically active electrons. Let us
assume that one of the electrons is in the Rydberg state
|r〉 = |nr lrjrmr〉 and the other is in the ground state |g〉 =
|nglgjgmg〉 of the remaining singly charged core (by mg and
mr we refer to the z component of j ). In the equations
that follow, we will denote the quantum numbers {nj lj }
by γj to simplify the notation. Using the Floquet (or the
dressed-atom) formalism, the energy shift due to the optical
lattice (second order in the field strength) for the twoelectron
state |γgjg; γrjr (JM)〉 becomes

δEgr (ω) = 1

4c2

∑
g′r ′

2�Eg′r ′

�E2
g′r ′ − ω2

〈γgjg; γrjr (JM)|
∑

j

AVG(rj ) · pj |γg′jg′ ; γr ′jr ′ (J ′M ′)〉

× 〈γg′jg′ ; γr ′jr ′(J ′M ′)|
∑
j ′

AVG(rj ′ ) · pj ′ |γgjg; γrjr (JM)〉 + 1

2c2

∑
j

〈γgjg; γrjr (JM)|[AVG(rj )]2|γgjg; γrjr (JM)〉,

(15)

where the summation is over the intermediate states |g′r ′〉 =
|γg′jg′ ; γr ′jr ′ (J ′M ′)〉 and �Eg′r ′ are their energies. We will ex-
press δEgr (ω) in terms of the conventional ac polarizability for
a standing wave described by (14), δEgr (ω) = −αgr (ω)F 2

0 /4.
Equation (15) omits the dynamic polarizability of the closed-
shell core (e.g., Sr2+ for Sr). This contribution is negligibly
small in the differential Stark shifts as its contribution is nearly
identical for optically excited levels [29].

We proceed as follows: First we expand the two-particle
operators in Eq. (15) in ITOs. We then assume the independent-
particle approximation and break up the two-particle matrix
elements into linear combinations of single-particle matrix
elements, while retaining the original overall rotational
symmetry J . This results in an expression for αgr (ω) which
looks like the sum of the polarizabilities for the individual
one-electron systems: the ground- and the Rydberg-state
electrons. The second-order term that results from Eq. (15)
for the Rydberg electron is small compared to the (AVG)2

term [9], and therefore we ignore it. This is not the case for the
ground-state electron, and we keep both the second-order term
and the (AVG)2 term to evaluate its polarizability. Retaining J of
the original two-electron state determines the extent to which
the Rydberg-electron polarizability contributes to αgr (ω).

Now we focus on the first term in Eq. (15) (which we also
refer to as the second-order term). In order to cast this term
into a tractable form, we expand the operators AVG(rj ) · pj

[Eq. (14)] in terms of ITOs. To this end, we first express AVG(rj )
in ITOs: AVG(rj ) = ∑

K ε̂S
(K)
MK=0, where ε̂ is the polarization

vector and S(K) is an ITO of rank K . An explicit expression for
S(K) is derived in the Appendix. S(K) are proportional to the
spherical Bessel functions jK (2kr), and the MK = 0 limitation
comes from the axial symmetry of Eq. (14).

Realizing that the momentum vector pj is a tensor of rank
1, we can express AVG(rj ) · pj as an expansion in terms of
composite tensor operator B(L):

AVG(rj ) · pj = F0

2

∑
μ

(−1)με−μ

∑
L,ML

C
L ML

1 μ K 0 {S(K) ⊗ p(1)}(L)
ML

(16)

≡ F0

2

∑
L,μ

(−1)με−μB(L)
μ (K), (17)

where we defined B(L)
μ (K) ≡ C

L μ

1 μ K 0 {S(K) ⊗ p(1)}(L)
μ by re-

alizing that the Clebsch-Gordan coefficient in (16) forces
ML = μ. The notation {A(K1) ⊗ B(K2)}(L) stands for a tensor
of rank L obtained by coupling tensors A(K1) of rank K1 and
B(K2) of rank K2.

Due to the small spatial extent of the ground-state wave
function of the singly charged ion, we take only the K = 0
term in the multipolar expansion of AVG(rj ); this corresponds
to the leading E1 multipole. Furthermore, we assume the long-
wavelength approximation kr � 1 for the compact ground
state, which yields the usual dipole approximation: S(K) ∝
δK,0. For the Rydberg state, however, we go beyond the long-
wavelength dipole approximation (see below). Keeping only
the K = 0 term for the ground state collapses B(L)

μ (K) to the
L = 1 term alone, and the operator AVG(rj ) · pj becomes

AVG(rj ) · pj = F0

2

∑
μ

(−1)με−μB(1)
μ (0) (18)

= 2c

ω
F0(ε̂ · p̂). (19)
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Inserting Eq. (18) into Eq. (15) yields the product
B(1)(0)R̂B(1)(0), where R̂ denotes the resolvent operator
(it is a scalar). Recoupling this product, we obtain ITOs
{B(1)(0) ⊗ R̂B(1)(0)}(L′) of ranks L′ = 0, 1, and 2, which can
be recognized as the conventional scalar, vector, and tensor
polarizabilities. Since we focus on the J = 0 states, only
the scalar contribution to the polarizability remains, which
is identified by L′ = 0 and its only component μ′ = 0. We
evaluate this contribution later.

We now turn to the second term in Eq. (15) involving the
expectation value of (AVG)2. In alkali-metal Rydberg atoms,
this is the dominant term and it gives rise to the landscaping
polarizability αlsc

nlmz
(ω) [9] reviewed in Sec. II A. Similarly to

the one-electron case in Eq. (5), we expand [AVG(rj )]2 in the
single-particle operators t (K)(rj ),

[AVG(rj )]2 = F 2
0

4

∑
K

t
(K)
MK=0(rj ), (20)

which are related to the many-body operator T (K)

through T (K) = ∑
j t (K)(rj ). We use the Wigner-Eckart

theorem to integrate over the magnetic quantum num-
bers so that the matrix element in the second term in
Eq. (15) is expressed in terms of the reduced matrix
element,
〈
γgγrJM

∣∣T (K)
0

∣∣γgγrJM
〉

= (−1)J−M

(
J K J

−M 0 M

)
〈γgγrJ ||T (K)||γgγrJ 〉. (21)

Because the (AVG)2 term is the expectation value in the
state |γgγrJM〉, the Wigner-Eckart theorem limits K to
2J . Moreover, since we are interested only in the J = 0
states, K = 0. This restricts the representation of (AVG)2

in terms of the ITO in Eq. (20) to the t
(0)
0 (rj ) term

alone.
In evaluating the many-body matrix elements, we assume

the independent-electron approximation. In this approxima-
tion, the reduced matrix element in Eq. (21) can be broken up
into reduced matrix elements involving only the one-electron
orbitals, using Eq. (12):

〈jgjr (J )||T (K)||jgjr (J )〉 = (2J + 1)(−1)K+jg+jr+J

[{
K J J

jr jg jg

}
〈g||t (K)||g〉 +

{
K J J

jr jg jr

}
〈r||t (K)||r〉

]
. (22)

Two of the terms in Eq. (12) dropped out because we assume that |g〉 and |r〉 are two distinct one-electron states; hence δgr = 0.
We now put together the second-order term and the (AVG)2 term expressed in terms of one-particle reduced matrix elements

to obtain an expression for αgr (ω) following from Eq. (15). We are particularly interested in the states |ngs1/2nrs1/2(1S0)〉 and
|ngs1/2nrp1/2(3P0)〉. In the independent-electron approximation, the energy of the two-electron state in |g′r ′〉 can be separated
into individual contributions from the one-electron states: Eg′r ′ ≈ Eg′ + Er ′ . These approximations simplify Eq. (15) greatly,
and the dynamic polarizability α(ω) separates into individual contributions from the ground and the Rydberg states,

αgr (ω) = − 1

ω2

∑
g′ �= g

2�Eg′

�E2
g′ − ω2

∑
L,J ′,μ

(−1)με−μ

(
0 L J ′

0 μ M ′

){
L J ′ 0

1/2 1/2 1/2

}{
L 0 J ′

1/2 1/2 1/2

}

× 〈
nglg

1
2

∣∣∣∣b(L)
μ (r)

∣∣∣∣ng′ lg′ 1
2

〉〈
ng′ lg′ 1

2

∣∣∣∣b(L)
μ (r)

∣∣∣∣nglg
1
2

〉

− 1

ω2

∑
r ′ �=r

2�Er ′

�E2
r ′ − ω2

∑
L,J ′,μ

(−1)με−μ

(
0 L J ′

0 μ M ′

){
L J ′ 0

1/2 1/2 1/2

}{
L 0 J ′

1/2 1/2 1/2

}

× 〈
nr lr

1
2

∣∣∣∣b(L)
μ (r)

∣∣∣∣nr ′ lr ′ 1
2

〉〈
nr ′ lr ′ 1

2

∣∣∣∣b(L)
μ (r)

∣∣∣∣nr lr
1
2

〉

− 1

ω2

∑
K

(
0 K 0

0 0 0

){
K 0 0

1/2 1/2 1/2

}〈
nglg

1
2

∣∣∣∣t (K)(r)
∣∣∣∣nglg

1
2

〉

− 1

ω2

∑
K

(
0 K 0

0 0 0

){
K 0 0

1/2 1/2 1/2

}〈
nr lr

1
2

∣∣∣∣t (K)(r)
∣∣∣∣nr lr

1
2

〉
. (23)

Here we have expressed B(L) in terms of the one-electron operators: B(L) = ∑
j b(L)(rj ). To split the second-order term in (15) into

individual contributions, we used the fact that the main contribution to αgr (ω) for a given state comes from states that are nearby
in energy, and the overlaps between the ground and Rydberg states are small, i.e., 〈γgjg|b(L)

μ (r)|γr ′jr ′ 〉 � 〈γgjg|b(L)
μ (r)|γg′jg′ 〉

and 〈γrjr |b(L)
μ (r)|γg′jg′ 〉 � 〈γrjr |b(L)

μ (r)|γr ′jr ′ 〉. Therefore we neglected terms involving 〈γgjg|t (K)|γr ′jr ′ 〉 and 〈γrjr |t (K)|γg′jg′ 〉
and arrived at the first two terms in Eq. (23).

The first and the third terms can be consolidated together to give the ground-state polarizability for the singly charged ionic
core in the velocity gauge. For the Sr atom, this would be the polarizability of the 5s state of the Sr+ ion, αSr+

5s (ω). Because of the
gauge invariance, αSr+

5s (ω) can be calculated in either the velocity or the length gauge, and we evaluate αSr+
5s (ω) using the length

gauge below. The second and the fourth terms in (23) result from the Rydberg electron. The 3-j symbol in the last term, which
came from integrating over the magnetic quantum numbers using the Wigner-Eckart theorem in (21), collapses the sum

∑
K t (K)

to the K = 0 term alone. Furthermore, L = 1 and ML = μ forces M ′ = −μ in the second term. With these simplifications and
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using the closed-form expressions for the 3-j and 6-j symbols which appear in (23), the dynamic polarizability can be rewritten
as

αgr (ω) = αSr+
5s (ω) − 1

ω2

∑
L,μ

r ′ �= r

(−1)με−μ

2�Er ′

�E2
r ′ − ω2

(−1)L−μδL,J ′δμ,−M ′

2(2L + 1)3/2

∣∣〈nr lr
1
2

∣∣∣∣b(L)
μ (r)

∣∣∣∣nr ′ lr ′ 1
2

〉∣∣2

− 1

ω2
√

2

〈
nr lr

1
2

∣∣∣∣t (0)(r)
∣∣∣∣nr lr

1
2

〉
. (24)

The dominant contribution for the Rydberg electron comes
from the last term as discussed in [30]. The correction to the
A2

VG term is given by the second term in (24) and is negligibly
small for Rydberg states as demonstrated in [30]. The A2

VG

term is what gives rise to the landscaping polarizability in
alkali-metal atoms, and is proportional to cos(2kz). Therefore
the total polarizability of the J = 0 divalent Rydberg atom can
be expressed as

αJ=0
nglg ;nr lr

(ω) = αion(ω) + α
lsc,J=0
nr lr

(ω) + αcore(ω) + αcv(ω),

(25)

where αion(ω) is the polarizability of the residual ion (e.g.,
Sr+) and α

lsc,J=0
nr lr

(ω) is the contribution from the Rydberg
landscaping polarizability to the total polarizability of the
J = 0 two-electron state. The notation αJ=0

nglg ;nr lr
(ω) refers to

the total polarizability αgr (ω) defined in (23) and (24), and
αSr+

5s (ω) in Eq. (24) has been replaced by αion(ω) in Eq. (25).
The polarizability αcore(ω) comes from the contributions from
core-excited states of doubly ionized atoms (e.g., Sr2+) to the
total polarizability [29]. We neglect this term because it is
almost identical for both valence levels and it vanishes when
only the differential contribution is considered. We also neglect
αcv(ω), which is a small term counteracting αcore(ω). It arises
from excitations to occupied valence orbitals and is much
smaller than αcore(ω) [29].

The J = 0 contribution α
lsc,J=0
nr lr

(ω) can be explicitly written
as

α
lsc,J=0
nr lr

(ω) = − 1

ω2
√

2

〈
nr lr

1
2

∣∣∣∣t (0)(r)
∣∣∣∣nr lr

1
2

〉
. (26)

Therefore the consequence of the overall rotational symmetry
of the many-body state is that only the K = 0 term in (AVG)2

[Eq. (20)] contributes to the total polarizability. To calculate
the reduced matrix element in α

lsc,J=0
nr lr

(ω), we employ the same
expansion used for the alkali-metal atoms in (5):〈

nr lr
1
2

∣∣∣∣t (0)(r)
∣∣∣∣nr lr

1
2

〉

= 〈
nr lr

1
2

∣∣∣∣C(0)(r̂)
∣∣∣∣nr lr

1
2

〉 ∫ ∞

0
P 2

nr lr
(r)j0(2kr)dr (27)

=
√

2
∫ ∞

0
P 2

nr lr
(r)j0(2kr)dr. (28)

Thus,

α
lsc,J=0
nr lr

(ω) = −αe(ω)
∫ ∞

0
P 2

nr lr
(r)j0(2kr)dr. (29)

For the 5s ground state of the Sr+ ion, the trapping potential
reads USr+ = −(F 2

0 /4)αion(ω) sin2(kZ) where the dynamic

polarizability fo the Sr+ ion is given by

αion(ω) =
∑

j

E5s − Ej

(E5s − Ej )2 − ω2
|〈ψ5s|D|ψj 〉|2, (30)

where D is the electric dipole operator and Ej are the ionic
energy levels. We evaluate αion(ω) using a high-accuracy
method detailed in Ref. [31].

III. NUMERICAL RESULTS FOR Sr

This section is organized as follows: In Sec. III A, we
evaluate the 5s ground-state polarizability for the Sr+ ion and
the J = 0 landscaping polarizabilities for a few Rydberg states
and discuss their general features. To find magic wavelengths
at which clock-to-Rydberg-state transition frequencies do not
change, we then calculate the dynamic polarizabilities for the
5s2(1S0) and 5s5p(3P0) clock states of Sr in Sec. III B. Finally,
in Sec. III C, we evaluate the total divalent Rydberg-state
polarizabilities by combining these as described in Sec. II B to
find the magic wavelengths.

A. Residual ion and the Rydberg electron

We start by calculating the 5s ground-state polarizability
for the Sr+ ion and the landscaping polarizabilities for a few
ns Rydberg states. The main features of the np Rydberg states
are essentially the same as discussed in Sec. II B 2. These
individual polarizabilities can be added to obtain the total
polarizability of the Sr atom in the Rydberg state 5sns(1S0)
as we demonstrated in the previous section. Figure 1 shows
the polarizability for the Sr+ ion in the 5s ground state and
the landscaping polarizabilities α

lsc,J=0
nr lr

(λ) for the Rydberg
electron in the 5sns(1S0) state of Sr for n = 110 and 130. The
main feature of αion is that it converges to its static value
after λ ∼1000 nm at ∼93 a.u. On the other hand, the Rydberg
landscaping polarizabilities start out essentially at zero at small
λ, and oscillate with increasing amplitude towards larger λ,
before the free-electron character of the polarizability takes
over and αlsc,J=0

ns (λ) converges to αe(λ).
The radial wave functions Pnl(r) needed to evaluate

α
lsc,J=0
nr lr

(ω) are computed by numerical integration of the
time-independent Schrödinger equation using a model for
the ionic core experienced by the Rydberg electron in state
|nljmj 〉. Both in the 5sns(1S0) and the 5snp(3P0) singly excited
Rydberg states of Sr, the Rydberg electron moves under the
influence of the Sr+ potential. We model this potential as

V (r) = −1

r
− (Za − 1)e−ar

r
+ be−cr , (31)
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FIG. 1. (Color online) Polarizability of the Sr+ ion in the 5s

ground state (solid orange), and the landscaping polarizabilities
αlsc,J=0

ns (λ) for the Rydberg electron in the 110s (dashed maroon)
and 130s (dot-dashed blue) states of the Sr atom.

where Za is the atomic number (38 for Sr) and a, b, and c are
fitting parameters, which depend on the particular symmetry
of the many-body Rydberg state. The coefficients a, b, and c

for Sr are listed in Ref. [32] for a variety of LSJ symmetries.
For the 5sns(1S0) states of Sr, we use a = 3.762, b = −6.33,
and c = 1.07, and for the 5snp(3P0) states we use a = 3.45,
b = −6.02, and c = 1.07.

B. The clock states

In order to determine magic wavelengths, we need to
calculate the dynamic polarizabilities for the 5s2(1S0) and
5s5p(3P0) states of Sr. The formalism we developed in
Sec. II takes advantage of the fact that the independent-
particle approximation is well justified for the Rydberg states.
This is not true, however, for the clock states 5s2(1S0) and
5s5p(3P0) and we use the relativistic formulation of the
second-order perturbation theory [28] to evaluate the dynamic
polarizabilities in these states,

αJ=0
γ (ω)

= − 1√
3

∑
γ ′

{
1 1 0

0 0 1

}
2(EγJ=0 − Eγ ′J ′=1)

(EnJ=0 − Eγ ′J ′=1)2 − ω2

×〈γ (J = 0)||D||γ ′(J ′ = 1)〉〈γ ′(J ′ = 1)||D||γ (J = 0)〉.
(32)

In the above expression, we have specifically chosen J = 0
and |γ 〉 refers to the states |5s2(1S0)〉 and |5s5p(3P0)〉. We
use high-accuracy values for the reduced matrix elements
〈γ (J = 0)||D||γ ′J ′〉 and experimental energies EγJ tabulated
in Ref. [33].

We can reproduce the magic wavelength commonly used
for state-insensitive trapping of Sr in optical-lattice clocks by
plotting the polarizabilities for the ground and the lowest-lying
clock states. This serves as a check of our calculations. In
Fig. 2, we plot the polarizabilities for the 5s2(1S0) ground state
and the 5s5p(3P0) clock state of Sr. We find that the magic
wavelength for the 5s2(1S0) ground and the 5s5p(3P0) clock
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FIG. 2. (Color online) Dynamic polarizabilities for the 5s2(1S0)
(dashed red) ground and the 5s5p(3P0) excited clock states (solid
purple) of Sr. The magic wavelength where the two polarizabilities
are equal is marked by an open circle at 814 nm.

states is at 814.0 nm, which matches the spectroscopically
measured experimental value of 813.4 nm [34,35]. Therefore,
we reproduce the ac polarizabilities of the 5s2(1S0) and
5s5p(3P0) states.

C. Divalent Rydberg states

Now we construct the total divalent Rydberg state polariz-
abilities out of the ionic polarizability αion(ω) and the Rydberg
landscaping polarizabilities α

lsc,J=0
nr lr

(ω). In this paper, we are
interested in the J = 0 Rydberg state of Sr in which one of
the valence electrons is a spectator whereas the other is in a
high n level. In particular, we focus on states such as 5sns(1S0)
and 5snp(3P0). We have already demonstrated that the scalar
polarizability for the 1S0 Rydberg states can be evaluated
by adding the polarizability of the Sr+ ion αion(ω) and the
landscaping polarizability αlsc,J=0

ns (ω) of the Rydberg electron
[Eq. (25)]. For the 3P0 states, however, only part of the Rydberg
landscaping polarizability contributes:

αJ=0
5sns (ω) = αion(ω) + αlsc,J=0

ns (ω), (33)

αJ=0
5snp(ω) = αion(ω) + αlsc,J=0

np (ω). (34)

In Fig. 3, we plot the dynamic polarizability of the
5s2(1S0) Sr ground state (solid purple) with the Rydberg-state
polarizabilities, αJ=0

5sns (λ) and αJ=0
5snp(λ). The upper panel of

Fig. 3 contains the Rydberg states |r〉 = |5sns(1S0)〉 and the
lower panel contains |r〉 = |5snp(3P0)〉 states for four principal
quantum numbers: n = 50, 100, 160, and 180.

For Rydberg states with n = 160 and 180, the figure
shows two wavelengths for simultaneous magic trapping of
the ground state and the Rydberg states in lattices with
wavelengths λ > 5000 nm. It is worth emphasizing that
the total polarizabilities for divalent Rydberg states are
different for different 5sns(1S0) and 5snp(3P0) configurations
[see Eq. (26)]. However, both are expressed in terms of
the t (0) ∝ j0(2kz) alone. Because of this, the Rydberg-state
polarizabilities in the upper and the lower panels in Fig. 3
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FIG. 3. (Color online) Total polarizabilities for the 5sns(1S0)
(upper panel) and 5snp(3P0) (lower panel) Rydberg states of Sr for
n = 50 (dashed brown), 100 (orange), 160 (green), and 180 (blue)
plotted with the ground-state 5s2(1S0) polarizability (solid red). The
similarity between the polarizabilities of the 5sns(1S0) and 5snp(3P0)
Rydberg states stems from the restriction to the J = 0 term in the
expansion of the (AVG)2 operator, which is dictated by the total J of
the Rydberg state.

are almost exactly the same. This is in stark contrast with
the case of s and p states in alkali-metal atoms. These magic
wavelengths arise due to the intensity landscape modulation
and are entirely new when compared with those reported in
Ref. [7].

On the other hand, Fig. 4 shows the same Rydberg-state
polarizabilities with the upper clock state 5s5p(3P0) (solid
purple). This time there are four magic wavelengths for n =
180: two below 1000 nm (not counting the one right on the
resonance) and two above 5000 nm. For the 5s160s(1S0) and
5s160p(3P0) there is only one wavelength allowing for the
magic trapping condition. Because αlsc,J=0

ns (ω) is almost zero
below 1000 nm, αJ=0

5sns (ω) is essentially the same as αion(ω), and
in the long-λ region it is dominated by the Rydberg landscaping
polarizability. Because 〈cos(2kz)〉 → 0 as n → ∞ for a given
value of λ, at the points marked by open circles in Fig. 4, the
magic trapping condition is satisfied between the 5s5p(3P0)
clock state and the Rydberg states, regardless of the value of n

in the Rydberg states. In this sense, the magic wavelengths at
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FIG. 4. (Color online) Total polarizabilities for the 5sns(1S0)
(upper panel) and 5snp(3P0) (lower panel) Rydberg states of Sr
for n = 50 (dashed brown), 100 (orange), 160 (green), and 180
(blue) plotted with the upper clock state 5s5p(3P0) (solid purple)
polarizability. Two special points at which the 5s5p(3P0) state
polarizability matches those of the Rydberg states in the high-n limit
are marked by open circles. These “universal” magic wavelengths are
at 596 and 1362 nm.

596 and 1362 nm are universal as they do not depend on n of
the Rydberg electron. Table I lists the magic wavelengths seen
in Figs. 3 and 4 in the λ > 5000 nm region. Whereas these
wavelengths depend on the specific n quantum number of
the Rydberg states 5sns(1S0) and 5snp(3P0), the two universal

TABLE I. Magic wavelengths (nm) for Rydberg states and the
5s2(1S0) and 5s5p(3P0) clock states of Sr seen in Figs. 3 and 4. Only
wavelengths in the CO2 laser band are tabulated.

1S0
3P0

5s160s 5s180s 5s160p 5s180p

5347 6725 5372 6754
5s2(1S0) 6686 8542 6719 8578

7078 7101
6076 6157

5s5p(3P0) 8285 8326
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wavelengths at 596 and 1362 nm are independent of n and are
essentially the same for all Rydberg states beyond n ∼ 160.

IV. CONCLUSION

The second (non-Rydberg) valence electron of divalent
atoms contributes sizably to the trapping potential and greatly
simplifies the trapping of Rydberg states of divalent atoms. We
have shown that although the valence and the Rydberg-electron
polarizabilities individually add to make up the polarizability
in a 5sns(1S0) state, the situation is more complicated in the
general case. For example, in a 5snp(3P0) state, only part of
the Rydberg-electron polarizability contributes to the overall
polarizability of the divalent atom. The contribution from the
Rydberg electron to the total polarizability of the divalent
system is the landscaping polarizability α

lsc,J=0
nr lr

(ω), which
is only one of the terms in the landscaping polarizability
of the one-electron Rydberg state when expressed in terms
of ITOs. Like the landscaping polarizability of alkali-metal
atoms, α

lsc,J=0
nr lr

(ω) depends on the parameter a0n
2/λ and

vanishes in the limit λ → 0 (or n → ∞). As a result, if it
were not for the ac polarizability of the residual ion, the atom
would become untrappable. In the opposite limit a0n

2/λ � 1,
α

lsc,J=0
nr lr

(ω) approaches the free-electron value.
We explored the possibility of magic trapping of Rydberg

states of divalent atoms (specifically Sr) with the 5s2(1S0)
ground and 5s5p(3P0) clock states. We find that these con-
ditions can be satisfied at various lattice laser wavelengths in
the IR region of the spectrum. The specific values of the magic
wavelengths depend on the principal quantum number of the
Rydberg state, as the total dynamic polarizability in this region
is dominated by the landscaping polarizability of the Rydberg
electron. On the other hand, we also identified two wavelengths
(596 and 1362 nm) at which the magic trapping can be attained
for the upper clock state and the Rydberg states, whose values
are independent of n in the high-n limit. This is due to the fact
that the polarizability of the Sr Rydberg states is dominated by

that of the Sr+ ion in the short-λ region, where these universal
magic conditions occur.
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APPENDIX

Here, we derive an explicit expression for the S
(K)
MK

tensors,
which were used to expand AVG(rj ) in terms of ITOs. For
a one-dimensional optical lattice formed by superposing two
counterpropagating laser beams in the z direction, the vector
potential is given by (14). It is proportional to sin[k(Z + z)].
We begin by expressing this in complex exponentials:

sin[k(Z + z)] = 1

2i
(eikZeikz − e−ikZe−ikz) . (A1)

The complex exponentials themselves can be expanded in
terms of the spherical Bessel functions jK (kr):

eikz =
∞∑

K=0

(2K + 1)iKjK (kr)C(K)
MK=0(r̂). (A2)

Substituting this expansion in Eq. (A1) and combining the
right-hand side term by term, we obtain

sin[k(Z + z)]

=
∞∑

K=0

(2K + 1)jK (kr)C(K)
MK=0(r̂)

[
iKeikZ

2i
+ c.c.

]
. (A3)

Realizing that iK = exp(−iπK/2), we finally obtain an
expression for S

(K)
MK=0:

S
(K)
MK=0 = −2cF0

ω
ε̂(2K + 1)jK (kr)C(K)

MK=0(r̂) sin(kZ + π
2 K).

(A4)
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